On Legendre Curves in α-Sasakian Manifolds

${ }^{1}$ Cihan Özgür and ${ }^{2}$ Mukut Mani Tripathi
${ }^{1}$ Department of Mathematics, Balıkesir University, 10145, Balıkesir, Turkey
${ }^{2}$ Department of Mathematics, Banaras Hindu University Varanasi 221 005, India
${ }^{2}$ Department of Mathematics and Astronomy, Lucknow University Lucknow 226 007, India
${ }^{1}$ cozgur@balikesir.edu.tr, ${ }^{2}$ mmtripathi66@yahoo.com

Abstract

The torsion of a Legendre curve of an α-Sasakian manifold is obtained. Necessary and sufficient conditions for Legendre curves having parallel mean curvature vector, having proper mean curvature vector, being harmonic and being of type $A W(k), k=1,2,3$ are also obtained.

2000 Mathematics Subject Classification: 53C25, 53B30, 53C42
Key words and phrases: Legendre curve, Sasakian manifold, Biharmonic submanifold, Curve of type $A W(k)$

1. Introduction

A Riemannian submanifold with vanishing Laplacian of mean curvature vector ΔH is defined as a biharmonic submanifold by B.-Y. Chen [9]. In [11], it was proved that the only biharmonic curves in an Euclidean space are straight lines. In [4], curves satisfying $\Delta^{\perp} H=\lambda H$ in an Euclidean space were classified, where Δ^{\perp} denotes the Laplacian of the curve in the normal bundle and λ is a real valued function. In [1], the classification of curves satisfying $\Delta H=\lambda H$ and $\Delta^{\perp} H=\lambda H$ in a real space form were given. By looking the Chen's formula (Lemma 4.1, [8]), one sees that the Laplacian in the normal bundle of $H, \Delta^{\perp} H$, is an ingredient of the normal part of ΔH to M and $\Delta^{\perp} H=0$ is less restrictive than $\Delta H=0$. However, the condition $\Delta H=\lambda H$ does not imply $\Delta^{\perp} H=\lambda H$. The concepts of submanifolds of type $A W(k)$ are defined in [3]; in particular, curves of type $A W(k)$ were investigated in [2].

On the other hand in [6], Blair and Baikoussis introduced the notion of Legendre curves in a contact metric manifold. A 1-dimensional integral submanifold in the contact subbundle is called a Legendre curve [6]. The class of α-Sasakian manifolds [12] include Sasakian manifolds, thus it is a natural motivation for studying Legendre

[^0]curves in α-Sasakian manifolds. The paper is organized as follows. In section 2, it is proved that a Legendre curve in an α-Sasakian manifold is a Frenet curve of order 3 and its torsion is always α. We also give a basic lemma for further use. Section 3 contains main results about Legendre curves having parallel mean curvature vector, having proper mean curvature vector, being harmonic and being of type $A W(k)$, $k=1,2,3$.

2. Legendre curves in α-Sasakian manifolds

Let M be an almost contact metric manifold [7] with an almost contact metric structure (φ, ξ, η, g), that is, φ is a $(1,1)$ tensor field, ξ is a vector field; η is a 1 -form and g is a compatible Riemannian metric such that

$$
\begin{align*}
& \varphi^{2}=-I+\eta \otimes \xi, \quad \eta(\xi)=1, \quad \varphi \xi=0, \quad \eta \circ \varphi=0 \tag{2.1}\\
& g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.2}\\
& g(X, \varphi Y)=-g(\varphi X, Y), \quad g(X, \xi)=\eta(X) \tag{2.3}
\end{align*}
$$

for all $X, Y \in T M$.
An almost contact metric structure (φ, ξ, η, g) on M is called an α-Sasakian structure [12] if

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y=\alpha(g(X, Y) \xi-\eta(Y) X) \tag{2.4}
\end{equation*}
$$

for some nonzero constant α. From (2.4) it follows that

$$
\begin{align*}
& \nabla_{X} \xi=-\alpha \varphi X \tag{2.5}\\
& \left(\nabla_{X} \eta\right) Y=-\alpha g(\varphi X, Y) \tag{2.6}
\end{align*}
$$

If $\alpha=1$, an α-Sasakian structure reduces to a Sasakian structure.
Let $\gamma(s)$ be a curve in a Riemannian manifold M parameterized by the arc length. The curve γ is called a Frenet curve of order r if there exist orthonormal vector fields E_{1}, \ldots, E_{r} along γ such that

$$
\gamma^{\prime}=E_{1}, \nabla_{\gamma^{\prime}} E_{1}=\kappa_{1} E_{2}, \nabla_{\gamma^{\prime}} E_{2}=-\kappa_{1} E_{1}+\kappa_{2} E_{3}, \ldots, \nabla_{\gamma^{\prime}} E_{r}=-\kappa_{r-1} E_{r-1}
$$

where $\kappa_{1}, \ldots, \kappa_{r-1}$ are positive smooth functions of s, and ∇ is Levi-Civita connection.

A 1-dimensional integral submanifold of a contact manifold is called a Legendre curve. It is known from [5] that a 3-dimensional contact metric manifold is Sasakian if and only if the torsion of its Legendre curves is equal to 1 . In [5], it was also shown that for a 3 -dimensional manifold M endowed with the contact metric structure $(\varphi, \xi, \eta, g, \varepsilon), M$ is Sasakian if and only if the torsion of its Legendre curves is equal to ε. In [14], it was shown that in a Legendre curve $\gamma(s)$ parametrized by the arc length in a Kenmotsu manifold, such that $\nabla_{\dot{\gamma}} \dot{\gamma}$ is parallel to the structure vector field ξ, is a circle.
Now, we study a Legendre curve on an α-Sasakian manifold.

Let $\gamma(s)$ be a Legendre curve in an α-Sasakian manifold. Then its associated Frenet frame is $\left\{\gamma^{\prime}, \varphi \gamma^{\prime}, \xi\right\}$, so that we have the following equations:

$$
\begin{align*}
& \nabla_{\gamma^{\prime}} \gamma^{\prime}=k \varphi \gamma^{\prime} \tag{2.7}\\
& \nabla_{\gamma^{\prime}} \varphi \gamma^{\prime}=-k \gamma^{\prime}+\alpha \xi \tag{2.8}\\
& \nabla_{\gamma^{\prime}} \xi=-\alpha \varphi \gamma^{\prime} \tag{2.9}
\end{align*}
$$

Hence, we conclude the following:
Proposition 2.1. In an α-Sasakian manifold, a Legendre curve is a Frenet curve of order 3 and its torsion is always α.

In view of (2.7), (2.8) and (2.9) we can state the following:
Lemma 2.1. Let $\gamma(s)$ be a Legendre curve in an α-Sasakian manifold. Then

$$
\begin{align*}
& \nabla_{\gamma^{\prime}} \nabla_{\gamma^{\prime}} \gamma^{\prime}=-k^{2} \gamma^{\prime}+k^{\prime} \varphi \gamma^{\prime}+\alpha k \xi, \tag{2.10}\\
& \nabla_{\gamma^{\prime}} \nabla_{\gamma^{\prime}} \nabla_{\gamma^{\prime}} \gamma^{\prime}=-3 k k^{\prime} \gamma^{\prime}+\left(k^{\prime \prime}-k\left(k^{2}+\alpha^{2}\right)\right) \varphi \gamma^{\prime}+2 \alpha k^{\prime} \xi \tag{2.11}
\end{align*}
$$

3. Main results

Consider a curve γ in a 3 -dimensional Riemannian manifold. Chen [8] proved the following identity:

$$
\Delta H=\Delta H=-\nabla_{\gamma^{\prime}} \nabla_{\gamma^{\prime}} \nabla_{\gamma^{\prime}} \gamma^{\prime}
$$

where H is the mean curvature vector. Moreover, the Laplacian of the mean curvature in the normal bundle (see [13]) is defined by

$$
\Delta^{\perp} H=-\nabla \stackrel{\perp}{\gamma^{\prime}} \nabla \stackrel{\perp}{\gamma^{\prime}} \nabla \frac{\gamma^{\prime}}{\gamma^{\prime}}
$$

where ∇^{\perp} denotes the normal connection in the normal bundle.
A curve $\gamma(s)$ in a Riemannian manifold M is called a curve with proper mean curvature vector field [10] if $\Delta H=\lambda H$, where λ is a function. In particular, if $\Delta H=0$ then it becomes a biharmonic curve [9].

A curve $\gamma(s)$ is known to be a curve with proper mean curvature vector field in the normal bundle [4] if $\Delta^{\perp} H=\lambda H$, where $\Delta^{\perp} H$ is the Laplacian of the mean curvature in the normal bundle and λ is a function. In particular, if $\Delta^{\perp} H=0$ then it reduces to a curve with harmonic mean curvature vector field in the normal bundle [4].

Theorem 3.1. Let $\gamma(s)$ be a Legendre curve in an α-Sasakian manifold. Then γ has parallel mean curvature vector field if and only if $k=0$.

Proof. The proof is obvious from (2.10).
Theorem 3.2. Let $\gamma(s)$ be a Legendre curve in an α-Sasakian manifold. Then γ is a curve with proper mean curvature vector field if and only if either $k=0$ or λ is a constant equal to $\alpha^{2}+k^{2}$.

Proof. We note that

$$
\Delta H=-\nabla_{\gamma^{\prime}} \nabla_{\gamma^{\prime}} \nabla_{\gamma^{\prime}} \gamma^{\prime}
$$

In view of (2.11), the condition $\Delta H=\lambda H$ gives

$$
\begin{equation*}
3 k k^{\prime} \gamma^{\prime}-\left(k^{\prime \prime}-k\left(k^{2}+\alpha^{2}\right)\right) \varphi \gamma^{\prime}-2 \alpha k^{\prime} \xi=\lambda k \varphi \gamma^{\prime} \tag{3.1}
\end{equation*}
$$

which implies that
(1) $k k^{\prime}=0$,
(2) $k^{\prime \prime}-k\left(k^{2}+\alpha^{2}-\lambda\right)=0$ and
(3) $\alpha k^{\prime}=0$.

From (3) we have $k=c$, where c is a constant. Then in view of (2), we find that either $c=0$ or $\lambda=c^{2}+\alpha^{2}$. The converse is straightforward.

As a corollary, we have the following result:
Corollary 3.1. A Legendre curve in an α-Sasakian manifold is biharmonic if and only if its curvature is zero.
Next, we prove the following:
Theorem 3.3. Let $\gamma(s)$ be a Legendre curve in an α-Sasakian manifold. Then γ is a curve with proper mean curvature vector field in the normal bundle if and only if either $k=0$ or k is a nonzero constant and $\lambda=\alpha^{2}$.

Proof. From (2.10), we have

$$
\begin{equation*}
\left(\nabla_{\gamma^{\prime}} H\right)^{\perp}=k^{\prime} \varphi \gamma^{\prime}+\alpha k \xi \tag{3.2}
\end{equation*}
$$

From the above equation, we obtain the following equation.

$$
\nabla_{\gamma^{\prime}}\left(\left(\nabla_{\gamma^{\prime}} H\right)^{\perp}\right)=-k k^{\prime} \gamma^{\prime}+\left(k^{\prime \prime}-\alpha^{2} k\right) \varphi \gamma^{\prime}+2 \alpha k^{\prime} \xi
$$

which gives

$$
\begin{equation*}
\Delta^{\perp} H=-\left(k^{\prime \prime}-\alpha^{2} k\right) \varphi \gamma^{\prime}-2 \alpha k^{\prime} \xi \tag{3.3}
\end{equation*}
$$

Now if $\Delta^{\perp} H=0$ then from (3.3), we get
(1) $k^{\prime \prime}-\alpha^{2} k+\lambda k=0$ and
(2) $k^{\prime}=0$.

From (2), it follows that k is some constant c. Then from (1), we get $c\left(\lambda-\alpha^{2}\right)=0$ which implies that either $c=0$ or $c \neq 0$ and $\lambda=\alpha^{2}$. The converse follows easily.

In particular, we can state the following:
Corollary 3.2. A Legendre curve in an α-Sasakian manifold is with harmonic mean curvature vector field in the normal bundle if and only if $k=0$.
Definition 3.1. A Frenet curve $\gamma(s)$ is said to be [2]
(i) of type $A W(1)$ if $N_{3}(s)=0$,
(ii) of type $A W(2)$ if

$$
\begin{equation*}
\left\|N_{2}(s)\right\|^{2} N_{3}(s)=\left\langle N_{3}(s), N_{2}(s)\right\rangle N_{2}(s) \tag{3.4}
\end{equation*}
$$

(iii) of type $A W(3)$ if

$$
\begin{equation*}
\left\|N_{1}(s)\right\|^{2} N_{3}(s)=\left\langle N_{3}(s), N_{1}(s)\right\rangle N_{1}(s) \tag{3.5}
\end{equation*}
$$

where

$$
N_{1}(s)=\left(\gamma^{\prime \prime}\right)^{\perp}(s), \quad N_{2}(s)=\left(\gamma^{\prime \prime \prime}\right)^{\perp}(s), \quad N_{3}(s)=\left(\gamma^{(i v)}\right)^{\perp}(s) .
$$

For general case, we refer to [3].
Let $\gamma(s)$ be a Legendre curve in an α-Sasakian manifold. Then from (2.7), (2.10), (2.11) we get

$$
\begin{gather*}
N_{1}(s)=k \varphi \gamma^{\prime} \tag{3.6}\\
N_{2}(s)=k^{\prime} \varphi \gamma^{\prime}+\alpha k \xi \tag{3.7}\\
N_{3}(s)=\left(k^{\prime \prime}-k\left(k^{2}+\alpha^{2}\right)\right) \varphi \gamma^{\prime}+2 \alpha k^{\prime} \xi \tag{3.8}
\end{gather*}
$$

respectively.
Theorem 3.4. A Legendre curve in an α-Sasakian manifold is of type $A W(1)$ if and only if $k=0$.

Proof. If a Legendre curve $\gamma(s)$ in an α-Sasakian manifold is of type $A W(1)$ then from (3.8) we have
(1) $k^{\prime \prime}-k\left(k^{2}+\alpha^{2}\right)=0$ and
(2) $k^{\prime}=0$.

The statement (2) implies that k is a constant, which in view of (1) becomes zero. The converse is easily verified.

Theorem 3.5. A Legendre curve in an α-Sasakian manifold is of type $A W(2)$ if and only if either $k=0$ or k satisfies the differential equation

$$
2 \alpha\left(k^{\prime}\right)^{2}-\alpha k\left(k^{\prime \prime}-k\left(k^{2}+\alpha^{2}\right)\right)=0
$$

Proof. Putting the values from (3.7) and (3.8) in (3.4), we get

$$
\begin{gather*}
\left\{2 \alpha^{2} k k^{\prime}+k^{\prime}\left(k^{\prime \prime}-k\left(k^{2}+\alpha^{2}\right)\right)\right\} \alpha k=2 \alpha k^{\prime}\left(\alpha^{2} k^{2}+\left(k^{\prime}\right)^{2}\right) \tag{3.9}\\
\left\{2 \alpha^{2} k k^{\prime}+k^{\prime}\left(k^{\prime \prime}-k\left(k^{2}+\alpha^{2}\right)\right)\right\} k^{\prime}=\left(\alpha^{2} k^{2}+\left(k^{\prime}\right)^{2}\right)\left(k^{\prime \prime}-k\left(k^{2}+\alpha^{2}\right)\right) \tag{3.10}
\end{gather*}
$$

If $k=0$, then in view of (3.9) and (3.10), the Legendre curve becomes of type $A W(2)$. If $k \neq 0$ and the Legendre curve is of type $A W(2)$, then from (3.9) and (3.10) we obtain

$$
\begin{equation*}
\left(\alpha^{2} k^{2}+\left(k^{\prime}\right)^{2}\right)\left\{2 \alpha\left(k^{\prime}\right)^{2}-\alpha k\left(k^{\prime \prime}-k\left(k^{2}+\alpha^{2}\right)\right)\right\}=0 \tag{3.11}
\end{equation*}
$$

Since $k \neq 0$ so $\left(\alpha^{2} k^{2}+\left(k^{\prime}\right)^{2}\right)$ cannot vanish. Therefore, we have

$$
2 \alpha\left(k^{\prime}\right)^{2}-\alpha k\left(k^{\prime \prime}-k\left(k^{2}+\alpha^{2}\right)\right)=0,
$$

which proves the theorem.
Theorem 3.6. A Legendre curve in an α-Sasakian manifold is of type $A W(3)$ if and only if k is a constant.

Proof. In view of (3.6), (3.8) and (3.5), the condition for a Legendre curve $\gamma(s)$ in an α-Sasakian manifold to be of type $A W(3)$ is equivalent to the following relation

$$
k^{2}\left(\left(k^{\prime \prime}-k\left(k^{2}+\alpha^{2}\right)\right) \varphi \gamma^{\prime}+2 \alpha k^{\prime} \xi\right)=k^{2}\left(k^{\prime \prime}-k\left(k^{2}+\alpha^{2}\right)\right) \varphi \gamma^{\prime}
$$

which is equivalent to $k^{\prime}=0$.
Acknowledgement. This paper was prepared during the visit of the second author to Balıkesir University, Turkey in June-July, 2006. The second author was supported by the Scientific and Technical Research Council of Turkey (TÜBİTAK) for Advanced Fellowships Programme.

References

[1] J. Arroyo, M. Barros and O. J. Garay, A characterisation of helices and Cornu spirals in real space forms, Bull. Austral. Math. Soc. 56(1)(1997), 37-49.
[2] K. Arslan and C. Özgür, Curves and surfaces of $A W(k)$ type, Geometry and Topology of Submanifolds, IX (Valenciennes/Lyon/Leuven, 1997), 21-26, World Sci. Publishing, River Edge, NJ, 1999.
[3] K. Arslan and A. West, Product submanifolds with pointwise 3-planar normal sections, Glasgow Math. J. 37(1)(1995), 73-81.
[4] M. Barros, O. J. Garay, On submanifolds with harmonic mean curvature, Proc. Amer. Math. Soc. 123(8)(1995), 2545-2549.
[5] M. Belkhelfa, I. E. Hirica and L. Verstraelen, On legendre curves in Riemannian and Lorentzian Sasaki spaces, Soochow J. Math. 28(1)(2002), 81-91.
[6] D. E. Blair and C. Baikoussis, On Legendre curves in contact 3-manifolds, Geom. Dedicata 49(1994), 135-142.
[7] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer-Verlag, 1976.
[8] B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, Series in Pure Mathematics, 1, World Scientific Publishing Co., Singapore, 1984.
[9] B.-Y. Chen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math. 17(2)(1991), 169-188.
[10] B.-Y. Chen, Submanifolds in de Sitter space-time satisfying $\Delta H=\lambda H$, Israel J. Math. 91(1-3)(1995), 373-391.
[11] I. Dimitric, Submanifolds of \mathbb{E}^{m} with harmonic mean curvature vector. Bull. Inst. Math. Acad. Sinica 20(1)(1992), 53-65.
[12] D. Janssens, L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J. 4(1)(1981), 1-27.
[13] J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. 88(2)(1968), 62-105.
[14] M. M. Tripathi, A note on certain Legendre curves in a Kenmotsu manifold, Ganita 51(1)(2000), 57-58.

[^0]: Received: April 25, 2007; Revised: December 9, 2007.

