On the Geodesics of Tubular Surfaces in Minkowski 3-Space

${ }^{1}$ Murat Kemal Karacan and ${ }^{2}$ Yusuf Yayli
${ }^{1}$ Usak University, Faculty of Sciences and Arts, Department of Mathematics, 1 Eylul Campus, 64200 Usak-Turkey
${ }^{2}$ Ankara University, Faculty of Sciences,
Department of Mathematics, Tandogan-Ankara-Turkey
${ }^{1}$ murat.karacan@usak.edu.tr, mkkaracan@yahoo.com
${ }^{2}$ yayli@science.ankara.edu.tr

Abstract

In this study, we research geodesics of tubular surfaces which is founded by using two-parameter spatial motion along a curve in Minkowski 3 -space. To do this, we solve differential equation $\bar{D}_{T} T=0$ of parametric curves on the tubular surface where \bar{D} is the connection of tubular surface and \vec{T} is the unit vector field of two parametric curves on the tubular surface in particular. It is shown that for fixed s, all of parametric curves of the tubular surface $M=\varphi(s, t)$ are geodesics and for fixed t only the curves $\varphi_{t}=0(s)$ are geodesics.

2000 Mathematics Subject Classification: 53A35, 53B30
Key words and phrases: Motion along a curve, Gauss equation, Geodesics on surfaces, Tubular surface, Minkowski 3-space

1. Introduction

Let $\mathbb{R}^{3}=\left\{\left(r_{1}, r_{2}, r_{3}\right) \mid r_{1}, r_{2}, r_{3} \in \mathbb{R}\right\}$ be a 3 -dimensional vector space, $r=\left(r_{1}, r_{2}, r_{3}\right)$ and $s=\left(s_{1}, s_{2}, s_{3}\right)$ be two vectors in \mathbb{R}^{3}. The Lorentz scalar product of the vectors r and s is defined by

$$
\langle r, s\rangle_{L}=-r_{1} s_{1}+r_{2} s_{2}+r_{3} s_{3} .
$$

The space $\mathbb{R}_{1}^{3}=\left(\mathbb{R}^{3},\langle,\rangle_{L}\right)$ is called 3-dimensional Lorentz space, or Minkowski 3 -space. The Lorentz vector product of the vectors r and s is defined by

$$
r \wedge_{L} s=\left(r_{2} s_{3}-r_{3} s_{2}, r_{1} s_{3}-r_{3} s_{1}, r_{2} s_{1}-r_{1} s_{2}\right) .
$$

The vector r in \mathbb{R}_{1}^{3} is called a spacelike vector, a lightlike (null) vector or a timelike vector if $\langle r, r\rangle_{L}>0,\langle r, r\rangle_{L}=0$ or $\langle r, r\rangle_{L}<0$ respectively. The norm of the

Received: February 8, 2006; Revised: August 29, 2007.
vector r is defined by $\|r\|_{L}=\sqrt{\left|\langle r, r\rangle_{L}\right|}$ and r is called a unit vector if $\|r\|_{L}=1$ [4]. Semi-orthogonal matrix providing rotation the angle (hyperbolic) t around the vector \vec{c}. Denote by $\{T(s), N(s), B(s)\}$ the moving Frenet frame along the curve $\alpha(s)$. Then T, N and B are the tangent, the principal normal and the binormal vector of the curve $\alpha(s)$ respectively.

If $\alpha(s)$ is a spacelike:
Case 1. Let T be spacelike, N spacelike and B timelike. This set of orthogonal unit vectors, known as the Frenet-Serret frame, has the following properties

$$
\begin{aligned}
& \langle T, T\rangle_{L}=\langle N, N\rangle_{L}=1,\langle B, B\rangle_{L}=-1, \\
& \langle T, N\rangle_{L}=\langle N, B\rangle_{L}=\langle T, B\rangle_{L}=0
\end{aligned}
$$

and

$$
T^{\prime}=\kappa N, N^{\prime}=-\kappa T+\tau B, B^{\prime}=\tau B
$$

where κ and τ curvature of the curve $\alpha(s)$ respectively. Given this set of coordinates, let $\alpha(s)$ be a curve parameterized by the arc length (s) and let $T(s)$ be the vector $T(s)=\alpha^{\prime}(s)$ where the prime indicates differentiation with respect to s. While there might be other canonical parameterizations, only a parameterization by the arc length leads to a normalized vector $T(s)$.

Case 2. Let T be spacelike, N timelike and B spacelike. This set of orthogonal unit vectors, known as the Frenet-Serret frame, has the following properties [4]:

$$
\begin{aligned}
& \langle T, T\rangle_{L}=\langle B, B\rangle_{L}=1,\langle N, N\rangle_{L}=-1 \\
& \langle T, N\rangle_{L}=\langle N, B\rangle_{L}=\langle T, B\rangle_{L}=0
\end{aligned}
$$

and

$$
T^{\prime}=\kappa N, N^{\prime}=\kappa T+\tau B, B^{\prime}=\tau B .
$$

The shape of the matrix depends on the type of the vector \vec{c} as the following [2].
i. If $\overrightarrow{c(s)}$ is a spacelike vector, then

$$
\begin{equation*}
A_{1}(s, t)=I+C \cdot \sinh t+C^{2} \cdot(-1+\cosh t) \tag{1.1}
\end{equation*}
$$

ii. If $\overrightarrow{c(s)}$ is a timelike vector, then

$$
\begin{equation*}
A_{2}(s, t)=I+C \cdot \sin t+C^{2} \cdot(1-\cos t) \tag{1.2}
\end{equation*}
$$

If C is a semi-skew symmetric matrix, then

$$
C(3,1)=\left\{\begin{array}{c}
C \in \mathbb{R}_{3}^{3} \mid, C^{T}=-\varepsilon C \varepsilon, C=\left[\begin{array}{ccc}
0 & c_{3} & -c_{2} \\
c_{3} & 0 & -c_{1} \\
-c_{2} & c_{1} & 0
\end{array}\right] \\
c_{i} \in \mathbb{R}, \varepsilon=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{array}\right\}
$$

Then, let \vec{p} denote the ground vector and P denote the column matrix form of the point. The equations

$$
\begin{equation*}
C \cdot P=\vec{c} \wedge_{L} \vec{p} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{c} \wedge_{L}\left(\vec{c} \wedge_{L} \vec{p}\right)=-\langle\vec{c}, \vec{p}\rangle_{L}+\langle\vec{c}, \vec{c}\rangle \vec{p}_{L} \tag{1.4}
\end{equation*}
$$

are valid. Therefore, from equation (1.1) and if $\overrightarrow{c(s)}$ is a spacelike vector, then

$$
A_{1}(s, t) P=\left[I+C \cdot \sinh t+C^{2} \cdot(-1+\cosh t)\right] P
$$

From the equation (1.2) and if $\overrightarrow{c(s)}$ is a timelike vector, then

$$
A_{2}(s, t) P=\left[I+C \cdot \sin t+C^{2} \cdot(1-\cos t)\right] P .
$$

Using the equations (1.3) and (1.4), we get

$$
\begin{equation*}
A_{1}(s, t) P=\vec{p} \cosh t+\langle\vec{c}, \vec{p}\rangle_{L} \vec{c}(1-\cosh t)+\left(\vec{c} \wedge_{L} \vec{p}\right) \sinh t \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{2}(s, t) P=\vec{p} \cos t-\langle\vec{c}, \vec{p}\rangle_{L} \vec{c}(1-\cos t)+\left(\vec{c} \wedge_{L} \vec{p}\right) \sin t \tag{1.6}
\end{equation*}
$$

Let α be a space curve given by

$$
\alpha: I \rightarrow \mathbb{R}_{1}^{3}, s \rightarrow \alpha(s)
$$

be differentiable as for $s \in I \subset \mathbb{R}$. In additional, let a vector field defined $C(s)$ along the curve $\alpha(s)$ be given as

$$
\begin{aligned}
c & : \quad \alpha(I) \rightarrow \bigcup_{s \in I} T_{\mathbb{R}_{1}^{3}} \\
s & \rightarrow \quad c(s)=(\alpha(s), \overrightarrow{c(s)})=\left.\overrightarrow{c(s)}\right|_{\alpha(s)} .
\end{aligned}
$$

Let $C(s)$ be a semi-skew symetric matrix defined by the vector \vec{c} for all $s \in I$. The matrices $A_{1}(s, t)$ and $A_{2}(s, t)$ are semi-orthogonal matrices defined by $C(s)$. The moving Frenet frame defined along the curve $\alpha(I)$ is $\{\alpha(s), \overrightarrow{T(s)}, \overrightarrow{N(s)}, \overrightarrow{B(s)}\}$ and p is a fixed point according to the frame. With these notations and assumptions, we can give the following definition:

Definition 1.1. The motion $\varphi(s, t)(P)=A_{1,2}(s, t) P+\alpha(s)$ is called the two parameter motion defined along the curve in Minkowski 3-space [1]. Here $\varphi(s, t)(P)$ indicates a trajectory level.

Let us give some properties of the $\varphi(s, t)(P)$. We will always use the $\{\vec{T}, \vec{N}, \vec{B}\}$ instead of the Frenet frame $\{\overrightarrow{T(s)}, \overrightarrow{N(s)}, \overrightarrow{B(s)}\}$ for the rest of our work. We will also choose the tangent vector field \vec{T} instead of the vector field \vec{c}. A trajectory of the point P indicates a surface under the two parameter motion. The equation of this surface is
i. If \vec{c} is a spacelike vector, then from equations (1.1) and (1.5), we have

$$
\begin{equation*}
\varphi_{1}(s, t)(P)=\vec{p} \cosh t+\langle\vec{T}, \vec{p}\rangle_{L}(1-\cosh t) \vec{T}+\sinh t \cdot\left(\vec{T} \wedge_{L} \vec{p}\right)+\alpha(s) \tag{1.7}
\end{equation*}
$$

ii. If \vec{c} is a timelike vector, then from equations (1.2) and (1.6), we have

$$
\begin{equation*}
\varphi_{2}(s, t)(P)=\vec{p} \cos t-\langle\vec{T}, \vec{p}\rangle_{L}(1-\cos t) \vec{T}+\sin t\left(\vec{T} \wedge_{L} \vec{p}\right)+\alpha(s) \tag{1.8}
\end{equation*}
$$

2. Helices on tubular surfaces

In this section, we will use frame $\left\{\vec{T}, \overrightarrow{E_{1}}, \overrightarrow{E_{2}}\right\}$ instead of Frenet frame of the curve and our calculations will be constructed on this case, where E_{1} and E_{2} are independent from choosing of the curve.
i. If $\alpha(s)$ is a spacelike curve, then tangent \vec{T} is a spacelike and we have the following cases:
Let's take $\vec{p}=\lambda \overrightarrow{E_{1}}, \lambda \in \mathbb{R}$ in two parameter motion (1.7).
(a) \vec{T} spacelike, $\overrightarrow{E_{1}}$ timelike and $\overrightarrow{E_{2}}$ spacelike. We have

$$
\begin{equation*}
\varphi_{1}(s, t)(p)=\lambda \overrightarrow{E_{1}} \cosh t+\lambda \overrightarrow{E_{2}} \sinh t+\alpha(s) \tag{2.1}
\end{equation*}
$$

which is parametric equation of tubular surface in Minkowski 3-space defined along the curve $\alpha(s)$. If we take as $\alpha(s)=(0,0, s), \vec{T}=(0,0,1)$ and another frame $\overrightarrow{E_{1}}=(1,0,0), \overrightarrow{E_{2}}=(0,1,0)$, and substitute in equation (2.1), then we have

$$
\varphi_{1}(s, t)(p)=(\lambda \cosh t, \lambda \sinh t, s)
$$

which is a Lorentz cylinder.
(b) \vec{T} spacelike, $\overrightarrow{E_{1}}$ spacelike and $\overrightarrow{E_{2}}$ timelike. We have

$$
\begin{equation*}
\varphi_{1}(s, t)(p)=\lambda \overrightarrow{E_{1}} \cosh t-\lambda \overrightarrow{E_{2}} \sinh t+\alpha(s) \tag{2.2}
\end{equation*}
$$

which is parametric equation of tubular surface in Minkowski 3-space defined along the curve $\alpha(s)$. If we take as $\alpha(s)=(0,0, s), \vec{T}=$ $(0,0,1), \overrightarrow{E_{1}}=(0,1,0), \overrightarrow{E_{2}}=(1,0,0)$, and substitute in equation (2.2), then we have

$$
\varphi_{1}(s, t)(p)=(-\lambda \sinh t, \lambda \cosh t, s)
$$

which is a Lorentz cylinder.
ii. If $\alpha(s)$ is a timelike curve:

Let's take $\vec{p}=\lambda \overrightarrow{E_{1}}, \lambda \in \mathbb{R}$ in two parameter motion (1.8). We have

$$
\begin{equation*}
\varphi_{2}(s, t)(p)=\lambda \overrightarrow{E_{1}} \cos t+\lambda \overrightarrow{E_{2}} \sin t+\alpha(s) \tag{2.3}
\end{equation*}
$$

which is parametric equation of tubular surface in Minkowski 3-space defined along the curve $\alpha(s)$. If we take as $\alpha(s)=(s, 0,0), \vec{T}=(1,0,0), \overrightarrow{E_{1}}=$ $(0,1,0), \overrightarrow{E_{2}}=(0,0,1)$, and substitute in equation (2.3), then we have

$$
\varphi_{2}(s, t)(p)=(s, \lambda \cos t, \lambda \sin t)
$$

which is a Lorentz cylinder.
Let's take $t=s$. Then a curve on the tubular surface is obtained. The equation of this curve from equation (2.1) is

$$
\begin{equation*}
\beta(s)=\lambda \overrightarrow{E_{1}} \cosh s+\lambda \overrightarrow{E_{2}} \sinh s+\alpha(s) . \tag{2.4}
\end{equation*}
$$

From equation (2.2), it is

$$
\begin{equation*}
\beta(s)=\lambda \overrightarrow{E_{1}} \cosh s-\lambda \overrightarrow{E_{2}} \sinh s+\alpha(s) . \tag{2.5}
\end{equation*}
$$

From equation (2.3), it is

$$
\begin{equation*}
\beta(s)=\lambda \overrightarrow{E_{1}} \cosh s-\lambda \overrightarrow{E_{2}} \sinh s+\alpha(s) . \tag{2.6}
\end{equation*}
$$

These curves are helix curves on the tubular surfaces in Minkowski 3-space.
If $\alpha(s)=(0,0, s)$ is a spacelike curve, then

$$
\begin{equation*}
\beta(s)=(\cosh s, \sinh s, s) \tag{2.7}
\end{equation*}
$$

is obtained from equation (2.4), where $\vec{T}=(0,0,1), \overrightarrow{E_{1}}=(1,0,0), \overrightarrow{E_{2}}=(0,1,0)$ and $\lambda=1$.

$$
\begin{equation*}
\beta(s)=(-\sinh s, \cosh s, s) \tag{2.8}
\end{equation*}
$$

is obtained from equation (2.5), where $\vec{T}=(0,0,1), \overrightarrow{E_{1}}=(0,1,0), \overrightarrow{E_{2}}=(1,0,0)$ and $\lambda=1$.

If $\alpha(s)=(s, 0,0)$ is a timelike curve, then

$$
\begin{equation*}
\beta(s)=(s, \cos s, \sin s) \tag{2.9}
\end{equation*}
$$

is obtained from equation (2.6), where $\vec{T}=(1,0,0), \overrightarrow{E_{1}}=(0,1,0), \overrightarrow{E_{2}}=(0,0,1)$ and $\lambda=1$.

These curves are helix curves on the cylinder in Minkowski 3-space with z-axis or x-axis.

3. Tubular surfaces defined by $\beta(s)$

In this section, we investigate tubular surfaces by using $\beta(s)$ curves in equations (2.4), (2.5) and (2.6). Furthermore, we can use Frenet frame of the curve. For the equations of tubular surfaces from equation (1.7),

$$
\begin{equation*}
\varphi^{*}(s, t)\left(P^{*}\right)=\lambda \overrightarrow{N^{*}(s)} \cosh t+\lambda \overrightarrow{B^{*}(s)} \sinh t+\beta(s) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi^{*}(s, t)\left(P^{*}\right)=\lambda \overrightarrow{N^{*}(s)} \cosh t-\lambda \overrightarrow{B^{*}(s)} \sinh t+\beta(s) \tag{3.2}
\end{equation*}
$$

are obtained, where $\overrightarrow{p^{*}}=\lambda \overrightarrow{N^{*}}$. Furthermore, from equation (1.8)

$$
\begin{equation*}
\varphi^{*}(s, t)\left(p^{*}\right)=\lambda \overrightarrow{N^{*}(s)} \cos t+\lambda \overrightarrow{B^{*}(s)} \sin t+\beta(s) \tag{3.3}
\end{equation*}
$$

is also obtained. We can find the equations of tubular surfaces with the helping of $\beta(s)$ curves on the surfaces of the equations (2.1), (2.2) and (2.3).
(a) Tubular surface defined by $\beta(s)=(\cosh s, \sinh s, s)$.

By using the curve $\beta(s)$, then

$$
\begin{aligned}
\overrightarrow{T^{*}} & =\frac{1}{\sqrt{2}}(\sinh s, \cosh s, 1) \\
\overrightarrow{N^{*}} & =(-\cosh s,-\sinh s, 0) \\
\overrightarrow{B^{*}} & =\frac{1}{\sqrt{2}}(\sinh s, \cosh s,-1)
\end{aligned}
$$

are obtained. If we substitute these values in equation (3.1), where

$$
\overrightarrow{p^{*}}=\lambda \overrightarrow{N^{*}}=\lambda(-\cosh s,-\sinh s, 0), \lambda \in \mathbb{R},
$$

then

$$
\varphi^{*}(s, t)\left(p^{*}\right)=\left(\begin{array}{c}
-\lambda \cosh s \cosh t+\frac{\lambda \sinh s \sinh t}{\sqrt{2}}+\cosh s \tag{3.4}\\
-\lambda \sinh s \cosh t+\frac{\lambda \cosh s \sinh t}{\sqrt{2}}+\sinh s \\
-\frac{\lambda \sinh t}{\sqrt{2}}+s
\end{array}\right)
$$

is obtained. This shows the characterization of tubular surface.
(b) Tubular surface defined by $\beta(s)=(-\sinh s, \cosh s, s)$.

Since $\overrightarrow{T^{*}}=\beta^{\prime}(s)=(-\cosh s, \sinh s, 1)$, the curve is a null curve. Let's choose binormal vector field of the curve such that

$$
\overrightarrow{B^{*}}=W_{1}=\beta^{\prime \prime}(s)=(-\sinh s, \cosh s, 0) .
$$

We need to find the vector field $\overrightarrow{N^{*}}$ such that $\left\langle\overrightarrow{N^{*}}, \overrightarrow{N^{*}}\right\rangle_{L}=0$ and $\left\langle\overrightarrow{T^{*}}, \overrightarrow{N^{*}}\right\rangle_{L}=$ 1. For that reason, we can find V vector such that $\left\langle\overrightarrow{T^{*}}, V\right\rangle_{L} \neq 0$. If we take $V=(1,0,0)$, then $\left\langle\overrightarrow{T^{*}}, V\right\rangle_{L} \neq 0$. If we substitute $\overrightarrow{T^{*}}$ and V in equation

$$
\overrightarrow{N^{*}}=\frac{1}{\left\langle\overrightarrow{T^{*}}, V\right\rangle_{L}}\left(V-\frac{\langle V, V\rangle_{L}}{2\left\langle\overrightarrow{T^{*}}, V\right\rangle_{L}} \overrightarrow{T^{*}}\right),
$$

then

$$
\overrightarrow{N^{*}}=\left(\frac{1}{2 \cosh s}, \frac{\sinh s}{2 \cosh ^{2} s}, \frac{1}{2 \cosh ^{2} s}\right)
$$

is obtained. So, Frenet frame of null curve in Minkowski 3-space is obtained. If we substitute these values in equation (3.2), then

$$
\varphi^{*}(s, t)\left(p^{*}\right)=\left(\begin{array}{c}
\frac{\lambda \cosh t}{2 \cosh s}+\lambda \sinh s \sinh t-\sinh s \tag{3.5}\\
\frac{\lambda \sinh s \cosh t}{2 \cosh ^{2} s}-\lambda \cosh s \sinh t+\cosh s \\
\frac{\lambda \cosh t}{2 \cosh ^{2} s}+s
\end{array}\right)
$$

is obtained. This shows the characterization of tubular surface.
(c) Tubular surface defined by $\beta(s)=(s, \cos s, \sin s)$.

Since $\overrightarrow{T^{*}}=\beta^{\prime}(s)=(1,-\sin s, \cos s)$, the curve is a null curve. Let's choose binormal vector field of the curve such that

$$
\overrightarrow{B^{*}}=W_{1}=\beta^{\prime \prime}(s)=(0,-\cos s,-\sin s) .
$$

We need to find the vector field $\overrightarrow{N^{*}}$ such that $\left\langle\overrightarrow{N^{*}}, \overrightarrow{N^{*}}\right\rangle_{L}=0$ and $\left\langle\overrightarrow{T^{*}}, \overrightarrow{N^{*}}\right\rangle_{L}$ $=1$. For that reason, we can find V vector such that $\left\langle\overrightarrow{T^{*}}, V\right\rangle_{L} \neq 0$. If we take $V=(1,0,0)$, then $\left\langle\overrightarrow{T^{*}}, V\right\rangle_{L} \neq 0$. If we substitute $\overrightarrow{T^{*}}$ and V in equation

$$
\overrightarrow{N^{*}}=\frac{1}{\left\langle\overrightarrow{T^{*}}, V\right\rangle_{L}}\left(V-\frac{\langle V, V\rangle_{L}}{2\left\langle\overrightarrow{T^{*}}, V\right\rangle_{L}} \overrightarrow{T^{*}}\right)
$$

then

$$
\overrightarrow{N^{*}}=\left(-\frac{1}{2},-\frac{\sin s}{2}, \frac{\cos s}{2}\right)
$$

is obtained. So, Frenet frame of null curve in Minkowski 3-space is obtained. If we substitute these values in equation (3.3), then

$$
\varphi^{*}(s, t)\left(p^{*}\right)=\left(\begin{array}{c}
-\frac{\lambda \cos t}{2}+s \tag{3.6}\\
-\frac{\lambda \sin s \cos t}{2}-\lambda \cos s \sin t \\
\frac{\lambda \cos s \cos t}{2}-\lambda \sin s \sin t
\end{array}\right)
$$

is obtained. This shows the characterization of tubular surface.

4. Geodesic curves of tubular surfaces

Definition 4.1. Let $\alpha: I \rightarrow M$ be a curve such that $\bar{D}_{T} T=0$, where \bar{D} and T are connection of M and unit tangent vector field of α respectively. Then α is called a geodesics curve on M [3].
Now we are ready to state the following theorem.
Theorem 4.1. Let $\gamma: I \rightarrow M$ be a curve. Then $\bar{D}_{T} T=0$ if and only if γ one of the following curves.
i. For any fixed s, the corresponding curve.
ii. The curves $\eta_{t=0}(s)$ which corresponds to $t=0$ where M is tubular surface given by equation (3.4).

Proof. If we denote the connections of \mathbb{R}_{1}^{3} and M, by D and \bar{D} respectively, then we can write the Gauss equation

$$
\begin{equation*}
\bar{D}_{X} Y=D_{X} Y+\varepsilon\langle S(X), Y\rangle_{L} U \tag{4.1}
\end{equation*}
$$

$X, Y \in \chi(M),\langle U, U\rangle_{L}=\varepsilon, \varepsilon=\mp 1[3]$. Where $\chi(M)$ is vector space of tangential vector fields on M and U is the unit normal vector field of M and S denotes the Weingarten map of M. If we have $X=Y=T$, then (4.1) reduces to

$$
\begin{equation*}
\bar{D}_{T} T=D_{T} T+\varepsilon\langle S(T), T\rangle_{L} U \tag{4.2}
\end{equation*}
$$

on the geodesics curves, $\bar{D}_{T} T=0$, for this kind of curve we have

$$
\begin{equation*}
D_{T} T+\varepsilon\langle S(T), T\rangle_{L} U=0 \tag{4.3}
\end{equation*}
$$

On the other hand, since

$$
\begin{aligned}
& \quad\langle T, U\rangle_{L}=0 \\
& \text { or } \\
& \quad\left\langle D_{T} T, U\right\rangle_{L}+\left\langle T, D_{T} U\right\rangle_{L}=0 \\
& \text { or } \\
& \quad D_{T} U=S(T)
\end{aligned}
$$

the last equation gives us

$$
\langle T, S(T)\rangle_{L}=\langle S(T), T\rangle_{L}=-\left\langle D_{T} T, U\right\rangle_{L}
$$

and equation (4.3) reduces to

$$
\begin{equation*}
D_{T} T-\varepsilon\left\langle D_{T} T, U\right\rangle_{L} U=0 \tag{4.4}
\end{equation*}
$$

i. In equation (3.4), choose those curves such that $s=$ constant. Then for these curves we have

$$
\begin{align*}
& \gamma(t)=\varphi_{s}(t)=\left(\begin{array}{c}
-\lambda \cosh s \cosh t+\frac{\lambda \sinh s \sinh t}{\sqrt{2}}+\cosh s, \\
-\lambda \sinh s \cosh t+\frac{\lambda \cosh s \sinh t}{\sqrt{2}}+\sinh s, \\
-\frac{\lambda \sinh t}{\sqrt{2}}+s
\end{array}\right), \tag{4.5}\\
& T=\frac{\frac{d \gamma}{d t}}{\left\|\frac{d \gamma}{d t}\right\|_{L}} \\
& T=\left(-\cosh s \sinh t+\frac{\cosh t \sinh s}{\sqrt{2}},-\sinh t \sinh s+\frac{\cosh t \cosh s}{\sqrt{2}},-\frac{\cosh t}{\sqrt{2}}\right)
\end{align*}
$$

and

$$
\begin{equation*}
D_{T} T=\left(-\cosh t \cosh s+\frac{\sinh s \sinh t}{\sqrt{2}},-\cosh t \sinh s+\frac{\sinh t \cosh s}{\sqrt{2}},-\frac{\sinh t}{\sqrt{2}}\right) \tag{4.6}
\end{equation*}
$$

On the other hand, for the unit vector field U we have

$$
U=\frac{\frac{d \varphi}{d s} \wedge_{L} \frac{d \varphi}{d t}}{\left\|\frac{d \varphi}{d s} \wedge_{L} \frac{d \varphi}{d t}\right\|_{L}}=\frac{1}{\sqrt{\left|\sinh ^{2} t-\cosh ^{2} t\right|}}\left(\begin{array}{c}
-\cosh t \cosh s+\frac{\sinh s \sinh t}{\sqrt{2}} \tag{4.7}\\
-\cosh t \sinh s+\frac{\sinh t \cosh s}{\sqrt{2}} \\
-\frac{\sinh t}{\sqrt{2}}
\end{array}\right)
$$

or

$$
D_{T} T=\left.U\right|_{\gamma(t)}
$$

or

$$
\left\langle D_{T} T, U\right\rangle_{L}=\langle U, U\rangle_{L}=\varepsilon=-1
$$

and from (4.4) we have

$$
D_{T} T-(-1)\left\langle D_{T} T, U\right\rangle_{L} U=D_{T} T+\left\langle D_{T} T, U\right\rangle_{L} U=0
$$

and so, the equation (4.2) give us $\bar{D}_{T} T=0$ which implies that each of $s=$ constant parameter curve, lies on M is a geodesic.
ii. Now we take the curves η such that $t=$ constant on M then we can obtain the parametric representation of η from (3.4) as

$$
\eta(s)=\varphi_{t}(s)=\left(\begin{array}{c}
-\lambda \cosh s \cosh t+\frac{\lambda \sinh s \sinh t}{\sqrt{2}}+\cosh s, \tag{4.8}\\
-\lambda \sinh s \cosh t+\frac{\lambda \cosh s \sinh t}{\sqrt{2}}+\sinh s, \\
-\frac{\lambda \sinh t}{\sqrt{2}}+s
\end{array}\right)
$$

In this case, the unit tangent vector field T of η is

$$
T=\frac{\frac{d \eta}{d s}}{\left\|\frac{d \eta}{d s}\right\|_{L}}
$$

$$
T=\frac{1}{\sqrt{1+(1-\lambda \cosh t)^{2}-\frac{\lambda^{2} \sinh ^{2} t}{2}}}\left(\begin{array}{c}
-\lambda \sinh s \cosh t+\frac{\lambda \sinh t \cosh s}{\sqrt{2}}+\sinh s \\
-\lambda \cosh t \cosh s+\frac{\lambda \sinh t \sinh s}{\sqrt{2}}+\cosh s \\
1
\end{array}\right)
$$

and

$$
D_{T} T=\frac{1}{1+(1-\lambda \cosh t)^{2}-\frac{\lambda^{2} \sinh ^{2} t}{2}}\left(\begin{array}{c}
-\lambda \cosh s \cosh t+\frac{\lambda \sinh t \sinh s}{\sqrt{2}}+\cosh s \tag{4.9}\\
-\lambda \cosh t \sinh s+\frac{\lambda \sinh t \cosh s}{\sqrt{2}}+\sinh s \\
0
\end{array}\right)
$$

$$
\left\langle D_{T} T, U\right\rangle_{L}=\frac{1}{1+(1-\lambda \cosh t)^{2}-\frac{\lambda^{2} \sinh ^{2} t}{2}}\left(-\lambda \cosh ^{2} t+\frac{\lambda \sinh ^{2} t}{2}+\cosh t\right)
$$

If we write the equation (4.7) and (4.9) in equation,

$$
D_{T} T-(-1)\left\langle D_{T} T, U\right\rangle_{L} U=D_{T} T+\left\langle D_{T} T, U\right\rangle_{L} U=0
$$

we obtain three algebric differential equations and since one of these equation in being

$$
-\frac{1}{\sqrt{2}} \sinh t=0
$$

the solution of this equation are $t=0$. If we put this value of t in (3.4), we have

$$
\eta(s)=\varphi_{t=0}(s)=((1-\lambda) \cosh s,(1-\lambda) \sinh s, s)
$$

which implies that only geodesic curves among the parameter curves $t=$ constant are parametric curve which corresponds to $t=0$. The converse of the proof of this theorem in obvious. Since parameter curves in the equations (3.5) and (3.6) of the surfaces are not getting the equation $\bar{D}_{T} T=0$. Parameter curves are not geodesic curves. This completes the proof.

References

[1] M. K. Karacan, Kinematic Applications of Two Parameter Motions, Ph.D Thesis, Graduate School and Natural Sciences, Ankara University, 2004.
[2] L. Kula, Split Quaternions and Geometric Applications, Ph.D Thesis, Graduate School and Natural Sciences, Ankara University, 2003.
[3] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, London, 1983.
[4] J. Walrave, Curves and Surfaces in Minkowski Space, Ph.D Thesis, Faculty of Science, Katholieke Universiteit Leuven, 1995.

