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1. Introduction, definitions and results

Let f and g be two non-constant meromorphic functions defined in the open
complex plane C. For a ∈ {∞} ∪ C we say that f and g share the value a CM
(counting multiplicities) if f and g have the same a-points with the same
multiplicities. If the multiplicities are not taken into account, we say that f and g
share the value a IM (ignoring multiplicities). For standard definitions and notations
of the value distribution theory, we refer to [2]. We denote by E a set of non-negative
real numbers of finite linear measure, not necessarily the same at each occurrence.
For any non-constant meromorphic function f , we denote by S(r, f) any quantity
satisfying S(r, f) = o{T (r, f)} as r −→ ∞(r 6∈ E). We use N0(r)(N0(r)) to denote
the counting function (reduced counting function) of those zeros of f − g which
are not the zeros of g(g − 1), 1

g and N∗
0 (r)(N

∗
0(r)) to denote the counting function

(reduced counting function) of those zeros of f−g which are not the zeros of g(g−1).

In 1999, Q. C. Zhang proved the following results:

Theorem 1.1. [10] Let f and g be two non-constant meromorphic functions sharing
0, 1, ∞ CM. If

lim sup
r→∞,r 6∈E

N0(r)
T (r, f)

>
1
2
,
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then f is a bilinear transformation of g and one of the following relations holds:

(i) f ≡ g,
(ii) f + g ≡ 1,
(iii) (f − 1)(g − 1) ≡ 1, and
(iv) fg ≡ 1.

Theorem 1.2. [10] Let f and g be two distinct non-constant meromorphic functions
sharing 0, 1,∞ CM. If

0 < lim sup
r→∞,r 6∈E

N0(r)
T (r, f)

≤ 1
2
,

then N0(r) = 1
kT (r, f) + s(r, f) and f is not any fractional linear transformation of

g and assume one of the following forms:

(i) f =
esγ − 1

e(k+1)γ − 1
and g =

e−sγ − 1
e−(k+1)γ − 1

, 1 ≤ s ≤ k;

(ii) f =
e(k+1)γ − 1

e(k+1−s)γ − 1
and g =

e−(k+1)γ − 1
e−(k+1−s)γ − 1

, 1 ≤ s ≤ k;

(iii) f =
esγ − 1

e−(k+1−s)γ − 1
and g =

e−sγ − 1
e(k+1−s)γ − 1

, 1 ≤ s ≤ k;

where s and k are positive integers such that s and k + 1 are relatively prime and γ
is a non-constant for entire function.

In 2003, H. X. Yi and Y. H. Li proved the following theorem.

Theorem 1.3. [8] Let f and g be two non-constant meromorphic functions sharing
0, 1, ∞ CM. Then

1
2

+ o(1) ≤ T (r, f)
T (r, g)

≤ 2 + o(1)

and

1
2

+ o(1) ≤ T (r, g)
T (r, f)

≤ 2 + o(1)

as r → ∞(r 6∈ E). If, in particular, f and g are entire, then T (r, f) ∼ T (r, g) as
r →∞(r 6∈ E).

In 2005, Qi Han [3] used the notion of weighted value sharing, introduced in [4],
to improve the above results. We now explain the notion of weighted sharing of
values which measures how close a shared value is being shared IM or being shared
CM.

Definition 1.1. [4] Let k be a non-negative integer or infinity. For a ∈ {∞} ∪ C,
we denote by Ek(a; f) the set of all a-points of f where an a-point of multiplicity m
is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we
say that f and g share the value a with weight k.
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The definition implies that if f and g share a value a with weight k then z0 is
a zero of f − a with multiplicity m(≤ k) if and only if it is a zero of g − a with
multiplicity m(≤ k) and z0 is a zero of f − a with multiplicity m(> k) if and only if
it is a zero of g − a with multiplicity n(> k) where m is not necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with weight k.
Clearly if f, g share (a, k) then f, g share (a, p) for all integers p, 0 ≤ p < k. Also
we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a,∞)
respectively.

We now state the results of Qi Han.

Theorem 1.4. [3] Let f and g be two non-constant meromorphic functions sharing
(0, 1), (1,∞) and (∞,∞). If

lim sup
r→∞,r 6∈E

N0(r)
T (r, f)

>
1
2
,

then the conclusion of Theorem 1.1 holds.

Theorem 1.5. [3] Let f and g be two distinct non-constant meromorphic functions
sharing (0, 1), (1,∞) and (∞,∞). If

0 < lim sup
r→∞,r 6∈E

N0(r)
T (r, f)

≤ 1
2
,

then the conclusion of Theorem 1.2 holds.

Theorem 1.6. [3] If f and g are two non-constant meromorphic functions sharing
(0, 1), (1,∞) and (∞,∞), then the conclusion of Theorem 1.3 holds.

In this paper, we prove the following results which improve the above theorems.

Theorem 1.7. Let f and g be two non-constant meromorphic functions sharing
(0, k1), (1, k2) and (∞, k3), where kj(j = 1, 2, 3) are positive integers satisfying

(1.1) k1k2k3 > k1 + k2 + k3 + 2

If

lim sup
r→∞,r 6∈E

N0(r)
T (r, f)

>
1
2
,

then the conclusion of Theorem 1.1 holds.

Theorem 1.8. Let f and g be two distinct non-constant meromorphic functions
sharing (0, k1), (1, k2) and (∞, k3), where kj(j = 1, 2, 3) are positive integers satis-
fying (1.1). If

0 < lim sup
r→∞,r 6∈E

N0(r)
T (r, f)

≤ 1
2
,

then the conclusion of Theorem 1.2 holds.

Theorem 1.9. Let f and g be two non-constant meromorphic functions sharing
(0, k1), (1, k2) and (∞, k3), where kj(j = 1, 2, 3) are positive integers satisfying (1.1).
Then the conclusion of Theorem 1.3 holds.

We now give some more necessary definitions.
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Definition 1.2. Let f and g share (a, 0) and z be an a-point of f and g with
multiplicities pf (z) and pg(z) respectively. We put

νf (z) =

{
1 if pf (z) > pg(z)
0 if pf (z) ≤ pg(z)

and

µf (z) =

{
1 if pf (z) < pg(z)
0 if pf (z) ≥ pg(z)

.

Let n(r, a; f > g) =
∑
|z|≤r nuf (z) and n(r, a; f < g) =

∑
|z|≤r µf(z). We now

denote by N(r, a; f > g) and N(r, a; f < g) the integrated counting functions obtained
from n(r, a; f > g) and n(r, a; f < g) respectively. Finally, we put

N∗(r, a; f, g) = N(r, a; f > g) + N(r, a; f < g)0

Definition 1.3. Let p be a positive integerand a ∈ {∞} ∪ C .By N(r, a; f | ≤ p), we
denote the counting function of those a-points of f(counted with multiplicities) whose
multiplicities are not greater than p. By N(r, a; f | ≤ p), we denote the corresponding
reduced counting function. In an analogous manner, we define N(r, a; f | ≥ p) and
N(r, a; f | ≥ p).

2. Lemmas

In this section, we present some necessary lemmas.

Lemma 2.1. [1] Let f and g be two non-constant meromorphic functions sharing
three values IM. Then

T (r, f) ≤ 3T (r, g) + S(r, f)
and

T (r, g) ≤ 3T (r, f) + S(r, g).

From Lemma 2.1, we see that S(r, f) = S(r, g), which we denote by S(r) in the
sequel.

Lemma 2.2. [9] Let f and g be two distinct non-constant meromorphic functions
sharing (0, k1), (1, k2) and (∞, k3), where kj(j = 1, 2, 3) are positive integers
satisfying (1.1). Then

N(r, a; f | ≥ 2) = S(r)
and

N(r, a; g| ≥ 2) = S(r)
for a = 0, 1,∞.

Lemma 2.3. [5] Let f and g share (0, 0), (1, 0) and (∞, 0) and f 6≡ g. If α =
f − 1
g − 1

and h =
g

f
, then

(i) N(r, 0;α) = N(r,∞; f < g) + N(r, 1; f > g),
(ii) N(r,∞;α) = N(r,∞; f > g) + N(r, 1; f < g),
(iii) N(r, 0;h) = N(r, 0; f < g) + N(r,∞; f > g),
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(iv) N(r,∞;h) = N(r, 0; f > g) + N(r,∞; f < g).

Lemma 2.4. Let f and g share (0, k1), (1, k2) and (∞, k3) and f 6≡ g, where kj(j =
1, 2, 3) are positive integers satisfying (1.1). If α and h are defined as in Lemma 2.3,
then N(r, a;α) = S(r) and N(r, a;h) = S(r) for a = 0,∞.

Proof. The lemma follows from Lemma 2.2 and Lemma 2.3 because

N∗(r, a; f, g) ≤ N(r, a; f | ≥ 2)

for a = 0, 1,∞.

Using Lemma 2.2 and Lemma 2.4, we can prove the following lemma in the line
of Lemma 2.5 [5].

Lemma 2.5. Let f and g share (0, k1), (1, k2) and (∞, k3) and f 6≡ g, where kj(j =
1, 2, 3) are positive integers satisfying (1.1). If f is not a bilinear transformation of
g, then each of the following equalities holds:

(i) T (r, f) + T (r, g) = N(r, 0; f | ≤ 1) + N(r, 1; f | ≤ 1) + N(r,∞; f | ≤ 1) +
N0(r) + S(r),

(ii) T (r, f) + T (r, g) = N(r, 0; g| ≤ 1) + N(r, 1; g| ≤ 1) + N(r,∞; g| ≤ 1) +
N0(r) + S(r),

(iii) N(r, 0; f − g|f = ∞) = S(r) and N(r, 0; f − g|g = ∞) = S(r),
(iv) N(r, 0; f − g| ≥ 2) = S(r),

where N(r, 0; f − g|f = ∞) denotes the counting function of those zeros of f − g
which are poles of f .

Lemma 2.6. [7] Let f be a non-constant meromorphic function and

R(f) =
∑m

i=0 aif
i∑n

j=0 bjf j

be a non-constant irreducible rational in f with constant coefficient {ai} and {bj}
satisfying am 6= 0 and bn 6= 0. Then

T (r, R(f)) = max{m,n}T (r, f) + O(1).

In particular, if f is a bilinear transformation of g, then we have T (r, f) ∼ T (r, g)
as r →∞.

Lemma 2.7. [6] Let f1 and f2 be two distinct non-constant meromorphic functions
satisfying

N(r, 0; fi) + N(r,∞; fi) = S(r; f1, f2)

for i = 1, 2. If fs
1f t

2 − 1 is not identically zero for all integers s and t(|s|+ |t| > 0),
then for any positive ε we have

N0(r, 1; f1, f2) ≤ εT (r; f1, f2) + S(r; f1, f2),

where N0(r, 1; f1, f2) denotes the reduced counting function of f1 and f2 related to the
common 1 -points and T (r; f1, f2) = T (r, f1)+T (r, f2), S(r; f1, f2) = o{T (r; f1, f2)}
as r →∞(r 6∈ E).
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3. Proof of the theorems

Proof of Theorems 1.7 and 1.8. Suppose that f is not a bilinear transformation of g,
otherwise, we obtain that f and g share (0,∞), (1,∞), (∞,∞) and hence Theorem
1.7 and Theorem 1.8 follow from Theorem 1.1 and Theorem 1.2 respectively.

From the definitions of N∗
0 (r) and N0(r), we see that N∗

0 (r)−N0(r) is the counting
function of those zeros of f − g which are the poles of f . So by (iii) of Lemma 2.5
we get

(3.1) N∗
0 (r)−N0(r) = S(r).

Now we prove that

(3.2) N0(r, 1;α, h) = N0(r) + S(r).

We consider the following cases.

Case 1. Let z0 be a common simple zero of f and g such that α(z0) = h(z0) = 1.

Since h− 1 =
g − f

f
, it follows that z0 is a multiple zero of f − g. Hence by Lemma

2.2 and (iv) of Lemma 2.5 we see that the reduced counting function of the zeros of
f and g for which α(z) = h(z) = 1 is S(r).

Case 2. Let z1 be a common simple 1-point of f and g such that α(z1) = h(z1) = 1.

Since α− 1 =
f − g

g − 1
, it follows that z1 is a multiple zero of f − g. Hence by Lemma

2.2 and (iv) of Lemma 2.5 we see that the reduced counting function of the 1-points
of f and g for which α(z) = h(z) = 1 is S(r).

Case 3. Let z2 be a common simple pole of f and g such that α(z2) = h(z2) = 1.

Since α − 1 =
f − g

g − 1
and h − 1 =

g − f

f
, it follows that z2 is not a pole of f − g.

Hence, z2 is a zero of α + h − 2 =
(f − g)(f − g + 1)

f(g − 1)
with multiplicity ≥ 2 and so

z2 is a zero of α′ + h′. Also
α′

α
+

h′

h
= (α′ + h′)

α + h− 1
αh

− (α− 1)α′ + (h− 1)h′

αh
.

Since f is not a bilinear transformation of g,
α′

α
+

h′

h
6≡ 0. From the preceding

identity, we see that z2 is a zero of
α′

α
+

h′

h
. Now by Lemma 2.4, we get

N

(
r, 0;

α′

α
+

h′

h

)
≤ T

(
r,

α′

α
+

h′

h

)
= N

(
r,

α′

α

)
+ N(r,

h′

h
) + S(r)

= N(r, 0;∞) + N(r,∞, α) + N(r, 0;h) + N(r,∞;h) + S(r)

= S(r)
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Therefore, by Lemma 2.2 we see that the reduced counting function of the poles
of f and g for which α(z) = h(z) = 1 is S(r).

Also by (iv) of Lemma 2.5 we have

N∗
0 (r) = N

∗
0(r) + S(r) and N0(r) = N0(r) + S(r).

Hence from above we get by (3.1)

N0(r, 1;α, h) = N∗
0 (r) + S(r) = N0(r) + S(r),

which is (3.2). From the definitions of α and h and from Lemma 2.1 we get

T (r, α) + T (r, h) ≤ 2T (r, f) + 2T (r, g) + O(1)
≤ 8T (r, f) + S(r).(3.3)

Hence by (3.2) we obtain

lim sup
r→∞,r 6∈E

N0(r, 1;α, h)
T (r;α, h)

≥ 1
8

lim sup
r→∞,r 6∈E

N0(r)
T (r, f)

> 0.

If we put

a = lim sup
r→∞,r 6∈E

N0(r, 1;α, h)
T (r;α, h)

,

we see that the following inequality does not hold for any ε(0 < ε < a)

N0(r, 1;α, h) ≤ εT (r;α, h) + S(r;α, h)

as r →∞(r 6∈ E), where T (r;α, h) = T (r, α) + T (r, h).

Since f =
1− α

1− αh
and g =

h(1− α)
1− αh

, we get

T (r, f) ≤ 2T (r, α) + 2T (r, h) + O(1)
and

T (r, g) ≤ 2T (r, α) + 2T (r, h) + O(1).

This together with (3.3) implies that S(r) = S(r;α, h). Hence by Lemma 2.4 and
Lemma 2.7, there exist two integers s and t(|s|+ |t| > 0) such that

αths ≡ 1.

Hence

(3.4)
(

f − 1
g − 1

)t

≡
(

f

g

)s

and so

(3.5)

(
1− 1

f

1− 1
g

)t

≡
(

f

g

)s−t

.

If st = 0 or s− t = 0, then from (3.4) and (3.5) we see that f is bilinear transfor-
mation of g, which is a contradiction. Therefore st and s− t are not equal to zero.
Consequently, (3.4) and (3.5) imply that f and g share (0,∞), (1,∞), (∞,∞). Now,
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Theorem 1.7 and Theorem 1.8 follow respectively from Theorem 1.1 and Theorem
1.2.
Proof of Theorem 1.9. We consider the following cases.

Case 1. Let

lim sup
r→∞,r 6∈E

N0(r)
T (r, f)

> 0.

If f is a bilinear transformation of g, then one of the relations of Theorem 1.7 holds.
So by Lemma 2.6 we get T (r, f) ∼ T (r, g) as r →∞. If f is not a bilinear transfor-
mation of g, then one of the relations of Theorem 1.8 holds. Since s and k + 1 are
positive integers which are relatively prime, by Lemma 2.6 we get T (r, f) ∼ T (r, g)
as r →∞.

Case 2. Let

lim sup
r→∞,r 6∈E

N0(r)
T (r, f)

= 0.

If f is a bilinear transformation of g, by Lemma 2.6 we have T (r, f) ∼ T (r, g) as
r →∞.

If f is not a bilinear transformation of g by Lemma 2.5(i) and (ii) we get

(3.6) T (r, g) ≤ T (r, f) + N(r,∞; f | ≤ 1) + S(r)

and

(3.7) T (r, f) ≤ T (r, g) + N(r,∞; g| ≤ 1) + S(r).

From (3.6) and (3.7), we obtain

T (r, g) ≤ 2T (r, f) + S(r)

and
T (r, f) ≤ 2T (r, g) + S(r).

If, in particular, f and g are entire from (3.6) and (3.7) we get T (r, f) ∼ T (r, g) as
r →∞(r 6∈ E). This proves the theorem.
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