On the Geodesics of Tubular Surfaces in Minkowski 3-Space

 $^1\mathrm{Murat}$ Kemal Karacan and $^2\mathrm{Yusuf}$ Yayli

¹Usak University, Faculty of Sciences and Arts, Department of Mathematics, 1 Eylul Campus, 64200 Usak–Turkey ²Ankara University, Faculty of Sciences, Department of Mathematics, Tandogan–Ankara–Turkey ¹murat.karacan@usak.edu.tr, mkkaracan@yahoo.com ²yayli@science.ankara.edu.tr

Abstract. In this study, we research geodesics of tubular surfaces which is founded by using two-parameter spatial motion along a curve in Minkowski 3-space. To do this, we solve differential equation $\overline{D}_T T = 0$ of parametric curves on the tubular surface where \overline{D} is the connection of tubular surface and \overrightarrow{T} is the unit vector field of two parametric curves on the tubular surface in particular. It is shown that for fixed *s*, all of parametric curves of the tubular surface $M = \varphi(s, t)$ are geodesics and for fixed *t* only the curves $\varphi_t = 0(s)$ are geodesics.

2000 Mathematics Subject Classification: 53A35, 53B30

Key words and phrases: Motion along a curve, Gauss equation, Geodesics on surfaces, Tubular surface, Minkowski 3-space

1. Introduction

Let $\mathbb{R}^3 = \{(r_1, r_2, r_3) \mid r_1, r_2, r_3 \in \mathbb{R}\}$ be a 3-dimensional vector space, $r = (r_1, r_2, r_3)$ and $s = (s_1, s_2, s_3)$ be two vectors in \mathbb{R}^3 . The Lorentz scalar product of the vectors r and s is defined by

$$\langle r, s \rangle_L = -r_1 s_1 + r_2 s_2 + r_3 s_3.$$

The space $\mathbb{R}^3_1 = (\mathbb{R}^3, \langle , \rangle_L)$ is called 3-dimensional Lorentz space, or Minkowski 3-space. The Lorentz vector product of the vectors r and s is defined by

$$r \wedge_L s = (r_2 s_3 - r_3 s_2, r_1 s_3 - r_3 s_1, r_2 s_1 - r_1 s_2).$$

The vector r in \mathbb{R}^3_1 is called a spacelike vector, a lightlike (null) vector or a timelike vector if $\langle r, r \rangle_L > 0$, $\langle r, r \rangle_L = 0$ or $\langle r, r \rangle_L < 0$ respectively. The norm of the

Received: February 8, 2006; Revised: August 29, 2007.

vector r is defined by $||r||_L = \sqrt{|\langle r, r \rangle_L|}$ and r is called a unit vector if $||r||_L = 1$ [4]. Semi-orthogonal matrix providing rotation the angle (hyperbolic) t around the vector \vec{c} . Denote by $\{T(s), N(s), B(s)\}$ the moving Frenet frame along the curve $\alpha(s)$. Then T, N and B are the tangent, the principal normal and the binormal vector of the curve $\alpha(s)$ respectively.

If $\alpha(s)$ is a spacelike:

Case 1. Let T be spacelike, N spacelike and B timelike. This set of orthogonal unit vectors, known as the Frenet-Serret frame, has the following properties

$$\langle T, T \rangle_L = \langle N, N \rangle_L = 1, \langle B, B \rangle_L = -1,$$

 $\langle T, N \rangle_L = \langle N, B \rangle_L = \langle T, B \rangle_L = 0$

and

$$T^{'} = \kappa N, N^{'} = -\kappa T + \tau B, B^{'} = \tau B.$$

where κ and τ curvature of the curve $\alpha(s)$ respectively. Given this set of coordinates, let $\alpha(s)$ be a curve parameterized by the arc length (s) and let T(s) be the vector $T(s) = \alpha'(s)$ where the prime indicates differentiation with respect to s. While there might be other canonical parameterizations, only a parameterization by the arc length leads to a normalized vector T(s).

Case 2. Let T be spacelike, N timelike and B spacelike. This set of orthogonal unit vectors, known as the Frenet-Serret frame, has the following properties [4]:

$$\langle T, T \rangle_L = \langle B, B \rangle_L = 1, \langle N, N \rangle_L = -1$$

 $\langle T, N \rangle_L = \langle N, B \rangle_L = \langle T, B \rangle_L = 0$

and

$$T^{'} = \kappa N, N^{'} = \kappa T + \tau B, B^{'} = \tau B.$$

The shape of the matrix depends on the type of the vector \vec{c} as the following [2].

i. If $\overrightarrow{c(s)}$ is a spacelike vector, then

(1.1)
$$A_1(s,t) = I + C \cdot \sinh t + C^2 \cdot (-1 + \cosh t)$$

ii. If $\overrightarrow{c(s)}$ is a timelike vector, then

(1.2)
$$A_2(s,t) = I + C \cdot \sin t + C^2 \cdot (1 - \cos t)$$

If C is a semi-skew symmetric matrix, then

$$C(3,1) = \left\{ \begin{array}{c} C \in \mathbb{R}_{3}^{3} \mid , C^{T} = -\varepsilon C\varepsilon, C = \begin{bmatrix} 0 & c_{3} & -c_{2} \\ c_{3} & 0 & -c_{1} \\ -c_{2} & c_{1} & 0 \end{bmatrix}, \\ c_{i} \in \mathbb{R}, \varepsilon = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right. \right\}.$$

Then, let \overrightarrow{p} denote the ground vector and P denote the column matrix form of the point. The equations

(1.3)
$$C \cdot P = \overrightarrow{c} \wedge_L \overrightarrow{p}$$

and

(1.4)
$$\overrightarrow{c} \wedge_L (\overrightarrow{c} \wedge_L \overrightarrow{p}) = -\langle \overrightarrow{c}, \overrightarrow{p} \rangle_L + \langle \overrightarrow{c}, \overrightarrow{c} \rangle \overrightarrow{p}_L$$

are valid. Therefore, from equation (1.1) and if $\overrightarrow{c(s)}$ is a spacelike vector, then

$$A_1(s,t)P = \left[I + C \cdot \sinh t + C^2 \cdot \left(-1 + \cosh t\right)\right]P.$$

From the equation (1.2) and if $\overrightarrow{c(s)}$ is a timelike vector, then

$$A_2(s,t)P = \left[I + C \cdot \sin t + C^2 \cdot (1 - \cos t)\right]P.$$

Using the equations (1.3) and (1.4), we get

(1.5)
$$A_1(s,t)P = \overrightarrow{p} \cosh t + \langle \overrightarrow{c}, \overrightarrow{p} \rangle_L \overrightarrow{c} (1 - \cosh t) + (\overrightarrow{c} \wedge_L \overrightarrow{p}) \sinh t$$

and

(1.6)
$$A_2(s,t)P = \overrightarrow{p}\cos t - \langle \overrightarrow{c}, \overrightarrow{p} \rangle_L \overrightarrow{c} (1 - \cos t) + (\overrightarrow{c} \wedge_L \overrightarrow{p})\sin t.$$

Let α be a space curve given by

$$\alpha: I \to \mathbb{R}^3_1, s \to \alpha(s)$$

be differentiable as for $s \in I \subset \mathbb{R}$. In additional, let a vector field defined C(s) along the curve $\alpha(s)$ be given as

$$c : \alpha(I) \to \bigcup_{s \in I} T_{\mathbb{R}^3_1}$$
$$s \to c(s) = \left(\alpha(s), \overrightarrow{c(s)}\right) = \overrightarrow{c(s)} \mid_{\alpha(s)}.$$

Let C(s) be a semi-skew symetric matrix defined by the vector \overrightarrow{c} for all $s \in I$. The matrices $A_1(s,t)$ and $A_2(s,t)$ are semi-orthogonal matrices defined by C(s). The moving Frenet frame defined along the curve $\alpha(I)$ is $\left\{\alpha(s), \overrightarrow{T(s)}, \overrightarrow{N(s)}, \overrightarrow{B(s)}\right\}$ and p is a fixed point according to the frame. With these notations and assumptions, we can give the following definition:

Definition 1.1. The motion $\varphi(s,t)(P) = A_{1,2}(s,t)P + \alpha(s)$ is called the two parameter motion defined along the curve in Minkowski 3–space [1]. Here $\varphi(s,t)(P)$ indicates a trajectory level.

Let us give some properties of the $\varphi(s,t)(P)$. We will always use the $\{\overrightarrow{T}, \overrightarrow{N}, \overrightarrow{B}\}$ instead of the Frenet frame $\{\overrightarrow{T(s)}, \overrightarrow{N(s)}, \overrightarrow{B(s)}\}$ for the rest of our work. We will also choose the tangent vector field \overrightarrow{T} instead of the vector field \overrightarrow{c} . A trajectory of the point P indicates a surface under the two parameter motion. The equation of this surface is

i. If \overrightarrow{c} is a spacelike vector, then from equations (1.1) and (1.5), we have

(1.7)
$$\varphi_1(s,t)(P) = \overrightarrow{p} \cosh t + \langle \overrightarrow{T}, \overrightarrow{p} \rangle_L (1 - \cosh t) \overrightarrow{T} + \sinh t \cdot (\overrightarrow{T} \wedge_L \overrightarrow{p}) + \alpha(s).$$

ii. If \overrightarrow{c} is a timelike vector, then from equations (1.2) and (1.6), we have

(1.8)
$$\varphi_2(s,t)(P) = \overrightarrow{p}\cos t - \langle \overrightarrow{T}, \overrightarrow{p} \rangle_L (1 - \cos t) \overrightarrow{T} + \sin t (\overrightarrow{T} \wedge_L \overrightarrow{p}) + \alpha(s).$$

2. Helices on tubular surfaces

In this section, we will use frame $\{\overrightarrow{T}, \overrightarrow{E_1}, \overrightarrow{E_2}\}$ instead of Frenet frame of the curve and our calculations will be constructed on this case, where E_1 and E_2 are independent from choosing of the curve.

i. If $\alpha(s)$ is a spacelike curve, then tangent \overrightarrow{T} is a spacelike and we have the following cases:

Let's take $\overrightarrow{p} = \lambda \overrightarrow{E_1}, \lambda \in \mathbb{R}$ in two parameter motion (1.7).

(a) \overrightarrow{T} spacelike, $\overrightarrow{E_1}$ timelike and $\overrightarrow{E_2}$ spacelike. We have

(2.1)
$$\varphi_1(s,t)(p) = \lambda \overrightarrow{E_1} \cosh t + \lambda \overrightarrow{E_2} \sinh t + \alpha(s)$$

which is parametric equation of tubular surface in Minkowski 3-space defined along the curve $\alpha(s)$. If we take as $\alpha(s) = (0, 0, s)$, $\overrightarrow{T} = (0, 0, 1)$ and another frame $\overrightarrow{E_1} = (1, 0, 0)$, $\overrightarrow{E_2} = (0, 1, 0)$, and substitute in equation (2.1), then we have

$$\varphi_1(s,t)(p) = (\lambda \cosh t, \lambda \sinh t, s)$$

which is a Lorentz cylinder.

(b) \overrightarrow{T} spacelike, $\overrightarrow{E_1}$ spacelike and $\overrightarrow{E_2}$ timelike. We have

2)
$$\varphi_1(s,t)(p) = \lambda \overrightarrow{E_1} \cosh t - \lambda \overrightarrow{E_2} \sinh t + \alpha(s)$$

which is parametric equation of tubular surface in Minkowski 3-space defined along the curve $\alpha(s)$. If we take as $\alpha(s) = (0,0,s), \vec{T} = (0,0,1), \vec{E_1} = (0,1,0), \vec{E_2} = (1,0,0)$, and substitute in equation (2.2), then we have

$$\varphi_1(s,t)(p) = (-\lambda \sinh t, \lambda \cosh t, s)$$

which is a Lorentz cylinder.

ii. If $\alpha(s)$ is a timelike curve:

Let's take $\overrightarrow{p} = \lambda \overrightarrow{E_1}, \lambda \in \mathbb{R}$ in two parameter motion (1.8). We have

(2.3)
$$\varphi_2(s,t)(p) = \lambda \overrightarrow{E_1} \cos t + \lambda \overrightarrow{E_2} \sin t + \alpha(s)$$

which is parametric equation of tubular surface in Minkowski 3-space defined along the curve $\alpha(s)$. If we take as $\alpha(s) = (s, 0, 0), \vec{T} = (1, 0, 0), \vec{E_1} = (0, 1, 0), \vec{E_2} = (0, 0, 1)$, and substitute in equation (2.3), then we have

 $\varphi_2(s,t)(p) = (s,\lambda\cos t,\lambda\sin t)$

which is a Lorentz cylinder.

Let's take t = s. Then a curve on the tubular surface is obtained. The equation of this curve from equation (2.1) is

(2.4)
$$\beta(s) = \lambda \vec{E_1} \cosh s + \lambda \vec{E_2} \sinh s + \alpha(s)$$

From equation (2.2), it is

(2.5)
$$\beta(s) = \lambda \overrightarrow{E_1} \cosh s - \lambda \overrightarrow{E_2} \sinh s + \alpha(s)$$

From equation (2.3), it is

(2.6)
$$\beta(s) = \lambda \overrightarrow{E_1} \cosh s - \lambda \overrightarrow{E_2} \sinh s + \alpha(s).$$

These curves are helix curves on the tubular surfaces in Minkowski 3-space.

If $\alpha(s) = (0, 0, s)$ is a spacelike curve, then

(2.7)
$$\beta(s) = (\cosh s, \sinh s, s)$$

is obtained from equation (2.4), where $\overrightarrow{T} = (0, 0, 1), \overrightarrow{E_1} = (1, 0, 0), \overrightarrow{E_2} = (0, 1, 0)$ and $\lambda = 1$.

(2.8)
$$\beta(s) = (-\sinh s, \cosh s, s)$$

is obtained from equation (2.5), where $\overrightarrow{T} = (0, 0, 1), \overrightarrow{E_1} = (0, 1, 0), \overrightarrow{E_2} = (1, 0, 0)$ and $\lambda = 1$.

If $\alpha(s) = (s, 0, 0)$ is a timelike curve, then

(2.9)
$$\beta(s) = (s, \cos s, \sin s)$$

is obtained from equation (2.6), where $\overrightarrow{T} = (1, 0, 0), \overrightarrow{E_1} = (0, 1, 0), \overrightarrow{E_2} = (0, 0, 1)$ and $\lambda = 1$.

These curves are helix curves on the cylinder in Minkowski 3-space with z-axis or x-axis.

3. Tubular surfaces defined by $\beta(s)$

In this section, we investigate tubular surfaces by using $\beta(s)$ curves in equations (2.4), (2.5) and (2.6). Furthermore, we can use Frenet frame of the curve. For the equations of tubular surfaces from equation (1.7),

(3.1)
$$\varphi^*(s,t)(P^*) = \lambda \overrightarrow{N^*(s)} \cosh t + \lambda \overrightarrow{B^*(s)} \sinh t + \beta(s)$$

and

(3.2)
$$\varphi^*(s,t)(P^*) = \lambda \overline{N^*(s)} \cosh t - \lambda \overline{B^*(s)} \sinh t + \beta(s)$$

are obtained, where $\overrightarrow{p^*} = \lambda \overrightarrow{N^*}$. Furthermore, from equation (1.8)

(3.3)
$$\varphi^*(s,t)(p^*) = \lambda \overrightarrow{N^*(s)} \cos t + \lambda \overrightarrow{B^*(s)} \sin t + \beta(s)$$

is also obtained. We can find the equations of tubular surfaces with the helping of $\beta(s)$ curves on the surfaces of the equations (2.1), (2.2) and (2.3).

(a) Tubular surface defined by $\beta(s) = (\cosh s, \sinh s, s)$. By using the curve $\beta(s)$, then

$$\begin{array}{rcl} \overrightarrow{T^{*}} & = & \displaystyle \frac{1}{\sqrt{2}}(\sinh s, \cosh s, 1) \\ \overrightarrow{N^{*}} & = & \displaystyle (-\cosh s, -\sinh s, 0) \\ \overrightarrow{B^{*}} & = & \displaystyle \frac{1}{\sqrt{2}}(\sinh s, \cosh s, -1) \end{array}$$

are obtained. If we substitute these values in equation (3.1), where

$$\overrightarrow{p^*} = \lambda \overrightarrow{N^*} = \lambda(-\cosh s, -\sinh s, 0), \lambda \in \mathbb{R},$$

then

(3.4)
$$\varphi^*(s,t)(p^*) = \begin{pmatrix} -\lambda \cosh s \cosh t + \frac{\lambda \sinh s \sinh t}{\sqrt{2}} + \cosh s, \\ -\lambda \sinh s \cosh t + \frac{\lambda \cosh s \sinh t}{\sqrt{2}} + \sinh s, \\ -\frac{\lambda \sinh t}{\sqrt{2}} + s \end{pmatrix}$$

is obtained. This shows the characterization of tubular surface.

(b) Tubular surface defined by $\beta(s) = (-\sinh s, \cosh s, s)$. Since $\overrightarrow{T^*} = \beta'(s) = (-\cosh s, \sinh s, 1)$, the curve is a null curve. Let's choose binormal vector field of the curve such that

$$\overrightarrow{B^*} = W_1 = \beta^{''}(s) = (-\sinh s, \cosh s, 0).$$

We need to find the vector field $\overrightarrow{N^*}$ such that $\langle \overrightarrow{N^*}, \overrightarrow{N^*} \rangle_L = 0$ and $\langle \overrightarrow{T^*}, \overrightarrow{N^*} \rangle_L = 1$. For that reason, we can find V vector such that $\langle \overrightarrow{T^*}, V \rangle_L \neq 0$. If we take V = (1, 0, 0), then $\langle \overrightarrow{T^*}, V \rangle_L \neq 0$. If we substitute $\overrightarrow{T^*}$ and V in equation

$$\overrightarrow{N^*} = \frac{1}{\langle \overrightarrow{T^*}, V \rangle_L} \left(V - \frac{\langle V, V \rangle_L}{2 \langle \overrightarrow{T^*}, V \rangle_L} \overrightarrow{T^*} \right),$$

then

$$\overrightarrow{N^*} = \left(\frac{1}{2\cosh s}, \frac{\sinh s}{2\cosh^2 s}, \frac{1}{2\cosh^2 s}\right)$$

is obtained. So, Frenet frame of null curve in Minkowski 3-space is obtained. If we substitute these values in equation (3.2), then

(3.5)
$$\varphi^*(s,t)(p^*) = \begin{pmatrix} \frac{\lambda \cosh t}{2 \cosh s} + \lambda \sinh s \sinh t - \sinh s, \\ \frac{\lambda \sinh s \cosh t}{2 \cosh^2 s} - \lambda \cosh s \sinh t + \cosh s, \\ \frac{\lambda \cosh t}{2 \cosh^2 s} + s \end{pmatrix}$$

is obtained. This shows the characterization of tubular surface.

(c) Tubular surface defined by $\beta(s) = (s, \cos s, \sin s)$. Since $\overrightarrow{T^*} = \beta'(s) = (1, -\sin s, \cos s)$, the curve is a null curve. Let's choose binormal vector field of the curve such that

$$\overrightarrow{B^*} = W_1 = \beta^{\prime\prime}(s) = (0, -\cos s, -\sin s).$$

We need to find the vector field $\overrightarrow{N^*}$ such that $\langle \overrightarrow{N^*}, \overrightarrow{N^*} \rangle_L = 0$ and $\langle \overrightarrow{T^*}, \overrightarrow{N^*} \rangle_L$ = 1. For that reason, we can find V vector such that $\langle \overrightarrow{T^*}, V \rangle_L \neq 0$. If we take V = (1, 0, 0), then $\langle \overrightarrow{T^*}, V \rangle_L \neq 0$. If we substitute $\overrightarrow{T^*}$ and V in equation

$$\overrightarrow{N^*} = \frac{1}{\langle \overrightarrow{T^*}, V \rangle_L} \left(V - \frac{\langle V, V \rangle_L}{2 \langle \overrightarrow{T^*}, V \rangle_L} \overrightarrow{T^*} \right).$$

then

$$\overrightarrow{N^*} = \left(-\frac{1}{2}, -\frac{\sin s}{2}, \frac{\cos s}{2}\right)$$

is obtained. So, Frenet frame of null curve in Minkowski 3-space is obtained. If we substitute these values in equation (3.3), then

(3.6)
$$\varphi^*(s,t)(p^*) = \begin{pmatrix} -\frac{\lambda \cos t}{2} + s, \\ -\frac{\lambda \sin s \cos t}{2} - \lambda \cos s \sin t, \\ \frac{\lambda \cos s \cos t}{2} - \lambda \sin s \sin t \end{pmatrix}$$

is obtained. This shows the characterization of tubular surface.

4. Geodesic curves of tubular surfaces

Definition 4.1. Let $\alpha : I \to M$ be a curve such that $\overline{D}_T T = 0$, where \overline{D} and T are connection of M and unit tangent vector field of α respectively. Then α is called a geodesics curve on M [3].

Now we are ready to state the following theorem.

Theorem 4.1. Let $\gamma : I \to M$ be a curve. Then $\overline{D}_T T = 0$ if and only if γ one of the following curves.

- i. For any fixed s, the corresponding curve.
- ii. The curves $\eta_{t=0}(s)$ which corresponds to t = 0 where M is tubular surface given by equation (3.4).

Proof. If we denote the connections of \mathbb{R}^3_1 and M, by D and \overline{D} respectively, then we can write the Gauss equation

(4.1)
$$\overline{D}_X Y = D_X Y + \varepsilon \langle S(X), Y \rangle_L U$$

 $X, Y \in \chi(M), \langle U, U \rangle_L = \varepsilon, \varepsilon = \mp 1$ [3]. Where $\chi(M)$ is vector space of tangential vector fields on M and U is the unit normal vector field of M and S denotes the Weingarten map of M. If we have X = Y = T, then (4.1) reduces to

(4.2)
$$\overline{D}_T T = D_T T + \varepsilon \langle S(T), T \rangle_L U$$

on the geodesics curves, $\overline{D}_T T = 0$, for this kind of curve we have

(4.3)
$$D_T T + \varepsilon \langle S(T), T \rangle_L U = 0.$$

On the other hand, since

$$\begin{split} \langle T,U\rangle_L &= 0 \\ \text{or} \\ \langle D_TT,U\rangle_L + \langle T,D_TU\rangle_L &= 0 \\ \text{or} \\ D_TU &= S(T), \end{split}$$

the last equation gives us

$$\langle T, S(T) \rangle_L = \langle S(T), T \rangle_L = - \langle D_T T, U \rangle_L$$

and equation (4.3) reduces to

(4.4)
$$D_T T - \varepsilon \langle D_T T, U \rangle_L U = 0.$$

i. In equation (3.4), choose those curves such that s = constant. Then for these curves we have

(4.5)
$$\gamma(t) = \varphi_s(t) = \begin{pmatrix} -\lambda \cosh s \cosh t + \frac{\lambda \sinh s \sinh t}{\sqrt{2}} + \cosh s, \\ -\lambda \sinh s \cosh t + \frac{\lambda \cosh s \sinh t}{\sqrt{2}} + \sinh s, \\ -\frac{\lambda \sinh t}{\sqrt{2}} + s \end{pmatrix},$$

$$\begin{split} T &= \frac{\frac{d\gamma}{dt}}{\left\|\frac{d\gamma}{dt}\right\|_{L}} \\ T &= \left(-\cosh s \sinh t + \frac{\cosh t \sinh s}{\sqrt{2}}, -\sinh t \sinh s + \frac{\cosh t \cosh s}{\sqrt{2}}, -\frac{\cosh t}{\sqrt{2}}\right) \\ \text{and} \end{split}$$

8

$$D_T T = \left(-\cosh t \cosh s + \frac{\sinh s \sinh t}{\sqrt{2}}, -\cosh t \sinh s + \frac{\sinh t \cosh s}{\sqrt{2}}, -\frac{\sinh t}{\sqrt{2}}\right).$$

On the other hand, for the unit vector field U we have

(4.7)

$$U = \frac{\frac{d\varphi}{ds} \wedge_L \frac{d\varphi}{dt}}{\left\|\frac{d\varphi}{ds} \wedge_L \frac{d\varphi}{dt}\right\|_L} = \frac{1}{\sqrt{|\sinh^2 t - \cosh^2 t|}} \begin{pmatrix} -\cosh t \cosh s + \frac{\sinh s \sinh t}{\sqrt{2}}, \\ -\cosh t \sinh s + \frac{\sinh t \cosh s}{\sqrt{2}}, \\ -\frac{\sinh t}{\sqrt{2}}, \end{pmatrix}$$

 or

$$D_T T = U \mid_{\gamma(t)}$$

 or

$$\langle D_T T, U \rangle_L = \langle U, U \rangle_L = \varepsilon = -1$$

and from (4.4) we have

$$D_T T - (-1)\langle D_T T, U \rangle_L U = D_T T + \langle D_T T, U \rangle_L U = 0$$

and so, the equation (4.2) give us $\overline{D}_T T = 0$ which implies that each of s = constant parameter curve, lies on M is a geodesic.

ii. Now we take the curves η such that t = constant on M then we can obtain the parametric representation of η from (3.4) as

(4.8)
$$\eta(s) = \varphi_t(s) = \begin{pmatrix} -\lambda \cosh s \cosh t + \frac{\lambda \sinh s \sinh t}{\sqrt{2}} + \cosh s, \\ -\lambda \sinh s \cosh t + \frac{\lambda \cosh s \sinh t}{\sqrt{2}} + \sinh s, \\ -\frac{\lambda \sinh t}{\sqrt{2}} + s \end{pmatrix}$$

In this case, the unit tangent vector field T of η is

$$T = \frac{\frac{d\eta}{ds}}{\left\|\frac{d\eta}{ds}\right\|_{L}}$$

$$T = \frac{1}{\sqrt{1 + (1 - \lambda \cosh t)^{2} - \frac{\lambda^{2} \sinh^{2} t}{2}}} \begin{pmatrix} -\lambda \sinh s \cosh t + \frac{\lambda \sinh t \cosh s}{\sqrt{2}} + \sinh s, \\ -\lambda \cosh t \cosh s + \frac{\lambda \sinh t \sinh s}{\sqrt{2}} + \cosh s, \\ 1 \end{pmatrix}$$

and

$$D_T T = \frac{1}{1 + (1 - \lambda \cosh t)^2 - \frac{\lambda^2 \sinh^2 t}{2}} \begin{pmatrix} -\lambda \cosh s \cosh t + \frac{\lambda \sinh t \sinh s}{\sqrt{2}} + \cosh s, \\ -\lambda \cosh t \sinh s + \frac{\lambda \sinh t \cosh s}{\sqrt{2}} + \sinh s, \\ 0 \end{pmatrix}$$

,

$$\langle D_T T, U \rangle_L = \frac{1}{1 + (1 - \lambda \cosh t)^2 - \frac{\lambda^2 \sinh^2 t}{2}} \left(-\lambda \cosh^2 t + \frac{\lambda \sinh^2 t}{2} + \cosh t \right)$$

If we write the equation (4.7) and (4.9) in equation,

$$D_T T - (-1)\langle D_T T, U \rangle_L U = D_T T + \langle D_T T, U \rangle_L U = 0$$

we obtain three algebric differential equations and since one of these equation in being

$$-\frac{1}{\sqrt{2}}\sinh t = 0,$$

the solution of this equation are t = 0. If we put this value of t in (3.4), we have

$$\eta(s) = \varphi_{t=0}(s) = ((1-\lambda)\cosh s, (1-\lambda)\sinh s, s)$$

which implies that only geodesic curves among the parameter curves t = constant are parametric curve which corresponds to t = 0. The converse of the proof of this theorem in obvious. Since parameter curves in the equations (3.5) and (3.6) of the surfaces are not getting the equation $\overline{D}_T T = 0$. Parameter curves are not geodesic curves. This completes the proof.

References

- M. K. Karacan, Kinematic Applications of Two Parameter Motions, Ph.D Thesis, Graduate School and Natural Sciences, Ankara University, 2004.
- [2] L. Kula, Split Quaternions and Geometric Applications, Ph.D Thesis, Graduate School and Natural Sciences, Ankara University, 2003.
- [3] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, London, 1983.
- [4] J. Walrave, Curves and Surfaces in Minkowski Space, Ph.D Thesis, Faculty of Science, Katholieke Universiteit Leuven, 1995.

(4.9)