Uniqueness of Meromorphic Functions Sharing Three Weighted Values

${ }^{1}$ Indrajit Lahiri And ${ }^{2}$ Pulak Sahoo
${ }^{1}$ Department of Mathematics, University of Kalyani, West Bengal 741235, India
${ }^{2}$ Department of Mathematics, Silda Chandra Sekhar College, Silda,
Paschim Medinipur, West Bengal 721515, India
1indr9431@dataone.in

Abstract

In this paper, we study the uniqueness of meromorphic functions sharing three values and improve some previous results.

2000 Mathematics Subject Classification: 30D35
Key words and phrases: Meromorphic function, Uniqueness, Weighted sharing

1. Introduction, definitions and results

Let f and g be two non-constant meromorphic functions defined in the open complex plane \mathbb{C}. For $a \in\{\infty\} \cup \mathbb{C}$ we say that f and g share the value a CM (counting multiplicities) if f and g have the same a-points with the same multiplicities. If the multiplicities are not taken into account, we say that f and g share the value a IM (ignoring multiplicities). For standard definitions and notations of the value distribution theory, we refer to [2]. We denote by E a set of non-negative real numbers of finite linear measure, not necessarily the same at each occurrence. For any non-constant meromorphic function f, we denote by $S(r, f)$ any quantity satisfying $S(r, f)=o\{T(r, f)\}$ as $r \longrightarrow \infty(r \notin E)$. We use $N_{0}(r)\left(\bar{N}_{0}(r)\right)$ to denote the counting function (reduced counting function) of those zeros of $f-g$ which are not the zeros of $g(g-1), \frac{1}{g}$ and $N_{0}^{*}(r)\left(\bar{N}_{0}^{*}(r)\right)$ to denote the counting function (reduced counting function) of those zeros of $f-g$ which are not the zeros of $g(g-1)$.

In 1999, Q. C. Zhang proved the following results:
Theorem 1.1. [10] Let f and g be two non-constant meromorphic functions sharing $0,1, \infty$ CM. If

$$
\limsup _{r \rightarrow \infty, r \notin E} \frac{N_{0}(r)}{T(r, f)}>\frac{1}{2}
$$

Received: October 15, 2006; Revised: March 29, 2007.
then f is a bilinear transformation of g and one of the following relations holds:
(i) $f \equiv g$,
(ii) $f+g \equiv 1$,
(iii) $(f-1)(g-1) \equiv 1$, and
(iv) $f g \equiv 1$.

Theorem 1.2. [10] Let f and g be two distinct non-constant meromorphic functions sharing $0,1, \infty$ CM. If

$$
0<\limsup _{r \rightarrow \infty, r \notin E} \frac{N_{0}(r)}{T(r, f)} \leq \frac{1}{2},
$$

then $N_{0}(r)=\frac{1}{k} T(r, f)+s(r, f)$ and f is not any fractional linear transformation of g and assume one of the following forms:
(i) $f=\frac{e^{s \gamma}-1}{e^{(k+1) \gamma}-1}$ and $g=\frac{e^{-s \gamma}-1}{e^{-(k+1) \gamma}-1}, 1 \leq s \leq k$;
(ii) $f=\frac{e^{(k+1) \gamma}-1}{e^{(k+1-s) \gamma}-1}$ and $g=\frac{e^{-(k+1) \gamma}-1}{e^{-(k+1-s) \gamma}-1}, 1 \leq s \leq k$;
(iii) $f=\frac{e^{s \gamma}-1}{e^{-(k+1-s) \gamma}-1}$ and $g=\frac{e^{-s \gamma}-1}{e^{(k+1-s) \gamma}-1}, 1 \leq s \leq k$;
where s and k are positive integers such that s and $k+1$ are relatively prime and γ is a non-constant for entire function.

In 2003, H. X. Yi and Y. H. Li proved the following theorem.
Theorem 1.3. [8] Let f and g be two non-constant meromorphic functions sharing $0,1, \infty$ CM. Then

$$
\frac{1}{2}+o(1) \leq \frac{T(r, f)}{T(r, g)} \leq 2+o(1)
$$

and

$$
\frac{1}{2}+o(1) \leq \frac{T(r, g)}{T(r, f)} \leq 2+o(1)
$$

as $r \rightarrow \infty(r \notin E)$. If, in particular, f and g are entire, then $T(r, f) \sim T(r, g)$ as $r \rightarrow \infty(r \notin E)$.

In 2005, Qi Han [3] used the notion of weighted value sharing, introduced in [4], to improve the above results. We now explain the notion of weighted sharing of values which measures how close a shared value is being shared IM or being shared CM.

Definition 1.1. [4] Let k be a non-negative integer or infinity. For $a \in\{\infty\} \cup \mathbb{C}$, we denote by $E_{k}(a ; f)$ the set of all a-points of f where an a-point of multiplicity m is counted m times if $m \leq k$ and $k+1$ times if $m>k$. If $E_{k}(a ; f)=E_{k}(a ; g)$, we say that f and g share the value a with weight k.

The definition implies that if f and g share a value a with weight k then z_{0} is a zero of $f-a$ with multiplicity $m(\leq k)$ if and only if it is a zero of $g-a$ with multiplicity $m(\leq k)$ and z_{0} is a zero of $f-a$ with multiplicity $m(>k)$ if and only if it is a zero of $g-a$ with multiplicity $n(>k)$ where m is not necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with weight k. Clearly if f, g share (a, k) then f, g share (a, p) for all integers $p, 0 \leq p<k$. Also we note that f, g share a value a IM or CM if and only if f, g share $(a, 0)$ or (a, ∞) respectively.

We now state the results of Qi Han.
Theorem 1.4. [3] Let f and g be two non-constant meromorphic functions sharing $(0,1),(1, \infty)$ and (∞, ∞). If

$$
\limsup _{r \rightarrow \infty, r \notin E} \frac{N_{0}(r)}{T(r, f)}>\frac{1}{2}
$$

then the conclusion of Theorem 1.1 holds.
Theorem 1.5. [3] Let f and g be two distinct non-constant meromorphic functions sharing $(0,1),(1, \infty)$ and (∞, ∞). If

$$
0<\limsup _{r \rightarrow \infty, r \notin E} \frac{N_{0}(r)}{T(r, f)} \leq \frac{1}{2}
$$

then the conclusion of Theorem 1.2 holds.
Theorem 1.6. [3] If f and g are two non-constant meromorphic functions sharing $(0,1),(1, \infty)$ and (∞, ∞), then the conclusion of Theorem 1.3 holds.

In this paper, we prove the following results which improve the above theorems.
Theorem 1.7. Let f and g be two non-constant meromorphic functions sharing $\left(0, k_{1}\right),\left(1, k_{2}\right)$ and $\left(\infty, k_{3}\right)$, where $k_{j}(j=1,2,3)$ are positive integers satisfying

$$
\begin{gather*}
k_{1} k_{2} k_{3}>k_{1}+k_{2}+k_{3}+2 \tag{1.1}\\
\limsup _{r \rightarrow \infty, r \notin E} \frac{N_{0}(r)}{T(r, f)}>\frac{1}{2}
\end{gather*}
$$

If
then the conclusion of Theorem 1.1 holds.
Theorem 1.8. Let f and g be two distinct non-constant meromorphic functions sharing $\left(0, k_{1}\right),\left(1, k_{2}\right)$ and $\left(\infty, k_{3}\right)$, where $k_{j}(j=1,2,3)$ are positive integers satisfying (1.1). If

$$
0<\limsup _{r \rightarrow \infty, r \notin E} \frac{N_{0}(r)}{T(r, f)} \leq \frac{1}{2},
$$

then the conclusion of Theorem 1.2 holds.
Theorem 1.9. Let f and g be two non-constant meromorphic functions sharing $\left(0, k_{1}\right),\left(1, k_{2}\right)$ and $\left(\infty, k_{3}\right)$, where $k_{j}(j=1,2,3)$ are positive integers satisfying (1.1). Then the conclusion of Theorem 1.3 holds.

We now give some more necessary definitions.

Definition 1.2. Let f and g share $(a, 0)$ and z be an a-point of f and g with multiplicities $p_{f}(z)$ and $p_{g}(z)$ respectively. We put

$$
\bar{\nu}_{f}(z)= \begin{cases}1 & \text { if } p_{f}(z)>p_{g}(z) \\ 0 & \text { if } p_{f}(z) \leq p_{g}(z)\end{cases}
$$

and

$$
\bar{\mu}_{f}(z)= \begin{cases}1 & \text { if } p_{f}(z)<p_{g}(z) \\ 0 & \text { if } p_{f}(z) \geq p_{g}(z)\end{cases}
$$

Let $\bar{n}(r, a ; f>g)=\sum_{|z| \leq r} \overline{n u}_{f}(z)$ and $\bar{n}(r, a ; f<g)=\sum_{|z| \leq r} \bar{\mu}_{f(z)}$. We now denote by $\bar{N}(r, a ; f>g)$ and $\bar{N}(r, a ; f<g)$ the integrated counting functions obtained from $\bar{n}(r, a ; f>g)$ and $\bar{n}(r, a ; f<g)$ respectively. Finally, we put

$$
\bar{N}_{*}(r, a ; f, g)=\bar{N}(r, a ; f>g)+\bar{N}(r, a ; f<g) 0
$$

Definition 1.3. Let p be a positive integer and $a \in\{\infty\} \cup \mathbb{C} . B y N(r, a ; f \mid \leq p)$, we denote the counting function of those a-points of f (counted with multiplicities) whose multiplicities are not greater than p. By $N(r, a ; f \mid \leq p)$, we denote the corresponding reduced counting function. In an analogous manner, we define $N(r, a ; f \mid \geq p)$ and $N(r, a ; f \mid \geq p)$.

2. Lemmas

In this section, we present some necessary lemmas.
Lemma 2.1. [1] Let f and g be two non-constant meromorphic functions sharing three values IM. Then

$$
T(r, f) \leq 3 T(r, g)+S(r, f)
$$

and

$$
T(r, g) \leq 3 T(r, f)+S(r, g)
$$

From Lemma 2.1, we see that $S(r, f)=S(r, g)$, which we denote by $S(r)$ in the sequel.

Lemma 2.2. [9] Let f and g be two distinct non-constant meromorphic functions sharing $\left(0, k_{1}\right),\left(1, k_{2}\right)$ and $\left(\infty, k_{3}\right)$, where $k_{j}(j=1,2,3)$ are positive integers satisfying (1.1). Then

$$
\bar{N}(r, a ; f \mid \geq 2)=S(r)
$$

and

$$
\bar{N}(r, a ; g \mid \geq 2)=S(r)
$$

for $a=0,1, \infty$.
Lemma 2.3. [5] Let f and g share $(0,0),(1,0)$ and $(\infty, 0)$ and $f \not \equiv g$. If $\alpha=\frac{f-1}{g-1}$ and $h=\frac{g}{f}$, then
(i) $\bar{N}(r, 0 ; \alpha)=\bar{N}(r, \infty ; f<g)+\bar{N}(r, 1 ; f>g)$,
(ii) $\bar{N}(r, \infty ; \alpha)=\bar{N}(r, \infty ; f>g)+\bar{N}(r, 1 ; f<g)$,
(iii) $\bar{N}(r, 0 ; h)=\bar{N}(r, 0 ; f<g)+N(r, \infty ; f>g)$,
(iv) $\bar{N}(r, \infty ; h)=\bar{N}(r, 0 ; f>g)+\bar{N}(r, \infty ; f<g)$.

Lemma 2.4. Let f and g share $\left(0, k_{1}\right),\left(1, k_{2}\right)$ and $\left(\infty, k_{3}\right)$ and $f \not \equiv g$, where $k_{j}(j=$ $1,2,3)$ are positive integers satisfying (1.1). If α and h are defined as in Lemma 2.3, then $\bar{N}(r, a ; \alpha)=S(r)$ and $\bar{N}(r, a ; h)=S(r)$ for $a=0, \infty$.

Proof. The lemma follows from Lemma 2.2 and Lemma 2.3 because

$$
\bar{N}_{*}(r, a ; f, g) \leq \bar{N}(r, a ; f \mid \geq 2)
$$

for $a=0,1, \infty$.
Using Lemma 2.2 and Lemma 2.4, we can prove the following lemma in the line of Lemma 2.5 [5].

Lemma 2.5. Let f and g share $\left(0, k_{1}\right),\left(1, k_{2}\right)$ and $\left(\infty, k_{3}\right)$ and $f \not \equiv g$, where $k_{j}(j=$ $1,2,3$) are positive integers satisfying (1.1). If f is not a bilinear transformation of g, then each of the following equalities holds:
(i) $T(r, f)+T(r, g)=N(r, 0 ; f \mid \leq 1)+N(r, 1 ; f \mid \leq 1)+N(r, \infty ; f \mid \leq 1)+$ $N_{0}(r)+S(r)$,
(ii) $T(r, f)+T(r, g)=N(r, 0 ; g \mid \leq 1)+N(r, 1 ; g \mid \leq 1)+N(r, \infty ; g \mid \leq 1)+$ $N_{0}(r)+S(r)$,
(iii) $N(r, 0 ; f-g \mid f=\infty)=S(r)$ and $N(r, 0 ; f-g \mid g=\infty)=S(r)$,
(iv) $N(r, 0 ; f-g \mid \geq 2)=S(r)$,
where $N(r, 0 ; f-g \mid f=\infty)$ denotes the counting function of those zeros of $f-g$ which are poles of f.

Lemma 2.6. [7] Let f be a non-constant meromorphic function and

$$
R(f)=\frac{\sum_{i=0}^{m} a_{i} f^{i}}{\sum_{j=0}^{n} b_{j} f^{j}}
$$

be a non-constant irreducible rational in f with constant coefficient $\left\{a_{i}\right\}$ and $\left\{b_{j}\right\}$ satisfying $a_{m} \neq 0$ and $b_{n} \neq 0$. Then

$$
T(r, R(f))=\max \{m, n\} T(r, f)+O(1)
$$

In particular, if f is a bilinear transformation of g, then we have $T(r, f) \sim T(r, g)$ as $r \rightarrow \infty$.

Lemma 2.7. [6] Let f_{1} and f_{2} be two distinct non-constant meromorphic functions satisfying

$$
\bar{N}\left(r, 0 ; f_{i}\right)+\bar{N}\left(r, \infty ; f_{i}\right)=S\left(r ; f_{1}, f_{2}\right)
$$

for $i=1$, 2. If $f_{1}^{s} f_{2}^{t}-1$ is not identically zero for all integers s and $t(|s|+|t|>0)$, then for any positive ε we have

$$
\bar{N}_{0}\left(r, 1 ; f_{1}, f_{2}\right) \leq \varepsilon T\left(r ; f_{1}, f_{2}\right)+S\left(r ; f_{1}, f_{2}\right)
$$

where $\bar{N}_{0}\left(r, 1 ; f_{1}, f_{2}\right)$ denotes the reduced counting function of f_{1} and f_{2} related to the common 1 -points and $T\left(r ; f_{1}, f_{2}\right)=T\left(r, f_{1}\right)+T\left(r, f_{2}\right), S\left(r ; f_{1}, f_{2}\right)=o\left\{T\left(r ; f_{1}, f_{2}\right)\right\}$ as $r \rightarrow \infty(r \notin E)$.

3. Proof of the theorems

Proof of Theorems 1.7 and 1.8. Suppose that f is not a bilinear transformation of g, otherwise, we obtain that f and g share $(0, \infty),(1, \infty),(\infty, \infty)$ and hence Theorem 1.7 and Theorem 1.8 follow from Theorem 1.1 and Theorem 1.2 respectively.

From the definitions of $N_{0}^{*}(r)$ and $N_{0}(r)$, we see that $N_{0}^{*}(r)-N_{0}(r)$ is the counting function of those zeros of $f-g$ which are the poles of f. So by (iii) of Lemma 2.5 we get

$$
\begin{equation*}
N_{0}^{*}(r)-N_{0}(r)=S(r) . \tag{3.1}
\end{equation*}
$$

Now we prove that

$$
\begin{equation*}
\bar{N}_{0}(r, 1 ; \alpha, h)=N_{0}(r)+S(r) . \tag{3.2}
\end{equation*}
$$

We consider the following cases.
Case 1. Let z_{0} be a common simple zero of f and g such that $\alpha\left(z_{0}\right)=h\left(z_{0}\right)=1$. Since $h-1=\frac{g-f}{f}$, it follows that z_{0} is a multiple zero of $f-g$. Hence by Lemma 2.2 and (iv) of Lemma 2.5 we see that the reduced counting function of the zeros of f and g for which $\alpha(z)=h(z)=1$ is $S(r)$.

Case 2. Let z_{1} be a common simple 1-point of f and g such that $\alpha\left(z_{1}\right)=h\left(z_{1}\right)=1$. Since $\alpha-1=\frac{f-g}{g-1}$, it follows that z_{1} is a multiple zero of $f-g$. Hence by Lemma 2.2 and (iv) of Lemma 2.5 we see that the reduced counting function of the 1-points of f and g for which $\alpha(z)=h(z)=1$ is $S(r)$.

Case 3. Let z_{2} be a common simple pole of f and g such that $\alpha\left(z_{2}\right)=h\left(z_{2}\right)=1$. Since $\alpha-1=\frac{f-g}{g-1}$ and $h-1=\frac{g-f}{f}$, it follows that z_{2} is not a pole of $f-g$. Hence, z_{2} is a zero of $\alpha+h-2=\frac{(f-g)(f-g+1)}{f(g-1)}$ with multiplicity ≥ 2 and so z_{2} is a zero of $\alpha^{\prime}+h^{\prime}$. Also

$$
\frac{\alpha^{\prime}}{\alpha}+\frac{h^{\prime}}{h}=\left(\alpha^{\prime}+h^{\prime}\right) \frac{\alpha+h-1}{\alpha h}-\frac{(\alpha-1) \alpha^{\prime}+(h-1) h^{\prime}}{\alpha h} .
$$

Since f is not a bilinear transformation of $g, \frac{\alpha^{\prime}}{\alpha}+\frac{h^{\prime}}{h} \not \equiv 0$. From the preceding identity, we see that z_{2} is a zero of $\frac{\alpha^{\prime}}{\alpha}+\frac{h^{\prime}}{h}$. Now by Lemma 2.4, we get

$$
\begin{aligned}
N\left(r, 0 ; \frac{\alpha^{\prime}}{\alpha}+\frac{h^{\prime}}{h}\right) & \leq T\left(r, \frac{\alpha^{\prime}}{\alpha}+\frac{h^{\prime}}{h}\right) \\
& =N\left(r, \frac{\alpha^{\prime}}{\alpha}\right)+N\left(r, \frac{h^{\prime}}{h}\right)+S(r) \\
& =\bar{N}(r, 0 ; \infty)+\bar{N}(r, \infty, \alpha)+\bar{N}(r, 0 ; h)+\bar{N}(r, \infty ; h)+S(r) \\
& =S(r)
\end{aligned}
$$

Therefore, by Lemma 2.2 we see that the reduced counting function of the poles of f and g for which $\alpha(z)=h(z)=1$ is $S(r)$.

Also by (iv) of Lemma 2.5 we have

$$
N_{0}^{*}(r)=\bar{N}_{0}^{*}(r)+S(r) \text { and } N_{0}(r)=N_{0}(r)+S(r) .
$$

Hence from above we get by (3.1)

$$
\bar{N}_{0}(r, 1 ; \alpha, h)=N_{0}^{*}(r)+S(r)=N_{0}(r)+S(r),
$$

which is (3.2). From the definitions of α and h and from Lemma 2.1 we get

$$
\begin{align*}
T(r, \alpha)+T(r, h) & \leq 2 T(r, f)+2 T(r, g)+O(1) \\
& \leq 8 T(r, f)+S(r) \tag{3.3}
\end{align*}
$$

Hence by (3.2) we obtain

$$
\limsup _{r \rightarrow \infty, r \notin E} \frac{\bar{N}_{0}(r, 1 ; \alpha, h)}{T(r ; \alpha, h)} \geq \frac{1}{8} \limsup _{r \rightarrow \infty, r \notin E} \frac{N_{0}(r)}{T(r, f)}>0
$$

If we put

$$
a=\limsup _{r \rightarrow \infty, r \notin E} \frac{\bar{N}_{0}(r, 1 ; \alpha, h)}{T(r ; \alpha, h)},
$$

we see that the following inequality does not hold for any $\varepsilon(0<\varepsilon<a)$

$$
\bar{N}_{0}(r, 1 ; \alpha, h) \leq \varepsilon T(r ; \alpha, h)+S(r ; \alpha, h)
$$

as $r \rightarrow \infty(r \notin E)$, where $T(r ; \alpha, h)=T(r, \alpha)+T(r, h)$.
Since $f=\frac{1-\alpha}{1-\alpha h}$ and $g=\frac{h(1-\alpha)}{1-\alpha h}$, we get

$$
T(r, f) \leq 2 T(r, \alpha)+2 T(r, h)+O(1)
$$

and

$$
T(r, g) \leq 2 T(r, \alpha)+2 T(r, h)+O(1)
$$

This together with (3.3) implies that $S(r)=S(r ; \alpha, h)$. Hence by Lemma 2.4 and Lemma 2.7, there exist two integers s and $t(|s|+|t|>0)$ such that

$$
\alpha^{t} h^{s} \equiv 1
$$

Hence

$$
\begin{equation*}
\left(\frac{f-1}{g-1}\right)^{t} \equiv\left(\frac{f}{g}\right)^{s} \tag{3.4}
\end{equation*}
$$

and so

$$
\begin{equation*}
\left(\frac{1-\frac{1}{f}}{1-\frac{1}{g}}\right)^{t} \equiv\left(\frac{f}{g}\right)^{s-t} \tag{3.5}
\end{equation*}
$$

If $s t=0$ or $s-t=0$, then from (3.4) and (3.5) we see that f is bilinear transformation of g, which is a contradiction. Therefore st and $s-t$ are not equal to zero. Consequently, (3.4) and (3.5) imply that f and g share $(0, \infty),(1, \infty),(\infty, \infty)$. Now,

Theorem 1.7 and Theorem 1.8 follow respectively from Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.9. We consider the following cases.
Case 1. Let

$$
\limsup _{r \rightarrow \infty, r \notin E} \frac{N_{0}(r)}{T(r, f)}>0
$$

If f is a bilinear transformation of g, then one of the relations of Theorem 1.7 holds. So by Lemma 2.6 we get $T(r, f) \sim T(r, g)$ as $r \rightarrow \infty$. If f is not a bilinear transformation of g, then one of the relations of Theorem 1.8 holds. Since s and $k+1$ are positive integers which are relatively prime, by Lemma 2.6 we get $T(r, f) \sim T(r, g)$ as $r \rightarrow \infty$.

Case 2. Let

$$
\limsup _{r \rightarrow \infty, r \notin E} \frac{N_{0}(r)}{T(r, f)}=0
$$

If f is a bilinear transformation of g, by Lemma 2.6 we have $T(r, f) \sim T(r, g)$ as $r \rightarrow \infty$.

If f is not a bilinear transformation of g by Lemma 2.5(i) and (ii) we get

$$
\begin{equation*}
T(r, g) \leq T(r, f)+N(r, \infty ; f \mid \leq 1)+S(r) \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
T(r, f) \leq T(r, g)+N(r, \infty ; g \mid \leq 1)+S(r) \tag{3.7}
\end{equation*}
$$

From (3.6) and (3.7), we obtain

$$
T(r, g) \leq 2 T(r, f)+S(r)
$$

and

$$
T(r, f) \leq 2 T(r, g)+S(r)
$$

If, in particular, f and g are entire from (3.6) and (3.7) we get $T(r, f) \sim T(r, g)$ as $r \rightarrow \infty(r \notin E)$. This proves the theorem.

Acknowledgement. The authors are thankful to the referees for their valuable comments and suggestions towards the improvement of the paper.

References

[1] G. G. Gundersen, Meromorphic functions that share three or four values, J. London Math. Soc. 20(2)(1979), 457-466.
[2] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.
[3] Qi Han, Meromorphic functions sharing three weighted values, J. Math. Anal. Appl. 311 (2005), 92-102.
[4] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J. 161(2001), 193-206.
[5] I. Lahiri, Characteristic functions of meromorphic functions sharing three values with finite weights, Complex Variable Theory Appl. 50(1)(2005), 69-78.
[6] P. Li and C. C. Yang, On the characteristic of meromorphic functions that share three values CM, J. Math. Anal. Appl. 220(1)(1998), 132-145.
[7] A. Z. Mohonko, On the Nevanlinna characteristic of some meromorphic functions, Funct. Anal. Appl. 14(1971), 83-87.
[8] H. X. Yi and Y. H. Li, On Osgood-Yang's conjecture and Mues' conjecture, Nagoya Math. J. 170(2003), 163-173.
[9] H. X. Yi, Meromorphic functions with weighted sharing of three values, Complex Var. Theory Appl. 50(12)(2005), 923-934.
[10] Q. C. Zhang, Meromorphic functions sharing three values, Indian J. Pure Appl. Math. 30(1999), 667-682.

