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1. Introduction

Let f be a meromorphic function defined in the complex plane C. We assumed
that the reader is familiar with the notations of Nevanlinna theory (cf.[6]), and the
lower order µ, the order ρ and the hyper order ρ2 are in turn defined as follows:

µ = µ(f) = lim inf
r→∞

log T (r, f)
log r

,

ρ = ρ(f) = lim sup
r→∞

log T (r, f)
log r

.

ρ2 = ρ2(f) = lim sup
r→∞

log log T (r, f)
log r

.

An a ∈ C is called an IM (ignoring multiplicities) shared value in X ⊂ C of
two meromorphic functions f(z) and g(z) if in X, f(z) = a if and only if g(z) = a
and a CM (counting multiplicities) shared value in X if f(z) and g(z) assume a at
the same points in X with the same multiplicities. J. H. Zheng first consider the
uniqueness dealing with shared values in a proper subset of C. (see.[9, 10]) It is an
interesting topic to investigate the uniqueness with shared values in the remaining
part of complex plane removing an unbounded closed set. In [10], J. H. Zheng proved
the following result:
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Theorem 1.1. Let f(z) and g(z) be both transcendental meromorphic function and
let f(z) be of the finite lower order µ and for some a ∈ C, δ = δ(a, f) > 0.

Given one angular domain X = {z : α ≤ arg z ≤ β, } with 0 < β − α ≤ 2π and

β − α > max

{
π

σ
, 2π − 4

σ
arcsin

√
δ

2

}
,

where µ ≤ σ ≤ ρ and σ < ∞, we assume that f(z) and g(z) have four distinct IM
shared values aj(j = 1, 2, 3, 4) in X and aj 6= a(j = 1, 2, 3, 4), then f(z) ≡ g(z).

It is natural to ask: What could we say about Theorem 1.1 for the case that f is
of infinite lower order?

In this paper, by using the method in Zheng [11], we can get the following result:

Theorem 1.2. Let f(z) and g(z) be both transcendental meromorphic function and
let f(z) be of the infinite lower order and the finite hyper order, such that for some
a ∈ C and δ = δ(a, f) > 0.

Assume that for q radii arg z = αj , (1 ≤ j ≤ q), satisfying

−π ≤ α1 < α2 < · · · < αq < π, αq+1 = α1 + 2π,

f(z) and g(z) have four distinct IM shared values in X = C \
⋃q

j=1{z : arg z = αj}.
If

(1.1) max
{

π

αj+1 − αj
: 1 ≤ j ≤ q

}
< ρ(f),

then f(z) ≡ g(z).

Obviously, the order of f can be infinite in Theorem 1.2, but we restrict that the
infinite order could not grow too quickly, explicitly to speak, the hyper order of f is
finite. In fact, we first get the following result in order to prove Theorem 1.2.

Theorem 1.3. Let f(z) and g(z) be both transcendental meromorphic function and
let f(z) be of the finite lower order µ and such that for some a ∈ C and δ = δ(a, f) >
0.

Assume that for q pair of real numbers {αj , βj} such that

−π ≤ α1 < β1 ≤ α2 < β2 · · · < αq < βq ≤ π, αq+1 = α1 + 2π,

and

(1.2)
q∑

j=1

(αj+1 − βj) <
4
σ

arcsin

√
δ

2
,

where σ = max{ω, µ} and define

ω = max
{

π

β1 − α1
, · · · ,

π

βq − αq

}
.

Assume that f(z) and g(z) have four distinct IM shared values in

X =
q⋃

j=1

{z : αj ≤ arg z ≤ βj}.
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If ω < ρ(f) < ∞, then f(z) ≡ g(z).

Remark 1.1. Obviously, it is a very important question: Can the four shared values
aj(j = 1, 2, 3, 4) be replaced by four shared small functions in our theorems?

2. Lemmas

Lemma 2.1. [4, 7] Let f(z) be a transcendent and meromorphic function in the
plane with finite lower order 0 ≤ µ < ∞ and the order 0 < ρ ≤ ∞. Then for
arbitrary positive number σ satisfying µ ≤ σ ≤ ρ and a set E with finite linear
measure, there exist a sequence of positive numbers {rn} such that

(i) rn 6∈ E, limn→∞
rn

n
= ∞;

(ii) lim infn→∞
log T (rn, f)

log rn
≥ σ;

(iii) T (t, f) ≤ (1 + o(1))
(

t

rn

)σ

T (rn, f), t ∈
[rn

n
, nrn

]
.

A sequence of increasing of real numbers {rn} satisfying (i), (ii) and (iii) is called
a Pólya peak of order σ outside E in this paper. For r > 0 and a ∈ C define

D(r, a) :=
{

θ ∈ [−π, π) : log+ 1
|f(reiθ)− a|

>
1

log r
T (r, f)

}
(2.1)

and

D(r,∞) :=
{

θ ∈ [−π, π) : log+ |f(reiθ)| > 1
log r

T (r, f)
}

.

The following result is a special version of the main result of Baernstein [1]. It is
enough to prove our theorem.

Lemma 2.2. Let f(z) be a meromorphic transcendent and function in the plane
with finite lower order µ > 0 and the order 0 < ρ ≤ ∞ and for a ∈ C, δ(a, f) > 0.
Then for arbitary Pólya peak {rn} of order σ, µ ≤ σ ≤ ρ, we have

lim inf
n→∞

mesD(rn, a) ≥ min
{

2π,
4
σ

arcsin

√
δ

2

}
.

In order to prove our theorems, we need Nevanlinna theory on an angular domain.
Let f(z) be a meromorphic function on the angular domain

Ω(α, β) = {z;α ≤ arg z ≤ β, },
where 0 < β − α ≤ 2π. Following Nevanlinna (see [5]) define

Aα,β(r, f) =
ω

π

∫ r

1

(
1
tω
− tω

r2ω

)
{log+ |f(teiα)|+ log+ |f(teiβ)|}dt

t
,(2.2)

Bα,β(r, f) =
2ω

πrω

∫ β

α

log+ |f(reiθ)| sinω(θ − α)dθ,(2.3)

Cα,β(r, f) = 2
∑

1<|bn|<r

(
1

|bn|ω
− |bn|ω

r2ω

)
sinω(θn − α),(2.4)
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where ω =
π

β − α
and bn = |bn|eiθn are the poles of f(z) on Ω(α, β) appearing

according to their multiplicities. Cα,β(r, f) is called the angular counting function
of the poles of f on Ω(α, β) and Nevanlinna’s angular characteristic is defined as
follows:

Sα,β(r, f) = Aα,β(r, f) + Bα,β(r, f) + Cα,β(r, f).

Throughout, we denote by Rα,β(r, ∗) a quantity satisfying

Rα,β(r, ∗) = O{log(rSα,β(r, ∗))}, r 6∈ E,

where E denotes a set of positive real numbers with finite linear measure. It is not
necessarily the same for every occurrence in the context.

Lemma 2.3. Let f(z) be meromorphic on Ω(α, β). Then for arbitrary complex
number a, we have

(2.5) Sα,β

(
r,

1
f − a

)
= Sα,β(r, f) + O(1)

and for an integer p ≥ 0,

Aα,β

(
r,

f (p)

f

)
+ Bα,β

(
r,

f (p)

f

)
= Rα,β(r, f)

and Rα,β(r, f (p)) = Rα,β(r, f). But in general, we do not know if Rα,β(r, f) =
Rα,β(r, f (p)).

Lemma 2.4. Let f(z) be meromorphic on Ω(α, β). Then for arbitrary q distinct
aj ∈ C(1 ≤ j ≤ q), we have

(q − 2)Sα,β(r, f) ≤
q∑

j=1

Cα,β

(
r,

1
f − aj

)
+ Rα,β(r, f),

where the term Cα,β

(
r,

1
f − aj

)
will be replaced by Cα,β(r, f) when some aj = ∞.

Lemma 2.5. [4] Let f(z) be meromorphic function with δ = δ(∞, f) > 0. Then for
given ε > 0, we have

mesE(r, f) >
1

T ε(r, f)[log r]1+ε
, r 6∈ F,

where

E(r, f) =
{

θ ∈ [−π, π) : log+ |f(reiθ)| > δ

4
T (r, f)

}
and F is a set of positive real numbers with finite logarithmic measure depending
on ε.
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3. The proof of theorems

Proof of Theorem 1.3. Suppose f(z) 6≡ g(z). Let aj ∈ C(1 ≤ j ≤ 4) be four distinct
IM shared values in X of f(z) and g(z). For the convenience, below we omit the
subscript of all the notations, such as S(r, ∗), C(r, ∗). As in the proof of Theorem

1.1, first we estimate B

(
r,

1
(f − a)

)
,

(3.1) B

(
r,

1
f − a

)
= O(log(rT (r, f))), r 6∈ E.

For completeness, we give the proof of equation (3.1). By applying Lemma 2.4 to f
and equation (2.5), we have

2S(r, f) ≤
4∑

j=1

C

(
r,

1
f − aj

)
+ R(r, f)

≤ C

(
r,

1
f − aj

)
+ R(r, f) ≤ S(r, f − g) + R(r, f)

≤ S(r, f) + S(r, g) + R(r, f),

(3.2)

so that

(3.3) S(r, f)−R(r, f) ≤ S(r, g).

The same argument shows that

(3.4) S(r, g)−R(r, g) ≤ S(r, f).

This implies that R(r, g) = R(r, f). We assume that a ∈ C. By the same
argument we can show Theorem 1.3 for the case when a = ∞. Using Lemma 2.4
again and combining equation (3.2) together with equation (3.3) and equation (3.4),
we deduce

3S(r, f) ≤
4∑

j=1

C

(
r,

1
f − aj

)
+ C

(
r,

1
f − a

)
+ R(r, f),

≤ 2S(r, f) + C

(
r,

1
f − a

)
+ R(r, f).

(3.5)

Thus

(3.6) B

(
r,

1
f − a

)
= O(log(rT (r, f))), r 6∈ E.

The following method comes from [11]. Note that ρ(f) > ω. We need to consider
two cases:
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Case 1. ρ(f) > µ. Then ρ(f) > σ ≥ µ. By (1.2), we can take a real number ε > 0
such that

(3.7)
q∑

j=1

(αj+1 − βj + 2ε) <
4

σ + 2ε
arcsin

√
δ

2
,

where αq+1 = α1 + 2π, and

ρ(f) > σ + 2ε > µ.

Applying Lemma 2.1 to f(z) gives the existence to the Pólya peak {rn} of order
σ + 2ε of f such that rn 6∈ E, and then from Lemma 2.2 for sufficiently large n we
have

(3.8) mesD(rn, a) >
4

σ + 2ε
arcsin

√
δ

2
− ε,

since σ + 2ε >
1
2
. We can assume for all the n, equation(3.8) holds. Set

K := mes

(
D(rn, a) ∩

q⋃
j=1

(αj + ε, βj − ε)
)

.

Then from equations(3.7) and (3.8), it follows that

K ≥ mes
(
D(rn, a)

)
−mes

(
[0, 2π) \

q⋃
j=1

(αj + ε, βj − ε)
)

≥ mes
(
D(rn, a)

)
−mes

( q⋃
j=1

(βj − ε, αj+1 + ε)
)

≥ mes
(
D(rn, a)

)
−

q∑
j=1

(αj+1 − βj + 2ε) > ε > 0.

It is easy to see that there exists a j0 such that for infinitely many n, we have

(3.9) mes
(
D(rn, a) ∩ (αj0 + ε, βj0 − ε)

)
>

K

q
.

We can assume for all the n, (3.9) holds. Set En = D(rn, a) ∩ (αj0 + ε, βj0 − ε).
Thus from the definition (2.1) of D(r, a), it follows that∫ βj0−ε

αj0+ε

log+ 1
|f(rneiθ)− a|

dθ ≥
∫

En

log+ 1
|f(rneiθ)− a|

dθ

≥ mes(En)
T (rn, f)
log rn

≥ K

q

T (rn, f)
log rn

(3.10)
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On the other hand, by the definition (2.3) of Bα,β(r, ∗) and (3.1), we have∫ βj0−ε

αj0+ε

log+ 1
|f(rneiθ)− a|

dθ <
π

2ωj0 sin(εωj0)
r

ωj0
n Bαj0 ,βj0

(
rn,

1
f − a

)
< Kj0r

ωj0
n O(log(rnT (rn, f))), r 6∈ E,

(3.11)

Combining (3.10) with (3.11) gives

T (rn, f) ≤ qKj0

K
r

ωj0
n O(log(rnT (rn, f))).

Thus from (ii) in Lemma 2.1 for σ + 2ε, we have

σ + 2ε ≤ lim sup
r→∞

log T (rn, f)
log rn

≤ ωj0 ≤ σ + ε.

This is impossible.

Case 2. ρ(f) = µ. Then σ = µ = ρ(f). By the same argument as in Case 1 with
all the σ + 2ε replaced by σ = µ, we can derive

max{ω, µ} = σ ≤ ω < ρ(f).
This is impossible. The proof is completed.

Proof of Theorem 1.2. As in the proof of Theorem 1.3, we have for each j,

(3.12) Bαj ,αj+1

(
r,

1
f − a

)
= O(log(rT (r, f)), r 6∈ E.

Applying Lemma 2.5 to f(z) implies the existence of a sequence {rn} of positive
numbers such that {rn} → ∞(n →∞) and rn 6∈ E and

(3.13) mesE

(
rn,

1
f − a

)
>

1
T ε(rn, f)[log rn]1+ε

.

Set

εn =
1

2q + 1
· 1
T ε(r, f)[log r]1+ε

.

Then for (3.13), it follows that

mes

(
E

(
rn,

1
f − a

) ⋂ q⋃
j=1

(αj + εn, αj+1 − εn)
)

≥ mesE(rn,
1

f − a
)−mes

 q⋃
j=1

(αj + εn, αj+1 − εn)


≥ (2q + 1)εn − 2qεn = εn > 0;

so there exists a j such that for infinitely many n, we have

(3.14) mesEn ≥
εn

q
,
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where En = E(rn, 1
f−a )

⋂
(αj + εn, αj+1 − εn). We can assume that (3.14) holds for

all the n. Thus from the definition of E(r, f), it follows that∫ αj+1−εn

αj+εn

log+ 1
|f(rneiθ)− a|

dθ ≥
∫

En

log+ 1
|f(rneiθ)− a|

dθ

≥ mes(En)
δ

4
T (rn, f)

≥ δεn

4q
T (rn, f).

(3.15)

On the other hand, by the definition of Bα,β(r, ∗) and (3.12), we have∫ αj+1−εn

αj+εn

log+ 1
|f(rneiθ)− a|

dθ <
π

2ωj sin(εnωj)
rωj
n Bαj ,αj+1

(
rn,

1
f − a

)
<

π2

4ω2
j εn

O

(
rωj
n log(rnT (rn, f)

)
, r 6∈ E,

(3.16)

where ωj =
π

αj+1 − αj
.

Combining (3.15) and (3.16) gives

ε2
nT (rn, f) ≤ O

(
rωj
n log(rnT (rn, f)

)
,

so that

T 1−2ε(rn, f) ≤ O

(
rωj
n log(rnT (rn, f)

)
.

Note that the definition of hyper order of f(z), thus µ(f) ≤ ω

(1− 2ε)
< ∞. It is a

contradiction. We complete the proof of the theorem.

Remark 3.1. If the condition δ(a, f) > 0 reduces to δ(a, f (p)) > 0, where p is
integer and p ≥ 0, we need to add the restriction that C(r, f = a) = R(r, f). In
fact, from (3.5) we know S(r, f) ≤ C(r, f = a) + R(r, f). Thus,

B(r, f (p) = a) ≤ S(r, f (p)) + R(r, f)

= (A + B)
(

r,
f (p)

f

)
+ (A + B)(r, f) + pC(r, f) + C(r, f) + R(r, f)

= (p + 1)S(r, f) + R(r, f) = O(log(rT (r, f))).

(3.17)

If we use (3.17) instead of (3.6), then the above claim holds.
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