On a Result of Ozawa and Uniqueness of Meromorphic Function

Chao Meng
Department of Mathematics, Shandong University, Jinan 250100, P. R. China
mengchao@mail.sdu.edu.cn

Abstract

In this paper, we study the problem of meromorphic functions sharing three values with weight and obtain a uniqueness theorem which improves the results given by M. Ozawa, I. Lahiri and others.

2000 Mathematics Subject Classification: 30D35
Key words and phrases: Meromorphic function, Weighted sharing, Uniqueness

1. Introduction, definitions and main results

By a meromorphic function we shall always mean a meromorphic function in the complex plane. If for some $a \in C \cup\{\infty\}$ the zeros of $f-a$ and $g-a$ coincide in locations and multiplicity we say that f and g share the value a CM and if the zeros coincide in locations only we say that f and g share a IM. It is assumed that the reader is familiar with the notations of Nevanlinna theory such as $T(r, f), m(r, f)$, $N(r, f), \bar{N}(r, f), S(r, f)$ and so on, that can be found, for instance, in [1]. We now explain in the following definition the notion of weighted sharing which was introduced by I. Lahiri [2].
Definition 1.1. [2] For a complex number $a \in C \cup\{\infty\}$, we denote by $E_{k}(a, f)$ the set of all a-points of f where an a-point with mutiplicity m is counted m times if $m \leq k$ and $k+1$ times if $m>k$. For a complex number $a \in C \cup\{\infty\}$, such that $E_{k}(a, f)=E_{k}(a, g)$, then we say that f and g share the value a with weight k.

The definition implies that if f, g share a value a with weight k then z_{0} is a zero of $f-a$ with multiplicity $m(\leq k)$ if and only if it is a zero of $g-a$ with multiplicity $m(\leq k)$ and z_{0} is a zero of $f-a$ with multiplicity $m(>k)$ if and only if it is a zero of $g-a$ with multiplicity $n(>k)$, where m is not necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with weight k. Clearly if f, g share (a, k) then f, g share (a, p) for all integer $p, 0 \leq p<k$. Also we note that f, g share a value a IM or CM if and only if f, g share $(a, 0)$ or (a, ∞) respectively.

Definition 1.2. [2] Let p be a positive integer and $a \in C \cup\{\infty\}$. We denote by $N_{p)}\left(r, \frac{1}{f-a}\right)$ the counting function of the zeros of $f-a$ (counted with proper multiplicities) whose multiplicities are not greater than $p, N_{(p+1}\left(r, \frac{1}{f-a}\right)$ to denote the counting function of zeros of $f-a$ whose multiplicities are not less than $p+1$, and $\bar{N}_{p)}\left(r, \frac{1}{f-a}\right), \bar{N}_{(p+1}\left(r, \frac{1}{f-a}\right)$ denote their corresponding reduced counting functions (ignoring multiplicities), respectively. Define
$\delta_{p)}(a, f)=1-\limsup _{r \rightarrow \infty} \frac{N_{p)}\left(r, \frac{1}{f-a}\right)}{T(r, f)}, \quad \delta_{2}(a, f)=1-\limsup _{r \rightarrow \infty} \frac{N_{2}\left(r, \frac{1}{f-a}\right)}{T(r, f)}$,
where $N_{2}\left(r, \frac{1}{f-a}\right)=\bar{N}\left(r, \frac{1}{f-a}\right)+\bar{N}_{(2}\left(r, \frac{1}{f-a}\right)$. It is obvious that $\delta_{p)}(a, f) \geq \delta(a, f)$ and $0 \leq \delta(a, f) \leq \delta_{2}(a, f) \leq \Theta(a, f) \leq 1$.

In 1976, M. Ozawa proved the following result.
Theorem 1.1. [7] Let f and g be two entire functions of finite order such that f and g share 0 and 1 CM. If $\delta(0, f)>\frac{1}{2}$, then $f \equiv g$ or $f g \equiv 1$.

In 1983, H. Ueda removed the order restriction of f and g in Theorem 1.1 and proved the following theorem.
Theorem 1.2. [8] Let f and g be two meromorphic functions sharing 0,1 and ∞ CM. If

$$
\limsup _{r \rightarrow \infty} \frac{N\left(r, \frac{1}{f}\right)+N(r, f)}{T(r, f)}<\frac{1}{2}
$$

then either $f \equiv g$ or $f g \equiv 1$.
In 1990, H. X. Yi proved the following theorem which is an improvement of Theorem 1.1 and 1.2.
Theorem 1.3. [9] Let f and g be two meromorphic functions sharing 0,1 and ∞ CM. If

$$
N_{1)}(r, f)+N_{1)}\left(r, \frac{1}{f}\right)<(\lambda+o(1)) T(r), r \in I
$$

where λ is a constant such that $\lambda<\frac{1}{2}, T(r)=\max \{T(r, f), T(r, g)\}$, and I is a set in $(0, \infty)$ with infinite linear measure, then either $f \equiv g$ or $f g \equiv 1$.

As a corollary of Theorem 1.3, we have:

Theorem 1.4. [9] Let f and g be two meromorphic functions sharing 0,1 and ∞ CM. If

$$
\delta_{1)}(\infty, f)+\delta_{1)}(0, f)>\frac{3}{2}
$$

then either $f \equiv g$ or $f g \equiv 1$.
In 2002, I. Lahiri improved the above result by the idea of weighted shared values and obtained the following.

Theorem 1.5. [4, 5] Let f and g be two meromorphic functions sharing (0,1), $(1, \infty),(\infty, \infty)$. If

$$
A_{0}=2 \delta_{1)}(0, f)+2 \delta_{1)}(\infty, f)+\min \left\{\sum_{a \neq 0,1, \infty} \delta_{2)}(a, f), \sum_{a \neq 0,1, \infty} \delta_{2)}(a, g)\right\}>3
$$

then either $f \equiv g$ or $f g \equiv 1$.
In 2003, I. Lahiri further obtained the following theorem.
Theorem 1.6. [6] Let f and g be two meromorphic functions sharing $(0,1),(1, m)$, (∞, k) where m, k are positive integers satisfying $(m-1)(k m-1)>(1+m)^{2}$. If

$$
A_{0}=2 \delta_{1)}(0, f)+2 \delta_{1)}(\infty, f)+\min \left\{\sum_{a \neq 0,1, \infty} \delta_{2)}(a, f), \sum_{a \neq 0,1, \infty} \delta_{2)}(a, g)\right\}>3
$$

then either $f \equiv g$ or $f g \equiv 1$.
In 2006, Q. C. Zhang proved the following theorem which is an improvement of the above results.

Theorem 1.7. [10] Let f and g be two meromorphic functions sharing $\left(a_{1}, k_{1}\right)$, $\left(a_{2}, k_{2}\right)$ and $\left(a_{3}, k_{3}\right)$, where $\left\{a_{1}, a_{2}, a_{3}\right\}=\{0,1, \infty\}$ and k_{1}, k_{2}, k_{3} are three positive integers satisfying $k_{1} k_{2} k_{3}-k_{1}-k_{2}-k_{3}-2>0$. If

$$
2 \delta_{1)}(0, f)+2 \delta_{1)}(\infty, f)+\sum_{a \neq 0,1, \infty} \delta_{2)}(a, f)>3
$$

or

$$
2 \delta_{1)}(0, g)+2 \delta_{1)}(\infty, g)+\sum_{a \neq 0,1, \infty} \delta_{2)}(a, g)>3
$$

then either $f \equiv g$ or $f g \equiv 1$.
From the above theorem, we see that the weights of sharing values are positive integers or ∞. We may ask the following question: What can be said if the weight of one of the three shared values is relaxed to 0 ?

In this article, we settle the problem and prove the following theorem.
Theorem 1.8. Let f and g be two nonconstant meromorphic functions sharing $(0, m),(\infty, 0)$ and $(1,1)$, where $m \geq 2$. If
$2 \delta_{2}(0, f)+\frac{4 m}{m-1} \delta_{2}(\infty, f)+\min \left\{\sum_{a \neq 0,1, \infty} \delta_{2}(a, f), \sum_{a \neq 0,1, \infty} \delta_{2}(a, g)\right\}>\frac{5 m-1}{m-1}$
then either $f \equiv g$ or $f g \equiv 1$.

Corollary 1.1. Let f and g be two nonconstant meromorphic functions sharing $(0,2),(\infty, 0)$ and $(1,1)$. If

$$
2 \delta_{2}(0, f)+8 \delta_{2}(\infty, f)+\min \left\{\sum_{a \neq 0,1, \infty} \delta_{2}(a, f), \sum_{a \neq 0,1, \infty} \delta_{2}(a, g)\right\}>9
$$

then either $f \equiv g$ or $f g \equiv 1$.
Corollary 1.2. Let f and g be two nonconstant meromorphic functions sharing $(0,3),(\infty, 0)$ and $(1,1)$. If

$$
2 \delta_{2}(0, f)+6 \delta_{2}(\infty, f)+\min \left\{\sum_{a \neq 0,1, \infty} \delta_{2}(a, f), \sum_{a \neq 0,1, \infty} \delta_{2}(a, g)\right\}>7
$$

then either $f \equiv g$ or $f g \equiv 1$.

2. Some lemmas

The following Lemmas are needed in the proof of Theorem 1.8.
Lemma 2.1. [4] If f, g share $(0,0),(\infty, 0),(1,0)$. Then

$$
\begin{aligned}
& T(r, f) \leq 3 T(r, g)+S(r, f) \\
& T(r, g) \leq 3 T(r, f)+S(r, g)
\end{aligned}
$$

Lemma 2.1 shows that $S(r, f)=S(r, g)$ and we denote them by $S(r)$. We shall denote by H a meromorphic function defined by

$$
\begin{equation*}
H=\left(\frac{f^{\prime \prime}}{f^{\prime}}-2 \frac{f^{\prime}}{f-1}\right)-\left(\frac{g^{\prime \prime}}{g^{\prime}}-2 \frac{g^{\prime}}{g-1}\right) \tag{2.1}
\end{equation*}
$$

Lemma 2.2. [3] If f, g share $(1,1)$ and $H \not \equiv 0$. Then

$$
N_{1)}\left(r, \frac{1}{f-1}\right) \leq N(r, H)+S(r, f)+S(r, g)
$$

Lemma 2.3. Let f and g share $(0, m),(\infty, 0)$ and $(1,1)$, where $m \geq 2$. Then

$$
\begin{aligned}
N(r, H) \leq & \bar{N}_{(m+1}\left(r, \frac{1}{f}\right)+\bar{N}_{(2}\left(r, \frac{1}{f-1}\right)+\bar{N}(r, f)+\bar{N}_{0}\left(r, \frac{1}{f^{\prime}}\right)+\bar{N}_{0}\left(r, \frac{1}{g^{\prime}}\right) \\
& +\sum_{i=1}^{n} \bar{N}_{(2}\left(r, \frac{1}{f-a_{i}}\right)+\sum_{i=1}^{n} \bar{N}_{(2}\left(r, \frac{1}{g-a_{i}}\right)+S(r)
\end{aligned}
$$

where $\bar{N}_{0}\left(r, \frac{1}{f^{\prime}}\right)$ is the reduced counting function of the zeros of f^{\prime} which are not the zeros of $f(f-1) \prod_{i=1}^{n}\left(f-a_{i}\right)$ where $a_{i} \neq 0,1, \infty(i=1,2, \ldots, n)$.
Proof. The possible poles of H occur at
(i) multiple zeros of f and g,
(ii) multiple zeros of $f-1$ and $g-1$,
(iii) multiple poles of f and g,
(iv) zeros of f^{\prime} and g^{\prime} which are not the zeros of $f(f-1) \prod_{i=1}^{n}\left(f-a_{i}\right)$ and $g(g-1) \prod_{i=1}^{n}\left(g-a_{i}\right)$ respectively,
(v) multiple zeros of $f-a_{i}, g-a_{i}(i=1,2, \ldots, n)$.

Since f and g share $(0, m),(\infty, 0)$ and $(1,1)$, where $m \geq 2$, and all the poles of H are simple, we obtain the conclusion.

Lemma 2.4. Let f and g share $(0, m),(\infty, 0)$ and $(1,1)$ and $f \not \equiv g$, where $m \geq 2$. Then

$$
\begin{aligned}
& \bar{N}_{(2}\left(r, \frac{1}{f-1}\right) \leq \frac{m+1}{m-1} \bar{N}(r, f)+S(r), \\
& \bar{N}_{(m+1}\left(r, \frac{1}{f}\right) \leq \frac{2}{m-1} \bar{N}(r, f)+S(r)
\end{aligned}
$$

Proof. Let $\phi=\frac{f^{\prime}}{f-1}-\frac{g^{\prime}}{g-1}$ and $\psi=\frac{f^{\prime}}{f}-\frac{g^{\prime}}{g}$. Suppose that $\bar{N}\left(r, \frac{1}{f-a}\right) \neq S(r)$ for $a=0,1$ because otherwise the lemma is trivial. Since $f \not \equiv g$, it follows that $\phi \not \equiv 0$ and $\psi \not \equiv 0$. Now

$$
\begin{aligned}
\bar{N}_{(2}\left(r, \frac{1}{f-1}\right) \leq N\left(r, \frac{1}{\psi}\right) & \leq T(r, \psi)+O(1)=N(r, \psi)+S(r) \\
& \leq \bar{N}_{(m+1}\left(r, \frac{1}{f}\right)+\bar{N}(r, f)+S(r)
\end{aligned}
$$

and

$$
\begin{aligned}
m \bar{N}_{(m+1}\left(r, \frac{1}{f}\right) \leq N\left(r, \frac{1}{\phi}\right) & \leq T(r, \phi)+O(1)=N(r, \phi)+S(r) \\
& \leq \bar{N}_{(2}\left(r, \frac{1}{f-1}\right)+\bar{N}(r, f)+S(r)
\end{aligned}
$$

From above, we get

$$
\bar{N}_{(2}\left(r, \frac{1}{f-1}\right) \leq \frac{1}{m} \bar{N}_{(2}\left(r, \frac{1}{f-1}\right)+\frac{1}{m} \bar{N}(r, f)+\bar{N}(r, f)+S(r) .
$$

So

$$
\bar{N}_{(2}\left(r, \frac{1}{f-1}\right) \leq \frac{m+1}{m-1} \bar{N}(r, f)+S(r)
$$

and

$$
\begin{aligned}
& \bar{N}_{(m+1}\left(r, \frac{1}{f}\right) \leq \frac{1}{m} \bar{N}_{(2}\left(r, \frac{1}{f-1}\right)+\frac{1}{m} \bar{N}(r, f)+S(r) \\
\leq & \frac{1}{m}\left(\frac{m+1}{m-1}+1\right) \bar{N}(r, f)+S(r)=\frac{2}{m-1} \bar{N}(r, f)+S(r) .
\end{aligned}
$$

Lemma 2.5. [3] Let $a_{1}, a_{2}, \ldots, a_{n}$ be pairwise distinct complex numbers such that $a_{i} \neq 0,1, \infty(i=1,2, \ldots, n)$. Then
$\bar{N}_{0}\left(r, \frac{1}{f^{\prime}}\right)+\sum_{i=1}^{n} \bar{N}_{(2}\left(r, \frac{1}{f-a_{i}}\right)+\bar{N}_{(2}\left(r, \frac{1}{f-1}\right) \leq \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)+S(r, f)$,
where $\bar{N}_{0}\left(r, \frac{1}{f^{\prime}}\right)$ is the reduced counting function of the zeros of f^{\prime} which are not the zeros of $f(f-1) \prod_{i=1}^{n}\left(f-a_{i}\right)$.

3. Proof of Theorem 1.8

Let $f \not \equiv g$. We shall show that $f g \equiv 1$. Suppose that $H \not \equiv 0$. Let $a_{1}, a_{2}, \ldots, a_{n}$ be pairwise distinct complex numbers such that $a_{i} \neq 0,1, \infty(i=1,2, \ldots, n)$. By the second fundamental theorem, we get

$$
\begin{align*}
(n+1) T(r, f) \leq & \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f-1}\right) \\
& +\sum_{i=1}^{n} \bar{N}\left(r, \frac{1}{f-a_{i}}\right)-N_{0}\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) . \tag{3.1}
\end{align*}
$$

Here, $N_{0}\left(r, \frac{1}{f^{\prime}}\right)$ is the counting function of those zeros of f^{\prime} which are not the zeros of $f(f-1) \prod_{i=1}^{n}\left(f-a_{i}\right)$. By Lemma 2.2 and Lemma 2.3, we obtain

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{f-1}\right) & =N_{1)}\left(r, \frac{1}{f-1}\right)+\bar{N}_{(2}\left(r, \frac{1}{f-1}\right) \\
& \leq N(r, H)+\bar{N}_{(2}\left(r, \frac{1}{f-1}\right)+S(r, f) \\
& \leq \bar{N}_{(m+1}\left(r, \frac{1}{f}\right)+\bar{N}_{(2}\left(r, \frac{1}{f-1}\right)+\bar{N}(r, f) \\
& +\bar{N}_{0}\left(r, \frac{1}{f^{\prime}}\right)+\bar{N}_{0}\left(r, \frac{1}{g^{\prime}}\right)+\bar{N}_{(2}\left(r, \frac{1}{f-1}\right) \\
& +\sum_{i=1}^{n} \bar{N}_{(2}\left(r, \frac{1}{f-a_{i}}\right)+\sum_{i=1}^{n} \bar{N}_{(2}\left(r, \frac{1}{g-a_{i}}\right)+S(r, f) . \tag{3.2}
\end{align*}
$$

From (3.1) and Lemma 2.4, Lemma 2.5 we get

$$
\begin{aligned}
(n+1) T(r, f) & \leq \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}(r, f)+\bar{N}_{(m+1}\left(r, \frac{1}{f}\right) \\
& +\bar{N}_{(2}\left(r, \frac{1}{f-1}\right)+\bar{N}(r, f)+\bar{N}_{0}\left(r, \frac{1}{g^{\prime}}\right) \\
& +\bar{N}_{(2}\left(r, \frac{1}{f-1}\right)+\sum_{i=1}^{n} \bar{N}_{(2}\left(r, \frac{1}{g-a_{i}}\right)
\end{aligned}
$$

$$
\begin{align*}
& +\sum_{i=1}^{n} \bar{N}_{(2}\left(r, \frac{1}{f-a_{i}}\right)+\sum_{i=1}^{n} \bar{N}\left(r, \frac{1}{f-a_{i}}\right)+S(r, f) \\
& \leq 2 \bar{N}\left(r, \frac{1}{f}\right)+3 \bar{N}(r, f)+\sum_{i=1}^{n} N_{2}\left(r, \frac{1}{f-a_{i}}\right) \\
& +\frac{m+1}{m-1} \bar{N}(r, f)+\frac{2}{m-1} \bar{N}(r, f)+S(r) \\
& \leq 2 \bar{N}\left(r, \frac{1}{f}\right)+\frac{4 m}{m-1} \bar{N}(r, f)+\sum_{i=1}^{n} N_{2}\left(r, \frac{1}{f-a_{i}}\right)+S(r, f) . \tag{3.3}
\end{align*}
$$

Similarly we have

$$
\begin{equation*}
(n+1) T(r, g) \leq 2 \bar{N}\left(r, \frac{1}{g}\right)+\frac{4 m}{m-1} \bar{N}(r, g)+\sum_{i=1}^{n} N_{2}\left(r, \frac{1}{g-a_{i}}\right)+S(r, g) \tag{3.4}
\end{equation*}
$$

Combining (3.3) and (3.4) and using Lemma 2.1 we get

$$
\begin{align*}
(n+1) T(r) & \leq 2 \bar{N}\left(r, \frac{1}{f}\right)+\frac{4 m}{m-1} \bar{N}(r, f) \\
& +\max \left\{\sum_{i=1}^{n} N_{2}\left(r, \frac{1}{f-a_{i}}\right), \sum_{i=1}^{n} N_{2}\left(r, \frac{1}{g-a_{i}}\right)\right\}+S(r) \tag{3.5}
\end{align*}
$$

Let $S=\left\{a: a \in C, a \neq 0,1, \infty\right.$ and $\left.\delta_{2}(a, f)+\delta_{2}(a, g)>0\right\}$. Since S is countable, suppose that $S=\left\{a_{i}: i \in N_{+}\right\}$where N_{+}is a set of positive integers.

If $\sum_{a \neq 0,1, \infty} \delta_{2}(a, f)<\sum_{a \neq 0,1, \infty} \delta_{2}(a, g)$, then there exists a positive integer n_{0} such that

$$
\begin{equation*}
\sum_{i=1}^{n_{0}} \delta_{2}\left(a_{i}, f\right) \leq \sum_{i=1}^{n_{0}} \delta_{2}\left(a_{i}, g\right) \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n_{0}} \delta_{2}\left(a_{i}, f\right)>\sum_{a \neq 0,1, \infty} \delta_{2}(a, f)-\epsilon \tag{3.7}
\end{equation*}
$$

Then, from (3.5) we get

$$
\begin{equation*}
n_{0}+1<2+\frac{4 m}{m-1}+n_{0}-2 \Theta(0, f)-\frac{4 m}{m-1} \Theta(\infty, f)-\sum_{a \neq 0,1, \infty} \delta_{2}(a, f)+\epsilon \tag{3.8}
\end{equation*}
$$

Since $0 \leq \delta(a, f) \leq \delta_{2}(a, f) \leq \Theta(a, f) \leq 1$, from (3.8) we get

$$
\begin{equation*}
2 \delta_{2}(0, f)+\frac{4 m}{m-1} \delta_{2}(\infty, f)+\sum_{a \neq 0,1, \infty} \delta_{2}(a, f)<\frac{5 m-1}{m-1}+\epsilon \tag{3.9}
\end{equation*}
$$

Since $\epsilon(>0)$ is arbitrary, it follows that

$$
\begin{equation*}
2 \delta_{2}(0, f)+\frac{4 m}{m-1} \delta_{2}(\infty, f)+\sum_{a \neq 0,1, \infty} \delta_{2}(a, f) \leq \frac{5 m-1}{m-1} \tag{3.10}
\end{equation*}
$$

If $\sum_{a \neq 0,1, \infty} \delta_{2}(a, g)<\sum_{a \neq 0,1, \infty} \delta_{2}(a, f)$, similarly we can prove that

$$
\begin{equation*}
2 \delta_{2}(0, f)+\frac{4 m}{m-1} \delta_{2}(\infty, f)+\sum_{a \neq 0,1, \infty} \delta_{2}(a, g) \leq \frac{5 m-1}{m-1} \tag{3.11}
\end{equation*}
$$

If $\sum_{a \neq 0,1, \infty} \delta_{2}(a, g)=\sum_{a \neq 0,1, \infty} \delta_{2}(a, f)$, then from (3.3) we obtain (3.10). Now (3.10) and (3.11) contradict the given condition. Therefore $H \equiv 0$ and so

$$
\begin{equation*}
f \equiv \frac{a g+b}{c g+d} \tag{3.12}
\end{equation*}
$$

where a, b, c, d are constants and $a d-b c \neq 0$.
If $c=0$, then from (3.12) we get

$$
\begin{equation*}
f=A g+B \tag{3.13}
\end{equation*}
$$

where $A=\frac{a}{d}, B=\frac{b}{d}$ and $a d \neq 0$.
Let $0, \infty$ be Picard values of f and g. From (3.13) we see that B is also Picard value of f which is impossible unless $B=0$. So from (3.13), we have $f \equiv A g$. Since $f \not \equiv g$, it follows that $A \neq 1$ and 1 becomes a Picard value of f because f and g share $(1,1)$. This is again impossible.

Let ∞ be a Picard value of f and g but 0 be not a Picard value of f and g. Since f, g share $(0, m)$, from (3.13) we get $B=0$ and so $f \equiv A g$. Since $f \not \equiv g, A \neq 1$ and so 1 becomes Picard value of f and g. Hence $\sum_{t \neq 1, \infty} \delta_{2}(t, f)=0$. This contradicts the given condition.

Let 0 be a Picard value of f and g but ∞ be not a Picard value of f and g. If 1 is a Picard value of f then $\sum_{t \neq 0,1} \delta_{2}(t, f)=0$ which contradicts the given condition. Hence there is z_{0} such that $f\left(z_{0}\right)=g\left(z_{0}\right)=1$ and so from (3.13) we get $A+B=1$ and so

$$
\begin{equation*}
f \equiv A g+1-A \tag{3.14}
\end{equation*}
$$

Since f and g share $(0,1)$ and 0 is a Picard value of f, it follows from (3.14) that $1-A$ is a Picard value of f and $(A-1) / A$ is a Picard value of g. Since $f \not \equiv g$, from (3.14) we see that $A \neq 1$ and it follows that $\delta_{2}(\infty, f)=0$ and $\sum_{t \neq 0,1, \infty} \delta_{2}(t, f)=1$, which contradicts the given condition.

Let $0, \infty$ are not Picard values of f and so of g, then from (3.13) we get $f \equiv A g$ because f, g share $(0,1)$. Since $f \not \equiv g$, it follows that $A \neq 1$ and 1 becomes a Picard value of f and g. Then we get

$$
\begin{equation*}
\delta_{2}(0, f)+\delta_{2}(\infty, f)+\sum_{t \neq 0,1, \infty} \delta_{2}(t, f) \leq 1 \tag{3.15}
\end{equation*}
$$

So

$$
\begin{align*}
2 \delta_{2}(0, f)+\frac{4 m}{m-1} \delta_{2}(\infty, f)+\sum_{t \neq 0,1, \infty} \delta_{2}(t, f) & \leq 1+\delta_{2}(0, f)+\frac{3 m+1}{m-1} \delta_{2}(\infty, f) \\
& \leq \frac{5 m-1}{m-1} \tag{3.16}
\end{align*}
$$

which is a contradiction to the given condition.
If $c \neq 0$, then from (3.12) we get

$$
\begin{equation*}
f-\frac{a}{c} \equiv \frac{b-\frac{a d}{c}}{c g+d} . \tag{3.17}
\end{equation*}
$$

Since f, g share $(\infty, 0)$, it follows from (3.17) that $\frac{a}{c}, \infty$ are Picard values of f and $-\frac{d}{c}, \infty$ are Picard values of g.

If $a=0$, then from (3.17) we get

$$
\begin{equation*}
f \equiv \frac{1}{\alpha g+\beta} \tag{3.18}
\end{equation*}
$$

where $\alpha=\frac{c}{b}, \beta=\frac{d}{b}$ and $b \neq 0$. Since $0, \infty$ are Picard values of f and f, g share $(1,1)$, it follows that there exists z_{0} such that $f\left(z_{0}\right)=g\left(z_{0}\right)=1$. So from (3.18) we get $\alpha+\beta=1$ and hence

$$
\begin{equation*}
f \equiv \frac{1}{\alpha g+1-\alpha} . \tag{3.19}
\end{equation*}
$$

Since f and g share $(0, m),(\infty, 0)$ and $0, \infty$ are Picard values of f, it follows from (3.19) that $0, \infty, \frac{\alpha-1}{\alpha}$ are Picard values of f which is impossible unless $\alpha=1$, then from (3.19) we get $f g \equiv 1$.

Let $a \neq 0$. Since $\frac{a}{c}$ and ∞ are Picard values of f, it follows that $\delta_{2}(0, f)=0$ and $\sum_{t \neq 0,1, \infty} \delta_{2}(t, f) \leq 1$ which contradicts the given condition. This proves the theorem.

Acknowledgement. The author would like to thank the anonymous reviewers for their helpful suggestions.

References

[1] W. K. Hayman, Meromorphic Functions, Clarendon, Oxford, 1964.
[2] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J. 161(2001), 193-206.
[3] I. Lahiri, Weighted sharing and a result of Ozawa, Hokkaido Math. J. 30(2001), 679-688.
[4] I. Lahiri, On a result of Ozawa concerning uniqueness of meromorphic functions, J. Math. Anal. Appl. 271(2002), 206-216.
[5] I. Lahiri, Corrigendum to "On a result of Ozawa concerning uniqueness of meromorphic functions, [J. Math. Anal. Appl. 271(2002), 206-216.]", J. Math. Anal. Appl. $287(2003), 320$.
[6] I. Lahiri, On a result of Ozawa concerning uniqueness of meromorphic functions II, J. Math. Anal. Appl. 283(2003), 66-76.
[7] M. Ozawa, Unicity theorems for entire function, J. D'Anal. Math. 30(1976), 411-420.
[8] H. Ueda, Unicity theorems for meromorphic or entire function II, Kodai Math. J. 6(1983), 26-36.
[9] H. X. Yi, Meromorphic functions that share two or three values, Kodai Math. J. 13(1990), 363-372.
[10] Q. C. Zhang, On the results of Lahiri concerning uniqueness of meromorphic functions, J. Math. Anal. Appl. 318(2006), 707-725.

