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Abstract. The Governing Principle of Dissipative Processes (GPDP) formu-

lated by Gyarmati into non-equilibrium thermodynamics is employed to study
the effects of suction, injection in laminar, two dimensional, combined free and

forced convection flow over a non-isothermal wedge. The velocity and temper-

ature functions inside the boundary layers are approximated by simple third
order polynomial and the variational principle is formulated. In addition, the

Euler-Lagrange equations of the variational principle are obtained as coupled

polynomial equations in terms of momentum and thermal boundary layer thick-
nesses. Moreover, the effect of buoyancy force on heat transfer and skin friction

is analysed for different values of Reynolds, Grashof, Prandtl numbers, wedge

parameter and wall temperature exponent. Finally, the obtained analytical so-
lutions are compared with known series solutions and the comparison establishes

the fact that the accuracy is remarkable.

2000 Mathematics Subject Classification: 76R05, 76R10, 76N20, 82B35

Key words and phrases: Free convection and forced convection flows, Buoyancy
forces, Irreversible thermodynamics, Boundary layer thickness, Conservation

equations

1. Introduction

The effect of buoyancy forces on flow and heat transfer is usually ignored when a
forced convection flow over a cooled or heated surface is studied. However,
neglecting buoyancy effects cannot be justified, because under certain circumstances,
the buoyancy forces influences the flow and temperature functions despite the
presence of forced convection flow.

The prime aim of this study deals with the application of the Governing
Principle of Dissipative Processes (GPDP) to heat transfer and the buoyancy effects
in flow over a non-isothermal wedge with suction and injection, using the recent
developments in thermodynamics of irreversible processes, and to obtain analytical
solutions with the help of a variational technique based on the GPDP. According to
the boundary layer theory, the irreversible processes of momentum and heat transfer
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in flows around bodies occur inside a very thin layer adjacent to the surface of the
body. Hence the appropriate way of studying these non-equilibrium processes is by
the method of irreversible thermodynamics.

2. Governing equations and boundary conditions

The system of steady, two dimensional, incompressible and laminar fluid flow of
constant transport coefficients over a non-isothermal wedge is considered, whose
apex angle is πβ. The free stream flow velocity U∞ and the surface temperature T0

satisfy the power law

U∞ = axm and T0 − T∞ = bxn,(2.1)

where U∞ is obtained by the inviscid potential flow, a and b are constants, m is
the wedge angle parameter and n is the wall temperature exponent. The coordinate
axes along x and y directions are considered along and perpendicular to the surface,
respectively. On applying the boundary layer approximations if viscous dissipation
effect is ignored, the conservation equations of mass, momentum and energy are
respectively given by

ux + vy = 0 (mass),

uux + vuy = νuyy + U∞U ′
∞ + gB(T − T∞) sin

(
πβ

2

)
+
[∫ ∞

y

gB(T − T∞) cos
(

πβ

2

)
dy

]
x

(momentum),(2.2)

uTx + vTy = αTyy (energy).

In the above equations, the subscripts indicate partial differentiation while u, v,
T and T∞ represent the velocity component in the x-direction, velocity component
in the y-direction, the temperature inside the boundary layer and the free stream
temperature respectively. The symbol ν and α indicate kinematic viscosity and
thermal diffusivity respectively.

The initial and boundary conditions of the system are

y = 0; u = 0, v = v0(x)(constant), T = T0(x)(uniform),
y =∞; u = U∞, T = T∞(uniform),(2.3)

where v0(x) is suction/injection velocity.
The GPDP has been already applied for various dissipative systems and was

established as the most general and exact variational principle of macroscopic con-
tinuum physics. For the description of viscous flow systems, Vincze [11] has used
the GPDP to derive the equations of thermohydrodynamics. Many other varia-
tional principles have been already shown as partial forms of Gyarmati’s principle.
Gyarmati [4, 5] has established that the local potential principle of Glansdorff and
Prigogine is same as the force representation of GPDP. Singh [8] has proved that
the lagrangian thermodynamics of Biot is equivalent to the flux representation of
GPDP. Recently Antony Raj [1] and Chandrasekar [2, 3] have applied this principle
to unsteady boundary layer flow and heat transfer problems.
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3. Variational formulation

Gyarmati [4, 5] has formulated the GPDP which describes the evolution of irre-
versible processes in space and time, which is given in the energy picture

δ

∫
V

[Tσ −Ψ∗ − Φ∗] dV = 0,(3.1)

where the integration is taken over the volume, V , of the system.
Since the balance equations play a fundamental role in the formulations of GPDP

based on irreversible thermodynamics, we write the governing equations of motion
(2.2) in the following balance forms:

∇ ·
−→
V = 0,

ρ (
−→
V · ∇)

−→
V +∇ · ¯̄P = gBρ (T − T∞) sin

(
πβ

2

)
+

[∫ ∞

y

gBρ (T − T∞) cos
(

πβ

2

)
dy

]
x

,(3.2)

ρCp (
−→
V · ∇) T +∇ ·

−→
J q = 0.

Here, the pressure tensor ¯̄P can be decomposed as [4]

¯̄P = p ¯̄δ +
◦
¯̄P vs,(3.3)

where p is the hydrostatic pressure and
◦
¯̄P vs is the symmetrical part of the vis-

cous pressure tensor whose trace is zero. The constitutive relations connecting the
independent forces and fluxes for the present two dimensional problem are [6, 7]

P12 = −Ls

(
∂u

∂y

)
and Jq = −Lλ

(
∂lnT

∂y

)
,(3.4)

where P12 is the only component of
◦
¯̄P vs and Jq is the energy flux. Ls is equal to the

coefficient of viscosity µ while Lλ = λT, where λ is the conductivity. In the energy
picture, the proper state variable is lnT instead of T . The energy dissipation for
this problem is

Tσ = −Jq

(
∂lnT

∂y

)
− P12

(
∂u

∂y

)
.(3.5)

The dissipation potentials in energy picture are

Ψ∗ = TΨ =
(

1
2

)[
Lλ

(
∂lnT

∂y

)2

+ Ls

(
∂u

∂y

)2
]

,

Φ∗ = TΦ =
(

1
2

)[
RλJ2

q + RsP
2
12

]
.(3.6)
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Here Lλ = R−1
λ and Ls = R−1

s .

Using equations (3.5) and (3.6), we formulate the principle (3.1) in the form:

δ

∫ l

0

∫ ∞

0

[
− Jq

(
∂lnT

∂y

)
− P12

(
∂u

∂y

)
−
(

Lλ

2

)(
∂lnT

∂y

)2

−
(

Ls

2

)(
∂u

∂y

)2

−
(

1
2

)(
J2

q

Lλ

)
−
(

1
2

)(
P 2

12

Ls

)]
dydx = 0,(3.7)

in which l is the characteristic length of the surface.

4. Method of solution

We consider a system of two dimensional, laminar, inviscid potential flow past an
unlimited wedge placed symmetrically in a stream with apex at the origin and the
center line on the positive x-axis. The wedge angle parameter m is connected with
the apex angle πβ by the relation

m =
β

(2− β)
(or) β =

2m

(m + 1)
(4.1)

To begin with the thermodynamic analysis, we select the trial functions for ve-
locity and temperature fields inside their respective boundary layers as

u

U∞
=

3y

d1
− 3y2

d1
2 +

y3

d1
3 , (y < d1);u = U∞, (y ≥ d1)

and(4.2)

(T − T∞)
(T0 − T∞)

= 1− 3y

2d2
+

y3

2d2
3 , (y < d2);T = T∞, (y ≥ d2)

which satisfy the conditions,

y = 0; u = 0, v = v0(x), T = T0(x),
(

∂2T

∂y2

)
= 0,

y = d1; u = U∞, v = v0(x),
(

∂u

∂y

)
= 0,

(
∂2u

∂y2

)
= 0,(4.3)

y = d2; T = T∞,

(
∂T

∂y

)
= 0,

(
∂2T

∂y2

)
= 0.

The unknown quantities d1 and d2 are the extent of the hypothetical hydrodynam-
ical and thermal boundary layer thicknesses respectively. These unknowns are to be
determined from our thermodynamic analysis. The transverse velocity component
v is obtained from the mass balance equation (2.2) as

v =
(

mU∞
x

)[
−3y2

2d1
+

y3

d1
2 −

y4

4d1
3

]
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+ U∞

[
3y2

2d1
2 −

2y3

d1
3 +

3y4

4d1
4

]
d′1 + v0(x).(4.4)

The velocity and temperature polynomial trial functions (4.2) and the boundary
conditions (4.3) are used in the governing equations (3.2) and on integration with
respect to y with the help of their corresponding smooth-fit conditions

(
∂u
∂y

)
= 0

and
(

∂T
∂y

)
= 0, the momentum flux P12 and energy flux Jq for Pr ≥ 1 (ie) d1 ≥ d2

are obtained as follows:

−P12

Ls
=

(
∂u∗

∂y

)
=

(
U∞
d1

)
+
(

mU2
∞

νx

)[
53d1

160
− y +

3y3

2d2
1

− 3y4

2d3
1

+
3y5

4d4
1

− y6

4d5
1

+
y7

28d6
1

]
+
(

U2
∞

d′1
ν

)[
9

160
− 3y3

2d3
1

+
3y4

d4
1

− 9y5

4d5
1

+
3y6

4d6
1

− 3y7

28d7
1

]
+
[
v0(x)

U∞
ν

] [
−3
4

+
3y

d1
− 3y2

d2
1

+
y3

d3
1

]
+
[(

gBd1

ν

)
(T0 − T∞)

]{[
sin
(

πβ

2

)(
1
2
− d1

4d2
+

d3
1

40d3
2

− y

d1
+

3y2

4d1d2
− y4

8d1d3
2

)]
+
(

nd2

x

)[
cos
(

πβ

2

)(
3
16
− d1

6d2

+
d2
1

16d2
2

− d4
1

240d4
2

− 3y

8d1
+

y2

2d1d2
− y3

4d1d2
2

+
y5

40d1d4
2

)]
+d

′

2

[
cos
(

πβ

2

)(
3
16
− d2

1

16d2
2

+
d4
1

80d4
2

− 3y

8d1
+

y3

4d1d2
2

− 3y5

40d1d4
2

)]}
(d2 ≤ y ≤ d1)(4.5)

and

−Jq

Lλ
=

(
∂T ∗

∂y

)
=

(
U∞
α

)
(T0 − T∞)

{
d′1

[
3d2

2

10d2
1

− 3d3
2

12d3
1

+
9d4

2

140d4
1

− 3y3

4d2
1d2

+
3y4

4d3
1d2

+
9y5

20d2
1d

3
2

− 9y5

40d4
1d2

− 3y6

6d3
1d

3
2

+
9y7

56d4
1d

3
2

]
+ d′2

[
−3d2

5d1
+

3d2
2

8d2
1

− 3d3
2

35d3
1

+
3y3

2d1d2
2

− 9y4

8d2
1d

2
2

+
3y5

10d3
1d

2
2

− 9y5

10d1d4
2

+
3y6

4d2
1d

4
2

− 3y7

14d3
1d

4
2

]
+
(

nd2

x

)[
−3d2

10d1
+

d2
2

8d2
1

− 3d3
2

140d3
1

+
3y2

2d1d2
− 3y3

2d1d2
2

− y3

d2
1d2

+
9y4

8d2
1d

2
2

+
y4

4d3
1d2

+
3y5

10d1d4
2

− 3y5

10d3
1d

2
2

− y6

4d2
1d

4
2

+
y7

14d3
1d

4
2

]
+
(

md2

x

)[
−3d2

10d1

+
3d2

2

24d2
1

− 3d3
2

140d3
1

+
3y3

4d1d2
2

− 3y4

8d2
1d

2
2

+
3y5

40d3
1d

2
2

− 9y5

20d1d4
2
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+
3y6

12d2
1d

4
2

− 3y7

56d3
1d

4
2

]}
+
[
v0(x)

(T0 − T∞)
α

] [
1− 3y

2d2

+
3y3

6d3
2

]
(0 ≤ y ≤ d2).(4.6)

Here the prime indicates partial differentiation with respect to x. Using the ex-
pressions of momentum flux P12 and thermal flux Jq along with the velocity and
temperature functions (4.2) the variational principle (3.7) is formulated. After car-
rying out the integration with respect to y, the variational principle (3.7) is obtained
as

δ

∫ l

0

L(d1, d2, d
′
1, d

′
2)dx = 0,(4.7)

where L is the Lagrangian density of the principle. The boundary layer thicknesses
d1 and d2 are the independent parameters which are to be varied and the Euler-
Lagrange equations corresponding to these variational parameters are(

d

dx

)(
∂L

∂d′i

)
−
(

∂L

∂di

)
= 0, i = 1, 2.(4.8)

The equations (4.8) are non-linear second order ordinary differential equations in
terms of d1 and d2 whose coefficients are functions of Re, Pr, Gr, K, L and n,

where
Re =

U∞x

ν
(Reynolds number),

P r =
µCp

K
(Prandtl number),

Gr =
gB(T0 − T∞)x3

ν2
(Grashof number),

K =
Gr

(Re
5
2 )

(Buoyancy parameter),

L =
πm

(m + 1)
,

and n = wall temperature exponent.

Although the equations (4.8) can be solved directly by using a numerical method, we
can obtain a simple solution for the considered problem by employing the following
transformations

di = d∗i

√
νx

U∞
, i = 1, 2.(4.9)

in the variational principle (4.7). Thus the Euler-Lagrange equations of the trans-
formed principle assume the simple forms as(

∂L

∂d∗i

)
= 0, i = 1, 2.(4.10)
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The equations (4.10) are observed as coupled polynomial equations in non-dimensional
boundary layer thicknesses d∗1 and d∗2 and the coefficients of these equations depend
on the independent parameter Pr, wedge angle parameter m and H, where H is the
non dimensional suction/injection speed and is given by

H =
[
v0(x)

ν

]√
νx

U∞
.(4.11)

Suction and injection are represented by H < 0 and H > 0 respectively. Equations
(4.10) can be solved for any value of Pr, suction/injection speed H, wedge angle
parameter m and the wall temperature exponent n and from the present variational
procedure the non-linear partial differential equations governing the boundary layer
flow are transformed into simple coupled polynomial equations which are of much
useful for engineering applications.

5. Results and discussions

The main results of engineering interest are skin friction (shear stress) and heat
transfer values (Nusselt number) and hence we analyze these two important char-
acteristics for the present considered problem. After obtaining the simultaneous
solution of d∗1 and d∗2 for the the given combination of Pr, H, m and n we can cal-
culate the skin friction values and the local Nusselt number on using the following
expressions respectively

τ∗ω =
√

νx

U3
∞

(
−P12

Ls

)
y=0

,

Nul =
√

νx/U∞(T0 − T∞)2
(
−Jq

Lλ

)
y=0

.(5.1)

It is known that the Grashof number (Gr) and Reynolds number (Re) are the
controlling parameters of free and forced convection flows, respectively. Thus, the
buoyancy parameter K is for both free and forced convection flows. For very small
values of K, the forced convection predominates and the free convection becomes
negligible. For large values of K, the flow is controlled by the free convection, and
the forced convection becomes decrease. When the surface is heated [(T0−T∞) > 0]
then the buoyancy parameter becomes K > 0, and the flow has favourable pressure
gradient. The adjacent boundary layer is accelerated, and with the increasing value
of K, the velocity and thermal boundary layer thicknesses d∗1 and d∗2 become de-
crease, while the skin friction and heat transfer values increase. When the surface
is cooled, then the buoyancy parameter becomes K < 0 and the boundary layer
is decelerated. Since the free and forced convections are in the opposite directions
a flow separation occurs in the present study. This means that, the condition for
the boundary layer separation from the wedge surface is occurred, when the flow

becomes reverse at the interface. This phenomenon occurs when
(

∂u∗

∂y

)
y=0

= 0 at

a certain negative buoyancy parameter K, for the case of H = 0.
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When β = 0.5, H = 0, n = 0 and Re = 100 the boundary layer flow is separated
for Pr = 0.7, 1.0 and 3.0 at K = −0.0952,−0.1007 and −0.1322, respectively. It
reveals that the separation is delayed with the increasing Prandtl number (Pr).
It is also observed that, the flow separation is delayed with the increase of wall
temperature exponent n. When β = 0.5, H = 0, Re = 100 and Pr = 1 the
separation occurs at K = −0.1007 and −0.1039 when n = 0 and n = 0.3333,
respectively.

Figures (1) and (2) represent the skin friction values for the cases of constant
surface temperature and constant heat flux as a function of K, for three values of
β when Pr = 0.7, H = 0 and Re = 100, respectively. From these two figures it is
observed that the vanishing of skin friction values is delayed by the increase of β. In
Figures (3) and (4) the effect of K for high Prandtl number, Pr = 100, H = 0 and
Re = 100 is analyzed for constant surface temperature and constant surface heat flux
respectively. It is demonstrated that the skin friction values increase with the value
of K when the surface is heated. Figures (5) and (6) represent the local Nusselt
number for Pr = 0.7 and Pr = 100 respectively, when the surface temperature
becomes uniform.

The constant heat flux along the wedge is presented in Figures (7) and (8). When
K becomes negative the effect of buoyancy is to decrease the skin friction and heat
transfer values. It is evident that the vanishing of local heat flux occurs beyond the
point of zero skin friction. The skin friction is more strongly affected by buoyancy
forces than in the heat transfer. It is noted that lower Pr fluids are more sensitive to
buoyancy effects. From the present analysis when β = 0, 0.5, 1.0 and 1.6 the surface
heat transfer vanishes at n = −0.5,−0.6666,−1.0 and −2.5, respectively. This
phenomenon occurs for any combination of the Pr and the buoyancy parameter K
when H = 0.

When a new mathematical technique (present technique) is applied to a problem,
it is customary to compare the obtained results with the available solution in order
to establish the accuracy of the results in the present analysis. Accordingly, we
compare the present results with series solutions of Sparrow and Minkowycz [9] and
Saeid [10] when β = 0, H = 0 and Pr = 0.7 which are given in Table 1.

Table 1. Comparison of present results with series solution (Pr = 0.7, H = 0 and β = 0)

K Skin friction values Heat transfer values

Present Series solution Saeid Present Series solution Saeid
method method [9] method [10] method method [9] method [10]

0.01 0.3562 0.3493 - 0.3042 0.2963 -

0.05 0.4268 0.4182 - 0.3116 0.3106 -

0.1 0.5049 0.5043 - 0.3204 0.3284 -

0.2 0.5569 - 0.5502 0.3426 - 0.3305

0.3 0.7036 - 0.6925 0.3489 - 0.3425

0.4 0.7398 - 0.7351 0.3638 - 0.3561

0.5 0.8215 - 0.8185 0.3809 - 0.3716
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From Table 1, it proves that the present values of skin friction and heat transfer
are well comparable with the known series solution. One can also note that the
order of accuracy remains same for very large and small Pr for various H and β.

This paper presents an analytical result of free and forced convection with the
effects of suction and injection over a non-isothermal wedge. The governing partial
differential equations are reduced to coupled polynomial equations, the coefficients of
which are functions of independent parameters Pr, H and m. The great advantage
involved in the present technique is that the results are obtained with remarkable
accuracy and the cost of calculation is considerably less than that of numerical proce-
dure. Hence, it is concluded that this variational technique is a unique approximate
method based on sound physical reasoning as a powerful tool for solving heat trans-
fer and boundary layer problems.

Figure 1. Skin friction values for various K when Pr = 0.7, H = 0 and Re = 100.

(Constant surface temperature)
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Figure 2. Skin friction values for various K when Pr = 0.7, H = 0 and Re = 100.

(Constant surface heat flux)

Figure 3. Skin friction values for various K when Pr = 100, H = 0 and Re = 100.

(Constant surface temperature)
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Figure 4. Skin friction values for various K when Pr = 100, H = 0 and Re = 100.

(Constant surface heat flux)

Figure 5. Heat transfer values for various K (Pr = 0.7, n = 0, H = 0 and Re = 100).
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Figure 6. Heat transfer values for various K (Pr = 100, n = 0, H = 0 and Re = 100).

Figure 7. Buoyancy effect on heat transfer when Pr = 0.7, H = 0 and Re = 100.

(Constant surface heat flux)
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Figure 8. Buoyancy effect on heat transfer when Pr = 100, H = 0 and Re = 100.

(Constant surface heat flux)

Nomenclature
x–coordinate measuring distance along the plate.
y–coordinate measuring distance normal to plate.
u–velocity component in the x-direction.
v–velocity component in the y-direction.
v0–suction and injection velocity.
T–temperature of fluid.
T0–temperature of plate.
T∞–temperature of ambient fluid.
d1–hydrodynamical boundary layer thickness.
d2–thermal boundary layer thickness.
P12–momentum flux.
Jq–thermal flux.
L–Lagrangian function.
Ls, Lλ–conductivities.
ν–kinematic viscosity.
d∗1, d

∗
2–non dimensional boundary layer thicknesses.

α–thermal diffusivity.
g–acceleration of gravity.
B–coefficient of thermal expansion.
H–non dimensional suction and injection speed.
Re–Reynolds number.
Pr–Prandtl number.
Gr–Grashof number.
K–Buoyancy parameter.
δ–symbol for variation.
σ–entropy production.
Ψ∗,Φ∗–local dissipation potentials in energy picture.
τ∗ω–non-dimensional skin friction.
Nul–Nusselt number.
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