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Abstract. In this paper, we study the problem of meromorphic functions
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improves the results given by M. Ozawa, I. Lahiri and others.
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1. Introduction, definitions and main results

By a meromorphic function we shall always mean a meromorphic function in the
complex plane. If for some a ∈ C ∪ {∞} the zeros of f − a and g − a coincide in
locations and multiplicity we say that f and g share the value a CM and if the zeros
coincide in locations only we say that f and g share a IM. It is assumed that the
reader is familiar with the notations of Nevanlinna theory such as T (r, f), m(r, f),
N(r, f), N(r, f), S(r, f) and so on, that can be found, for instance, in [1]. We
now explain in the following definition the notion of weighted sharing which was
introduced by I. Lahiri [2].

Definition 1.1. [2] For a complex number a ∈ C ∪ {∞}, we denote by Ek(a, f) the
set of all a-points of f where an a-point with mutiplicity m is counted m times if
m ≤ k and k + 1 times if m > k. For a complex number a ∈ C ∪ {∞}, such that
Ek(a, f) = Ek(a, g), then we say that f and g share the value a with weight k.

The definition implies that if f , g share a value a with weight k then z0 is a zero
of f − a with multiplicity m(≤ k) if and only if it is a zero of g− a with multiplicity
m(≤ k) and z0 is a zero of f − a with multiplicity m(> k) if and only if it is a zero
of g − a with multiplicity n(> k), where m is not necessarily equal to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k) then f , g share (a, p) for all integer p, 0 ≤ p < k. Also
we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)
respectively.
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Definition 1.2. [2] Let p be a positive integer and a ∈ C ∪ {∞}. We denote by

Np)

(
r,

1
f − a

)
the counting function of the zeros of f − a (counted with proper

multiplicities) whose multiplicities are not greater than p, N(p+1

(
r, 1

f−a

)
to denote

the counting function of zeros of f − a whose multiplicities are not less than p+ 1,

and Np)

(
r,

1
f − a

)
, N (p+1

(
r,

1
f − a

)
denote their corresponding reduced counting

functions (ignoring multiplicities), respectively. Define

δp)(a, f) = 1− lim sup
r→∞

Np)

(
r,

1
f − a

)
T (r, f)

, δ2(a, f) = 1− lim sup
r→∞

N2

(
r,

1
f − a

)
T (r, f)

,

where N2(r, 1
f−a ) = N(r, 1

f−a )+N (2

(
r,

1
f − a

)
. It is obvious that δp)(a, f) ≥ δ(a, f)

and 0 ≤ δ(a, f) ≤ δ2(a, f) ≤ Θ(a, f) ≤ 1.

In 1976, M. Ozawa proved the following result.

Theorem 1.1. [7] Let f and g be two entire functions of finite order such that f

and g share 0 and 1 CM. If δ(0, f) >
1
2
, then f ≡ g or fg ≡ 1.

In 1983, H. Ueda removed the order restriction of f and g in Theorem 1.1 and
proved the following theorem.

Theorem 1.2. [8] Let f and g be two meromorphic functions sharing 0, 1 and ∞
CM. If

lim sup
r→∞

N(r, 1
f ) +N(r, f)

T (r, f)
<

1
2

then either f ≡ g or fg ≡ 1.

In 1990, H. X. Yi proved the following theorem which is an improvement of
Theorem 1.1 and 1.2.

Theorem 1.3. [9] Let f and g be two meromorphic functions sharing 0, 1 and ∞
CM. If

N1)(r, f) +N1)

(
r,

1
f

)
< (λ+ o(1))T (r), r ∈ I

where λ is a constant such that λ <
1
2
, T (r) = max{T (r, f), T (r, g)}, and I is a set

in (0,∞) with infinite linear measure, then either f ≡ g or fg ≡ 1.

As a corollary of Theorem 1.3, we have:

Theorem 1.4. [9] Let f and g be two meromorphic functions sharing 0, 1 and ∞
CM. If

δ1)(∞, f) + δ1)(0, f) >
3
2
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then either f ≡ g or fg ≡ 1.

In 2002, I. Lahiri improved the above result by the idea of weighted shared values
and obtained the following.

Theorem 1.5. [4, 5] Let f and g be two meromorphic functions sharing (0, 1),
(1,∞), (∞,∞). If

A0 = 2δ1)(0, f) + 2δ1)(∞, f) + min

 ∑
a6=0,1,∞

δ2)(a, f),
∑

a6=0,1,∞

δ2)(a, g)

 > 3

then either f ≡ g or fg ≡ 1.

In 2003, I. Lahiri further obtained the following theorem.

Theorem 1.6. [6] Let f and g be two meromorphic functions sharing (0, 1), (1,m),
(∞, k) where m, k are positive integers satisfying (m− 1)(km− 1) > (1 +m)2 . If

A0 = 2δ1)(0, f) + 2δ1)(∞, f) + min

 ∑
a6=0,1,∞

δ2)(a, f),
∑

a6=0,1,∞

δ2)(a, g)

 > 3

then either f ≡ g or fg ≡ 1.

In 2006, Q. C. Zhang proved the following theorem which is an improvement of
the above results.

Theorem 1.7. [10] Let f and g be two meromorphic functions sharing (a1, k1),
(a2, k2) and (a3, k3), where {a1, a2, a3} = {0, 1,∞} and k1, k2, k3 are three positive
integers satisfying k1k2k3 − k1 − k2 − k3 − 2 > 0. If

2δ1)(0, f) + 2δ1)(∞, f) +
∑

a6=0,1,∞

δ2)(a, f) > 3

or

2δ1)(0, g) + 2δ1)(∞, g) +
∑

a6=0,1,∞

δ2)(a, g) > 3

then either f ≡ g or fg ≡ 1.

From the above theorem, we see that the weights of sharing values are positive
integers or ∞. We may ask the following question: What can be said if the weight
of one of the three shared values is relaxed to 0?

In this article, we settle the problem and prove the following theorem.

Theorem 1.8. Let f and g be two nonconstant meromorphic functions sharing
(0,m), (∞, 0) and (1, 1), where m ≥ 2. If

2δ2(0, f) +
4m
m− 1

δ2(∞, f) + min

 ∑
a6=0,1,∞

δ2(a, f),
∑

a6=0,1,∞

δ2(a, g)

 >
5m− 1
m− 1

then either f ≡ g or fg ≡ 1.
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Corollary 1.1. Let f and g be two nonconstant meromorphic functions sharing
(0, 2), (∞, 0) and (1, 1). If

2δ2(0, f) + 8δ2(∞, f) + min

 ∑
a6=0,1,∞

δ2(a, f),
∑

a6=0,1,∞

δ2(a, g)

 > 9

then either f ≡ g or fg ≡ 1.

Corollary 1.2. Let f and g be two nonconstant meromorphic functions sharing
(0, 3), (∞, 0) and (1, 1). If

2δ2(0, f) + 6δ2(∞, f) + min

 ∑
a6=0,1,∞

δ2(a, f),
∑

a6=0,1,∞

δ2(a, g)

 > 7

then either f ≡ g or fg ≡ 1.

2. Some lemmas

The following Lemmas are needed in the proof of Theorem 1.8.

Lemma 2.1. [4] If f , g share (0, 0), (∞, 0), (1, 0). Then

T (r, f) ≤ 3T (r, g) + S(r, f) ,

T (r, g) ≤ 3T (r, f) + S(r, g) .

Lemma 2.1 shows that S(r, f) = S(r, g) and we denote them by S(r). We shall
denote by H a meromorphic function defined by

H =
(
f ′′

f ′
− 2

f ′

f − 1

)
−

(
g′′

g′
− 2

g′

g − 1

)
.(2.1)

Lemma 2.2. [3] If f , g share (1, 1) and H 6≡ 0. Then

N1)

(
r,

1
f − 1

)
≤ N(r,H) + S(r, f) + S(r, g) .

Lemma 2.3. Let f and g share (0,m), (∞, 0) and (1, 1), where m ≥ 2. Then

N(r,H) ≤N (m+1

(
r,

1
f

)
+N (2

(
r,

1
f − 1

)
+N(r, f) +N0

(
r,

1
f ′

)
+N0

(
r,

1
g′

)
+

n∑
i=1

N (2

(
r,

1
f − ai

)
+

n∑
i=1

N (2

(
r,

1
g − ai

)
+ S(r) ,

where N0

(
r,

1
f ′

)
is the reduced counting function of the zeros of f ′ which are not

the zeros of f(f − 1)
∏n

i=1(f − ai) where ai 6= 0, 1,∞(i = 1, 2, ..., n).

Proof. The possible poles of H occur at
(i) multiple zeros of f and g,
(ii) multiple zeros of f − 1 and g − 1,
(iii) multiple poles of f and g,
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(iv) zeros of f ′ and g′ which are not the zeros of f(f − 1)
∏n

i=1(f − ai) and
g(g − 1)

∏n
i=1(g − ai) respectively,

(v) multiple zeros of f − ai, g − ai (i = 1, 2, ..., n).
Since f and g share (0,m), (∞, 0) and (1, 1), where m ≥ 2, and all the poles of H
are simple, we obtain the conclusion.

Lemma 2.4. Let f and g share (0,m), (∞, 0) and (1, 1) and f 6≡ g, where m ≥ 2.
Then

N (2

(
r,

1
f − 1

)
≤ m+ 1
m− 1

N(r, f) + S(r) ,

N (m+1

(
r,

1
f

)
≤ 2
m− 1

N(r, f) + S(r) .

Proof. Let φ =
f ′

f − 1
− g′

g − 1
and ψ =

f ′

f
− g′

g
. Suppose that N

(
r,

1
f − a

)
6= S(r)

for a = 0, 1 because otherwise the lemma is trivial. Since f 6≡ g, it follows that φ 6≡ 0
and ψ 6≡ 0. Now

N (2

(
r,

1
f − 1

)
≤ N

(
r,

1
ψ

)
≤ T (r, ψ) +O(1) = N(r, ψ) + S(r)

≤ N (m+1

(
r,

1
f

)
+N(r, f) + S(r) ,

and

mN (m+1

(
r,

1
f

)
≤ N

(
r,

1
φ

)
≤ T (r, φ) +O(1) = N(r, φ) + S(r)

≤ N (2

(
r,

1
f − 1

)
+N(r, f) + S(r) .

From above, we get

N (2

(
r,

1
f − 1

)
≤ 1
m
N (2

(
r,

1
f − 1

)
+

1
m
N(r, f) +N(r, f) + S(r) .

So

N (2

(
r,

1
f − 1

)
≤ m+ 1
m− 1

N(r, f) + S(r) ,

and

N (m+1

(
r,

1
f

)
≤ 1
m
N (2

(
r,

1
f − 1

)
+

1
m
N(r, f) + S(r)

≤ 1
m

(
m+ 1
m− 1

+ 1
)
N(r, f) + S(r) =

2
m− 1

N(r, f) + S(r) .
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Lemma 2.5. [3] Let a1, a2,..., an be pairwise distinct complex numbers such that
ai 6= 0, 1,∞(i = 1, 2, ..., n). Then

N0

(
r,

1
f ′

)
+

n∑
i=1

N (2

(
r,

1
f − ai

)
+N (2

(
r,

1
f − 1

)
≤ N(r, f) +N

(
r,

1
f

)
+ S(r, f) ,

where N0

(
r, 1

f ′

)
is the reduced counting function of the zeros of f ′ which are not

the zeros of f(f − 1)
∏n

i=1(f − ai).

3. Proof of Theorem 1.8

Let f 6≡ g. We shall show that fg ≡ 1. Suppose that H 6≡ 0. Let a1, a2, ... ,an

be pairwise distinct complex numbers such that ai 6= 0, 1,∞(i = 1, 2, ..., n). By the
second fundamental theorem, we get

(n+ 1)T (r, f) ≤N
(
r,

1
f

)
+N(r, f) +N

(
r,

1
f − 1

)
+

n∑
i=1

N

(
r,

1
f − ai

)
−N0

(
r,

1
f ′

)
+ S(r, f) .(3.1)

Here, N0

(
r, 1

f ′

)
is the counting function of those zeros of f ′ which are not the

zeros of f(f − 1)
∏n

i=1(f − ai). By Lemma 2.2 and Lemma 2.3, we obtain

N

(
r,

1
f − 1

)
= N1)

(
r,

1
f − 1

)
+N (2

(
r,

1
f − 1

)
≤ N(r,H) +N (2

(
r,

1
f − 1

)
+ S(r, f)

≤ N (m+1

(
r,

1
f

)
+N (2

(
r,

1
f − 1

)
+N(r, f)

+N0

(
r,

1
f ′

)
+N0

(
r,

1
g′

)
+N (2

(
r,

1
f − 1

)
+

n∑
i=1

N (2

(
r,

1
f − ai

)
+

n∑
i=1

N (2

(
r,

1
g − ai

)
+ S(r, f) .(3.2)

From (3.1) and Lemma 2.4, Lemma 2.5 we get

(n+ 1)T (r, f) ≤ N

(
r,

1
f

)
+N(r, f) +N (m+1

(
r,

1
f

)
+N (2

(
r,

1
f − 1

)
+N(r, f) +N0

(
r,

1
g′

)
+ N (2

(
r,

1
f − 1

)
+

n∑
i=1

N (2

(
r,

1
g − ai

)
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+
n∑

i=1

N (2

(
r,

1
f − ai

)
+

n∑
i=1

N

(
r,

1
f − ai

)
+ S(r, f)

≤ 2N
(
r,

1
f

)
+ 3N(r, f) +

n∑
i=1

N2

(
r,

1
f − ai

)
+
m+ 1
m− 1

N(r, f) +
2

m− 1
N(r, f) + S(r)

≤ 2N
(
r,

1
f

)
+

4m
m− 1

N(r, f) +
n∑

i=1

N2(r,
1

f − ai
) + S(r, f) .(3.3)

Similarly we have

(n+ 1)T (r, g) ≤ 2N
(
r,

1
g

)
+

4m
m− 1

N(r, g) +
n∑

i=1

N2

(
r,

1
g − ai

)
+ S(r, g) .(3.4)

Combining (3.3) and (3.4) and using Lemma 2.1 we get

(n+ 1)T (r) ≤ 2N
(
r,

1
f

)
+

4m
m− 1

N(r, f)

+max

{
n∑

i=1

N2

(
r,

1
f − ai

)
,

n∑
i=1

N2

(
r,

1
g − ai

)}
+ S(r)(3.5)

Let S = {a : a ∈ C, a 6= 0, 1,∞ and δ2(a, f) + δ2(a, g) > 0}. Since S is countable,
suppose that S = {ai : i ∈ N+} where N+ is a set of positive integers.

If
∑

a6=0,1,∞ δ2(a, f) <
∑

a6=0,1,∞ δ2(a, g), then there exists a positive integer n0

such that
n0∑
i=1

δ2(ai, f) ≤
n0∑
i=1

δ2(ai, g)(3.6)

and
n0∑
i=1

δ2(ai, f) >
∑

a6=0,1,∞

δ2(a, f)− ε.(3.7)

Then, from (3.5) we get

n0 + 1 < 2 +
4m
m− 1

+ n0 − 2Θ(0, f)− 4m
m− 1

Θ(∞, f)−
∑

a6=0,1,∞

δ2(a, f) + ε .(3.8)

Since 0 ≤ δ(a, f) ≤ δ2(a, f) ≤ Θ(a, f) ≤ 1, from (3.8) we get

2δ2(0, f) +
4m
m− 1

δ2(∞, f) +
∑

a6=0,1,∞

δ2(a, f) <
5m− 1
m− 1

+ ε .(3.9)

Since ε(> 0) is arbitrary, it follows that
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2δ2(0, f) +
4m
m− 1

δ2(∞, f) +
∑

a6=0,1,∞

δ2(a, f) ≤ 5m− 1
m− 1

.(3.10)

If
∑

a6=0,1,∞ δ2(a, g) <
∑

a6=0,1,∞ δ2(a, f), similarly we can prove that

2δ2(0, f) +
4m
m− 1

δ2(∞, f) +
∑

a6=0,1,∞

δ2(a, g) ≤
5m− 1
m− 1

.(3.11)

If
∑

a6=0,1,∞ δ2(a, g) =
∑

a6=0,1,∞ δ2(a, f), then from (3.3) we obtain (3.10). Now
(3.10) and (3.11) contradict the given condition. Therefore H ≡ 0 and so

f ≡ ag + b

cg + d
(3.12)

where a, b, c, d are constants and ad− bc 6= 0.
If c = 0, then from (3.12) we get

f = Ag +B(3.13)

where A =
a

d
, B =

b

d
and ad 6= 0.

Let 0, ∞ be Picard values of f and g. From (3.13) we see that B is also Picard
value of f which is impossible unless B = 0. So from (3.13), we have f ≡ Ag. Since
f 6≡ g, it follows that A 6= 1 and 1 becomes a Picard value of f because f and g
share (1, 1). This is again impossible.

Let ∞ be a Picard value of f and g but 0 be not a Picard value of f and g. Since
f , g share (0,m), from (3.13) we get B = 0 and so f ≡ Ag. Since f 6≡ g, A 6= 1 and
so 1 becomes Picard value of f and g. Hence

∑
t6=1,∞

δ2(t, f) = 0. This contradicts

the given condition.

Let 0 be a Picard value of f and g but ∞ be not a Picard value of f and g. If 1
is a Picard value of f then

∑
t6=0,1

δ2(t, f) = 0 which contradicts the given condition.

Hence there is z0 such that f(z0) = g(z0) = 1 and so from (3.13) we get A+B = 1
and so

f ≡ Ag + 1−A(3.14)

Since f and g share (0, 1) and 0 is a Picard value of f , it follows from (3.14) that
1−A is a Picard value of f and (A− 1)/A is a Picard value of g. Since f 6≡ g, from
(3.14) we see that A 6= 1 and it follows that δ2(∞, f) = 0 and

∑
t6=0,1,∞

δ2(t, f) = 1,

which contradicts the given condition.

Let 0, ∞ are not Picard values of f and so of g, then from (3.13) we get f ≡ Ag
because f , g share (0, 1). Since f 6≡ g, it follows that A 6= 1 and 1 becomes a Picard
value of f and g. Then we get
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δ2(0, f) + δ2(∞, f) +
∑

t6=0,1,∞

δ2(t, f) ≤ 1 .(3.15)

So

2δ2(0, f) +
4m
m− 1

δ2(∞, f) +
∑

t6=0,1,∞

δ2(t, f) ≤ 1 + δ2(0, f) +
3m+ 1
m− 1

δ2(∞, f)

≤ 5m− 1
m− 1

(3.16)

which is a contradiction to the given condition.

If c 6= 0, then from (3.12) we get

f − a

c
≡
b− ad

c
cg + d

.(3.17)

Since f , g share (∞, 0), it follows from (3.17) that
a

c
, ∞ are Picard values of f

and −d
c , ∞ are Picard values of g.

If a = 0, then from (3.17) we get

f ≡ 1
αg + β

(3.18)

where α =
c

b
, β =

d

b
and b 6= 0. Since 0, ∞ are Picard values of f and f , g share

(1, 1), it follows that there exists z0 such that f(z0) = g(z0) = 1. So from (3.18) we
get α+ β = 1 and hence

f ≡ 1
αg + 1− α

.(3.19)

Since f and g share (0,m), (∞, 0) and 0, ∞ are Picard values of f , it follows from

(3.19) that 0, ∞,
α− 1
α

are Picard values of f which is impossible unless α = 1,

then from (3.19) we get fg ≡ 1.
Let a 6= 0. Since

a

c
and ∞ are Picard values of f , it follows that δ2(0, f) = 0 and∑

t6=0,1,∞
δ2(t, f) ≤ 1 which contradicts the given condition. This proves the theorem.
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