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Abstract. Let G be a finite abelian group of order n. The barycentric Ramsey
number BR(H, G) is the minimum positive integer r such that any coloring of

the edges of the complete graph Kr by elements of G contains a subgraph H

whose assigned edge color constitutes a barycentric sequence, i.e. there exists
one edge whose color is the “average” of the colors of its edges. These BR(H, G)

are determined for some graphs, in particular for graphs with at most four

edges without isolated vertices (i.e. small graphs) and G = Zn, 2 ≤ n ≤ 5.
Elementary combinatorial arguments are used for these computations.
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1. Introduction

Let G be an abelian group of order n. This research focuses on barycentric sequences,
which are introduced by Ordaz in [13] and are a natural extension of zero-sum
sequences. In informal words, a sequence in G is barycentric if it contains one
element which is the “average” of its terms. Erdős, Ginzburg and Ziv in [15] show
that any sequence of length 2n− 1 contains an n-subsequence with zero-sum. This
theorem constitutes the beginning of the combinatorics area known as the zero-sum
problems. Gao and Geroldinger [17] give a nice and structured survey on zero-sum
problems as an update of the first survey on zero-sum theory by Caro [8], appeared
in 1996. Zhi Wei Sun in [19] establishes a unified theory among three apparently
unrelated areas in combinatorial number theory, zero-sum problems, subset sums
and covers of the integers.

Let H = (V (H), E(H)) be a graph with e(H) edges. The Ramsey number R(H,n)
is the smallest positive integer t such that in any coloring of the edges of Kt with n
colors there exists a monochromatic copy of H.
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The barycentric Ramsey number, introduced in [14], of the pair (H,G), denoted by
BR(H,G), is the minimum positive integer r such that any coloring f : E(Kr) → G
of the edges of Kr by elements of G, contains a subgraph H, with an edge e0 such
that

∑
e∈E(H) f(e) = e(H)f(e0). In this case H is called a barycentric graph. It is

clear that BR(H,G) ≤ R(H, |G|), then BR(H,G) always exists.
Recall that for any graph H whose number of edges e(H) satisfies e(H) = 0

(mod n), the zero-sum Ramsey number R(H,G) is defined as the minimal positive
integer s such that any coloring f : E(Ks) → G of the edges of Ks by elements of
G contains a subgraph H with

∑
e∈E(H) f(e) = 0, where 0 is the zero element of

G. The necessity of the condition e(H) = 0 (mod n) for the existence of R(H,G) is
clear; it comes from the monochromatic coloring of the edges of H. The zero-sum
Ramsey number is introduced by Bialostocki and Dierker in [2] when e(H) = n
and the concept is extended to e(H) = 0 (mod n) by Caro in [6]. It is clear that
BR(H,G) ≥ |V (H)| and BR(H,G) = R(H,G) when e(H) = 0 (mod n). Notice
that when e(H) = 0 (mod n) then R(H,G) ≤ R(H,n), moreover when e(H) = n
then R(H, 2) ≤ R(H, Zn). If a graph H is not barycentric with exactly two colors,
then R(H, 2) ≤ BR(H,G).

In [8], Caro gives Table 1 as a survey of the R(H, Zn) and R(H, 2) known up to
now for small graphs with n = 2, 3, or 4, based on results given in [1, 2, 4, 5, 6, 7].
The notation for Table 1 is: K1,k are stars with k edges, MK1,k are modified k-stars,
defined as the tree with k+1 vertices, k edges and degree sequences k−1, 2, 1, . . . , 1,
Pk are paths with k vertices and k− 1 edges, Ck are circuits with k vertices, mK2 is
an m matching and K3 + e is a graph with vertices a, b, c, d and edges ab, bc, ca, bd.
The graphs union is disjoint.

Table 1. Ramsey number and zero-sum Ramsey number for small graphs

H R(H, 2) R(H, Z2) R(H, Z3) R(H, Z4)
P3 3 3

2K2 5 5
C3 6 11
P4 5 5

K1,3 6 6
P3 ∪K2 6 6

3K2 8 8
C4 6 4 6

K1,4 7 5 7
P5 6 5 6

C3 ∪K2 7 6 8
2P3 7 6 7

P4 ∪K2 8 6 8
K1,3 ∪K2 7 7 8
P3 ∪ 2K2 9 7 9

4K2 11 9 11
MK1,4 6 5 6
K3 + e 7 4 7
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Table 2. Barycentric Ramsey number for stars

k G BR(K1,k, G)
2 odd order n + 2

even order n + 1
k Z2 k + 1

k = 0(mod)3 Z3 k + 3
k 6= 0(mod)3 k + 2

3 Zp, p prime ≥ 5 ≤ 2dp
3e+ 2

Z5 6
Z7 8
Z11 10
Z13 10

k Zp ≤ p + k
4 ≤ k ≤ p− 1 Zp ≤ p + k − 1

p− 1 Zp, p prime ≥ 5 2p− 2
4 Z7 9

tp + 4 ≤ k ≤ tp + p− 1 Zp, p prime ≥ 5 ≤ p + k − 1
9 Z5 13

tp + 1, t > 0 Zp (t + 1)p
5t + 2 Z5 5(t + 1)

In Table 1, we have e(H) = 0(mod n) then BR(H, Zn) = R(H, Zn). The objec-
tive of our paper is to complete Table 1 with the values of BR(H, Zn) for e(H) 6= 0
(mod n).

As usually in case of new subjects in combinatorics, a good idea is to start re-
search with small problems in order to discover strong arguments or general proof
techniques to approach more general cases. According to this general idea, in this
paper, elementary combinatorial arguments are used to compute the barycentric
Ramsey numbers for small graphs.

The barycentric Ramsey number for stars BR(K1,k, Zp) is studied and some val-
ues or bounds are given in [14]. Table 2 summarizes the values of BR(K1,k, Zp) for
some p prime known at present [14]. In this table n denotes the order of G.

The paper is structured as follows, besides this introduction and the conclusion:
Section 2 contains the tools necessary to develop Section 3, where the main result is
given.

2. Tools

In this section we summarize some results used to establish the barycentric Ramsey
numbers for some graphs, in particular those with at most four edges.

The following definitions are used:

Definition 2.1. [13] Let A be a finite set with |A| ≥ 2 and G a finite abelian group.
A sequence f : A → G is barycentric if there exists a ∈ A such that

∑
A f = |A|f(a).

The element f(a) is called a barycenter.

Moreover in [14] the following definition is introduced:
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Definition 2.2. [14] Let G be an abelian group of order n ≥ 2. The k-barycentric
Davenport constant BD(k,G) is the minimal positive integer t such that every t-
sequence in G contains a k-barycentric subsequence.

In [18] Hamidoune shows that BD(k,G) ≤ n + k − 1.
We have the inequality BR(K1,k, G) ≤ BD(k,G)+1: for any vertex in KBD(k,G)+1

there is a barycentric star centered on this vertex. The following remark and theorem
allow us to establish BR(H, Z2).

Remark 2.1. Let H be a graph and e(H) the number of its edges. Then

BR(H, Z2) =
{

|V (H)| if e(H) is odd
R(H, Z2) if e(H) is even

Theorem 2.1. [4] Let H be a graph on h vertices and an even number of edges.
Then

R(H, Z2) =


h + 2 if H = Kh, h = 0, 1 (mod 4)
h + 1 if H = Kp ∪Kq,

(
p
2

)
+

(
q
2

)
= 0 (mod 2)

h + 1 if all the degrees in H are odd
h otherwise.

We have the following results for stars and matching.

Theorem 2.2. [2]

(1) R(K1,m, Zm) = R(K1,m, 2) =
{

2m if m is odd
2m− 1 ifm is even

(2) R(mK2, Zm) = R(mK2, 2) = 3m− 1.

Theorem 2.3. [6] Let K1,m be the stars on m edges with m = 0 (mod n). Then

BR(K1,m, Zn) = R(K1,m, Zn) =
{

m + n− 1 if m = n = 0 (mod 2)
m + n otherwise

Theorem 2.4. [3] Let mK2 be the matching on m edges with m = 0 (mod n). Then
BR(mK2, Zn) = R(mK2, Zn) = 2m + n− 1.

We use the following lemmas:

Lemma 2.1. [2] If the edges of Kn, where n ≥ 5 are colored by at least three colors
then there exists a path on three edges each colored differently.

Let G be a graph with four edges. If f is a Z4-coloring of E(Kn), where n ≥ 5,
then there exists a Z4- coloring of E(Kn), say f1, such that

∑
e∈E(H) f(e) = 0 if and

only if
∑

e∈E(H) f1(e) = 0 for all copies H of G in Kn. Moreover there exists a path
on three edges in Kn v1v2v3v4 such that: f1(v1v2) = 0, f1(v2v3) = 1, f1(v3v4) = 2
or f1(v1v2) = 0, f1(v2v3) = 1, f1(v3v4) = 3.

Lemma 2.2. [9] If the edges of K5 are colored with any number of colors hence K5

contains either a path of length 3 using only one color or a path of length 3 using
three different colors.

Remark 2.2. Reminding the definition of Ramsey numbers and since R(C4, 2) = 6
then, if the edges of Kn, n ≥ 6 are colored with exactly two colors then there exists
a monochromatic C4 .
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Lemma 2.3. [12] If the edges of Kn, n ≥ 5 are colored with at least three colors and
contain a C4 using two colors, one of them repeated three times, then there exists a
C4 using exactly three different colors.

The following remark is useful to establish the barycentric Ramsey number for
small graphs.

Remark 2.3. [12] Let H be a graph with 2 ≤ e(H) ≤ 4 edges colored by elements of
Zn (2 ≤ n ≤ 5). Table 3 shows all the different coloring for E(H) to be barycentric.
For example, in case e(H) = 3 and the edges colored by elements from Z4, H is
barycentric when the edges are colored with three different colors a, b, c, or the edges
are colored by a, a, a+2 for any color a, or the edges are colored monochromatically.

Table 3. Barycentric graph colorings

e(H) Z2 Z3 Z4 Z5

2 monochromatic monochromatic monochromatic monochromatic
3 any coloring a, b, c a, b, c a, b, c

monochromatic a, a, a + 2 monochromatic
monochromatic

4 a, a, b, b a, a, b, c a, a, a + 2, a + 2 a, a, b, c
monochromatic a, a, a, b a, a, a + 1, a + 3 monochromatic

monochromatic monochromatic

Definition 2.3. [16] Let r(n) be the smallest number such that any coloration of
the edges of Kr(n) with n colors induces some K3 with three colors or with only one
color.

It is shown in [11] that r(3) = 11.

Lemma 2.4. [16] r(n + 1) ≤ 2 + n(r(n)− 1). Moreover r(4) ≤ 32 and r(5) ≤ 126.

3. Main results

This section is dedicated to establish BR(H, Zn), 2 ≤ n ≤ 5, for the 18 graphs given
in Table 1. Some of them are obtained directly from R(H, Zn), due to the fact that
BR(H, Zn) = R(H, Zn) when e(H) = 0 (mod n) or from BR(H, Z2) using Remark
2.1 and Theorem 2.1.

In what follows Table 4 presents the barycentric Ramsey number for small graphs.
The upper bound values were computed manually by cases. Each case with its
particular degree of difficulty was treated using the Lemmas and Remarks given in
Section 2. For the lower bounds we use ad hoc decomposition of a complete graph
to color its edges in order to forbid a particular barycentric graph.

3.1. Barycentric Ramsey numbers for matchings

Theorem 3.1. Let G be an abelian group of order n ≥ 2. Then BR(2K2, G) = n+3.
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Table 4. Barycentric Ramsey number for small graphs

H BR(H, Z2) BR(H, Z3) BR(H, Z4) BR(H, Z5)
P3 3 5 5 7

2K2 5 6 7 8
C3 3 11 6 Th.3.10
P4 4 5 5 5

K1,3 4 6 6 6
P3 ∪K2 5 6 6 6

3K2 6 8 8 8
C4 4 5 6 7

K1,4 5 6 7 8
P5 6 5 6 6

C3 ∪K2 6 5 8 7
2P3 6 6 7 7

P4 ∪K2 6 6 8 8
K1,3 ∪K2 7 6 8 7
P3 ∪ 2K2 7 7 9 9

4K2 9 8 11 11
MK1,4 5 5 6 6
K3 + e 4 4 7 7

Proof. The complete graph Kn+2 can be decomposed into the edge-disjoint union of
n−1 stars and a complete graph with three vertices. The idea behind this decompo-
sition is to monochromatically color the stars and the complete graph of order three.
Notice that the only possible coloring f : E(Kn+2) → G with a monochromatic free
2K2 is when f induces a monochromatic K3.

For the lower bound, we color each star K1,i in Kn+2 by ci−1 for 3 ≤ i ≤ n + 1
and the edges of K3 by c1.

For the upper bound, we use induction on the order n of G. When n = 2, Theorem
2.2 shows that BR(2K2, Z2) = 5. Assume that BR(2K2, G) = n + 3 for |G| = n.
Let G = {c1, c2, · · · , cn+1} be an abelian group of order n + 1. If for some coloring
from G of E(Kn+4), we have that Kn+3 ⊆ Kn+4 is monochromatic free 2K2, then
E(Kn+3) must be colored with n + 1 colors, as indicated above. Let vi (1 ≤ i ≤ n)
be the center of the stars and vn+1, vn+2, vn+3 the vertices of K3. The edges of the
stars and K3 are colored by ci (1 ≤ i ≤ n+1), respectively. Notice that three of the
n+3 incident edges to vn+4 ∈ V (Kn+4) \V (Kn+3), are also incident to K3. Then a
monochromatic 2K2 can be constructed by any coloring from ci for 1 ≤ i ≤ n+1.

Theorem 3.2. BR(3K2, Z5) = 8.

Proof. For the upper bound, we have the following cases:

Case 1. E(K8) is colored by at least three colors. By Lemma 2.1 it contains a P4

with three different colors, say a, b, c. Consider the two non-adjacent edges in
P4 with color a and b respectively. Let K4 be the complete graph built with
the vertices in K8 outside P4. If some edge in K4 is colored with x 6∈ {a, b}
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then we have a 3K2 with three different colors. If E(K4) is colored by only
a and b, then we have the following cases:
(i) In K4 there exists 2K2 with color a and b, then with the edge in P4

colored by c, we have a barycentric 3K2.
(ii) Each two independent edges are a-monochromatic or b-monochromatic.

Then with the edge in P4 with color a or b, we have a barycentric 3K2.

Case 2. E(K8) is colored by exactly two colors. Since R(3K2, 2) = 8 hence there
exists a monochromatic 3K2, therefore barycentric.

The lower bound follows from 8 = R(3K2, 2) ≤ BR(3K2, Z5).

Corollary 3.1. BR(3K2, Z4) = 8.

Proof. Since BR(3K2, Z5) = 8 then for any f : E(K8) → Z4 there exists a monochro-
matic or with three different colors 3K2 ⊆ K8. Then by Remark 2.3, 3K2 is barycen-
tric, so we have the upper bound.

In order to give the lower bound, we color the edges of some K5 ⊆ K7 by a and
the remaining edges from K7 by a + 1.

Theorem 3.3. BR(4K2, Z3) = 8.

Proof. Since BR(3K2, Z3) = R(3K2, Z3) = 8 then for any f : E(K8) → Z3 there
exists a zero-sum 3K2 in K8. Moreover this 3K2 is contained in a barycentric perfect
matching of K8. So that we have the upper bound.

The lower bound follows trivially.

Theorem 3.4. BR(4K2, Z5) = 11.

Proof. For the upper bound we have two cases:

Case 1. E(K11) is colored by a and b. Since R(4K2, 2) = 11, hence there exists a
monochromatic and hence barycentric 4K2.

Case 2. E(K11) is colored by at least three colors. Since BR(3K2, Z5) = 8, then
for any f : E(K8) → Z5, there exists in K8 ⊆ K11 a-monochromatic 3K2

or a 3K2 with three different colors, say a, b, c. In both cases we consider
the complete graph K5 built with the five vertices in K11 outside 3K2.
Set 3K2 = v1v2, v3v4, v5v6 and V (K5) = {v7, v8, v9, v10, v11}. We have the
following cases:
(i) 3K2 is a-monochromatic then E(K5) must be x-monochromatic with

x 6= a in order to avoid a barycentric 4K2. Assuming E(K5) is b-
monochromatic. It is clear that the edges of E(K6) must be colored by
a, or b, else we have the theorem. Let K6,5 be the bipartite complete
graph from the vertices of K6 to the vertices of K5. The edges of K6,5

must be colored by a, or b, else we are done. Therefore the edges of
K11 are colored by two colors, hence by Case 1 we have the theorem.

(ii) When 3K2 has colors a, b, c then E(K5) must be colored by d and e in
order to avoid a barycentric 4K2. Hence K5 contains a monochromatic
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P4. Therefore a monochromatic 2K2 is derived. So that for any two
edges from 3K2 we have a barycentric 4K2.

The lower bound follows from 11 = R(4K2, 2) ≤ BR(4K2, Z5).

3.2. Barycentric Ramsey number for paths and circuits

Theorem 3.5. BR(C4, Z3) = BR(P5, Z3) = 5.

Proof. Let v1, v2, v3, v4, v5 be the vertices of K5. By Lemma 2.2 for any f : E(K5) →
Z3, there exists a path P4 = v1v2v3v4 colored with three different colors or monochro-
matic. Hence the circuit C4 = v1v2v3v4v1 and the path P5 = v1v2v3v4v5 with f(v4v1)
and f(v4v5) in Z3 respectively are barycentric.

For the lower bound 5 ≤ BR(C4, Z3), we consider the complete graph K4 of
vertices v1, v2, v3, v4 and edges colored as follows: f(v1v2) = f(v4v3) = a, f(v2v3) =
f(v1v4) = b, f(v2v4) = f(v1v3) = c. The lower bound 5 ≤ BR(P5, Z3) is obvious.

Theorem 3.6. BR(P4, Z4) = 5.

Proof. The upper bound follows directly from Lemma 2.2. For the lower bound we
consider the complete graph K4 of vertices v1, v2, v3, v4 and edges colored as follows:
f(v1v2) = f(v4v3) = a, f(v2v3) = f(v1v4) = a + 1, f(v2v4) = f(v1v3) = a + 2.

Theorem 3.7. BR(P4, Z5) = 5.

Proof. The upper bound follows directly from Lemma 2.2. For the lower bound, set
f : E(K4) → Z5 then we consider the circuit v1v2v3v4v1 in K4 and edges colored
in the following way: f(v1v2) = f(v4v3) = a and f(v1v4) = f(v2v3) = b, moreover
f(v4v2) = f(v1v3) = c.

Theorem 3.8. BR(P5, Z5) = 6.

Proof. Set V (K6) = {v1, v2, v3, v4, v5, v6} and V (K5) = {v1, v2, v3, v4, v5}. By Lemma
2.2, there exists for every f : E(K6) → Z5 a path P4 ⊂ K5 monochromatic or colored
with three different colors. We have the following cases:

Case 1. Set P4 = v1v2v3v4 colored with a, b, c. If f(v1v6) ∈ {a, b, c} or f(v4v5) ∈
{a, b, c} we have the theorem. Else, if f(v6v5) ∈ {a, b, c} we are done. If
f(v6v5) = f(v5v4) or f(v1v6) = f(v6v5) we are done. Set f(v6v5) ∈ {d, e}, if
f(v1v6) = f(v5v4) and different from f(v6v5) then the path P4 = v2v1v6v5v4

is barycentric.

Case 2. The path P4 = v1v2v3v4 is a-monochromatic. If f(v1v6) = a or f(v4v5) = a
we have the theorem, else we have the following subcases:
(i) If v1v6v5v4 are colored with three different colors, we have Case 1.
(ii) If v1v6v5v4 are colored with two different colors. If f(v6v5) 6= a then
f(v6v5) 6= f(v5v4) or f(v6v5) 6= f(v6v1) hence we have the theorem. Set
f(v6v5) = a then we have f(v1v6) = f(v4v5). Set f(v1v6) = x ∈ {b, c, d, e},
say f(v1v6) = b, then the colors on the remaining edges of E(K6) must be a
or b else we have Case 1. Moreover, since R(P5, 2) = 6 we have the theorem.
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(iii) If v1v6v5v4 is b-monochromatic, then the remaining edge colors must be
a, or b, else we have Case 1. Therefore E(K6) is colored with two colors,
then since R(P5, 2) = 6 we are done.

For the lower bound we consider that the circuit v1v2v3v4v5v1 has as edge colors
f(v1v2) = f(v2v3) = f(v3v4) = a and f(v4v5) = f(v5v1) = b. Moreover the color
edges f(v3v5) = f(v3v1) = b, f(v4v1) = f(v4v2) = a and f(v5v2) = a.

Theorem 3.9. BR(C4, Z5) = 7.

Proof. Since BR(K1,2, Z5) = 7 then for any f : E(K7) → Z5 there exists a monochro-
matic star K1,2, say v1v3v2 colored by a. We have the following cases:

Case 1. E(K7) is colored by two colors. Then by Remark 2.2 there exists a monochro-
matic C4.

Case 2. E(K7) is colored with at least three colors. We consider the star v1v4v2.
Then we have the following cases according to the different colors assigned
to v1v4v2.
(i) v1v4v2 has at least one edge colored by a. Hence we have a C4 with

two colors where a is repeated 3 times, then by Lemma 2.3 there exists
a C4 with three different colors, so we are done. In case v1v4v2 is
a-monochromatic, we have also a monochromatic C4.

(ii) v1v4v2 is colored by two different colors, both of them different from a.
Then we have a C4 with three different colors, hence we are done.

(iii) Consider the bipartite graph K2,5 with bipartition {v1v2} and {v3, v4, v5,
v6, v7}. In order to avoid Cases 1 and 2, we color monochromatically
the five stars K1,2 centered in v3, v4, v5, v6, v7 respectively. It is clear
that each two stars have different colors, else we have the theorem.
Without loss of generality set f(v1v2) = a, once again without loss of
generality set f(v6v7) = b in order to avoid a barycentric C4. There-
fore if we color v5v6 by any coloring from Z5 we have a C4 with three
different colors or a C4 with two colors where one of them is repeated
three times. Then by Lemma 2.3 obtaining a subgraph C4 with three
different colors. Hence we are done.

For the lower bound, we consider the complete graph K6 of vertices v1, v2, v3, v4, v5,
v6 and edges colored in the following way: f(v1v2) = f(v2v3) = f(v3v1) = a,
f(v1v6) = f(v2v6) = f(v3v6) = f(v4, v5) = b, f(v1v5) = f(v2v5) = f(v3v5) =
f(v4v6) = c, f(v1v4) = f(v2v4) = f(v3v4) = f(v5v6) = d.

Theorem 3.10. 51 ≤ BR(C3, Z5) ≤ 126.

Proof. The complete graph with vertices in Z2
5 with coloration defined in the follow-

ing manner does not contain a monochromatic or colored with three different colors
C3: The edge between (x, y) and (z, t) is colored by

0 if z − x = ±2,
1 if z − x = ±1,
2 if z = x and y − t = ±2,
3 if z = x and y − t = ±1.
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The graph made by two copies of the former graph connected by a complete
bipartite graph colored by a fifth color, has 50 vertices and is barycentric C3 free.
Moreover by Lemma 2.4 we have BR(C3, Z5) ≤ 126.

Problem 3.1. Determine the exact value of BR(C3, Z5) or improve the bounds
given in Theorem 3.10.

Theorem 3.11. BR(C3, Z4) = 6.

Proof. Since BR(C4, Z4) = R(C4, Z4) = 6, then for any f : E(K6) → Z4, there exists
a barycentric C4 ⊆ K6 with edge color sequence: a, a, a+2, a+2 or a, a, a+1, a+3,
or a, a, a, a with a ∈ Z4. To obtain the upper bound we consider the following cases:

Case 1. C4 is colored by a, a, a + 2, a + 2. Then the complete graph K3 induced by
the consecutive edges colored by a and a + 2, constitutes a barycentric C3.

Case 2. C4 is colored by a, a, a + 1, a + 3. Then we have the following subcases:
(i) The edges colored by a+1 and a+3 are consecutive, then the complete

graph induced by theses edges defines a barycentric C3 with edge color
sequence x, a + 1, a + 3 with x ∈ Z4.

(ii) The edges colored by a + 1 and a + 3 are not consecutive. Set C4 =
v1v2v3v4v1 and v2v3 colored by a + 1, v1v4 colored by a + 3, v1v2, and
v3v4 colored by a. If edges v1v3 and v2v4 are not simultaneously colored
by a, it is possible to derive a barycentric K3 from C4. Otherwise, set
v5 ∈ V (K6 \ C4). We have the following subcases:

(a) v1v5 is colored by a. If v2v5 is colored by Z4 \ {a+1, a+3} we obtain
a barycentric C3; else, color v3v5 with any color from Z4. We are done.
(b) v1v5 is colored by a + 2. In this case v2v5 with any color from Z4

defines a barycentric C3.
(c) v1v5 is colored by a + 1. In this case v4v5 with any color from Z4

yields a barycentric C3.
(d) v1v5 is colored by a + 3. If v2v5 is colored from Z4 \ {a, a + 3} then
we can derive a barycentric C3. If f(v2v5) = a + 3 then any coloring
of edge v3v5 as well as f(v2v5) = a and any coloring of edge v4v5 force a
barycentric C3.

Case 3. C4 is a-monochromatic. Let C4 = v1v2v3v4v1. We can derive a barycentric
K3 from C4, using the color edges of its diagonal. The complex case is when
v1v3 and v2v4 are colored by a + 1 or a + 3. The study of all the cases is
similar. For example, let us consider the case when v1v3 is colored by a + 1.
Let v5 6∈ C4. Then we consider the color of v1v5 and v3v5 from Z4. We have
the following subcases:
(i) f(v1v5) 6= f(v3v5). In case that f(v1v5) and f(v3v5) are assigned values

different from a + 1 then v1v5v3v1 is a barycentric C3. Assuming that
f(v1v5) = a + 1. If f(v3v5) = a + 3 then C3 = v1v5v3v1 is barycentric.
Set f(v3v5) = a then for every f(v2v5) ∈ Z4 \ {a + 1} we obtain a
barycentric C3. If f(v2v5) = a + 1 then for every f(v4v5) ∈ Z4 we have
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a barycentric C3. Set f(v3v5) = a + 2 then for every f(v2v5) ∈ Z4 we
are done.

(ii) f(v1v5) = f(v3v5). Then we have the following subcases:
(a) Set f(v1v5) = f(v3v5) = a then if f(v4v5) ∈ {a, a + 2} we obtain
a barycentric C3. If f(v4v5) = a + 3 then the colors of the edges of
C4 = v5v4v1v3v5 correspond to Case 2. Assuming now f(v4v5) = a+1,
if f(v4, v2) = a + 3 then the colors of the edges of C4 = v1v2v4v5v1

constitute Case 2. In case f(v4, v2) = a + 1, each color assigned to
f(v2, v5) allows to derive a barycentric C3.
(b) Set f(v1v5) = f(v3v5) = a + 3. Then the circuit C3 = v1v5v3v1 is
barycentric.
(c) If f(v1v5) = f(v3v5) = a + 1 then v5v1v3v5 is a barycentric C3.
(d) If f(v1v5) = f(v3v5) = a + 2 then the edges of C4 = v5v1v4v3v5

constitute Case 1.

The lower bound is derived coloring one of the two edge-disjoint hamiltonian
cycles of K5 by a and the other one by b.

Theorem 3.12. BR(2P3, Z3) = 6.

Proof. Since BR(P3 ∪K2, Z3) = R(P3 ∪K2, Z3) = 6, then for any f : E(K6) → Z3

there exists some P3 ∪ K2 with zero-sum in K6. So that any edge in K6 vertex-
disjoint with P3 and incident to K2 forms with the zero-sum P3 ∪K2 a barycentric
2P3. So that we have the upper bound.

The lower bound follows trivially.

Theorem 3.13. BR(2P3, Z5) = 7.

Proof. Since BR(C4, Z5) = 7 then for any f : E(K7) → Z5, there exists in K7 a
barycentric C4. Set K4 the complete graph induced by C4 and K3 the complete
graph with vertices different from C4. Set K4,3 the bipartite complete graph from
the vertices of K4 to the vertices of K3. We have three cases:

Case 1. C4 has as edge color sequence aabc. Then for any coloring of the edges of
K3, a barycentric 2P3 is derived.

Case 2. C4 has as edge color sequence abac. We have the following subcases:
(i) E(K3) is monochromatic or colored by exactly two colors. If there

exists an x-monochromatic P3 ⊆ K3 with x 6= a, we have trivially the
theorem. Set now, x = a. If in K4 there exists an a-monochromatic P3

we are done. Else, there exists in K4 a P3 colored with two different
colors from a. Hence we have the theorem.

(ii) E(K3) is colored with three different colors. In this case one of them
must be equal to some edge color from E(K4), say a, b, or c. In every
case it easy to see we have a barycentric 2P3.

Case 3. C4 is a-monochromatic. We have the following subcases:
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(i) There exists in K3 a P3, colored with two different colors from a or
a-monochromatic, hence we have the theorem.

(ii) K3 is x-monochromatic with x 6= a. Assuming K3 is b-monochromatic.
If some edge color of E(K4) is different from a and b we have the theorem.
Else, if K4,3 is not b-monochromatic we can derive a barycentric 2P3. Oth-
erwise E(K7) is colored with two colors and since R(2P3, 2) = 7 we have the
theorem.

(iii) E(K3) has as edge color sequence axx with x ∈ {b, c, d, e}, assuming
x = b. If some edge color of E(K4) is different from a and b we have the
theorem. Else, if K4,3 is not b-monochromatic we can derive a barycentric
2P3. Otherwise E(K7) is colored with two colors and since R(2P3, 2) = 7
we have the theorem.

Since 7 = R(2P3, 2) ≤ BR(2P3, Z5), then we have the lower bound.

3.3. Barycentric Ramsey number for path-matching

Theorem 3.14. BR(P3 ∪K2, Z5) = 6.

Proof. If E(K6) is colored by at least two colors, then it contains a P3 with two
colors, say a and b. Let K3 be built by the vertices in K6 different from P3. Then
either an edge with color x 6∈ {a, b} appears in E(K3) hence P3 with this edge defines
a barycentric P3 ∪K2 or one of a, b, say a, appear at least twice in E(K3), and then
the desired P3∪K2 is a-monochromatic, made from two edges of the E(K3) and the
edge colored a of the first P3. Hence we have the upper bound.

The lower bound follows from 6 = R(P3 ∪K2, 2) ≤ BR(P3 ∪K2, Z5).

Corollary 3.2. BR(C3 ∪K2, Z5) = 7.

Proof. Since BR(P3 ∪ K2, Z5) = 6 there exists in K7, for any f : E(K7) → Z5, a
barycentric P3∪K2 i.e. monochromatic or with three different colors. Say P3 : v0v1v2

and K2 : v3v4. Set the complete graphs K3 ⊆ K7 induced by v0v1v2 and K4 ⊆ K7

built with vertices v3, v4, v5, v6. We have two cases:

Case 1. E(P3 ∪K2) is colored as follows: v0v1 by a, v1v2 by b and v3v4 by c. If v0v2

is colored by a, b, or c we are done. Assuming v0v2 is colored by d. Then the
edges of K4 must be colored by c or e, else we are done. If some K1

3 ⊆ K4

is no monochromatic we are done, else K4 is c-monochromatic. Now, we
study the following case: set K1,4 = v1v3, v1v4, v1v5, v1v6 if some edge, say
v1vi is colored from {a, b, c, e} then for each K1

3 : v1vivjv1 with vj ∈ V (K4),
j 6= i there exists an appropriate K2 such that K1

3 ∪ K2 is barycentric. In
case that star K1,4 centered in v1 and with end vertices in {v3, v4, v5, v6} is
d-monochromatic, then for any color of edge v2v6, we obtain a barycentric
K3 ∪K2.

Case 2. E(P3 ∪ K2) is a-monochromatically colored as follows: set v0v1, v1v2 and
v3v4 colored by a. If v0v2 is colored by a we are done. Assume now v0v2

colored by some x ∈ {b, c, d, e} say b. If some edge in K4 is colored by
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x ∈ {c, d, e}, we are done. Then the edges of K4 are colored by a and b.
Notice that each complete graph K1

3 induced by three vertices of K4 must
be no monochromatic, else we are done. Moreover, the color of the edges
from each vertex of K4 \K1

3 to K3 is a or b. Hence E(K7) is colored by two
colors and since R(K3 ∪K2, 2) = 7, we are done.

The lower bound follows from 7 = R(K3 ∪K2, 2) ≤ BR(K3 ∪K2, Z5).

Theorem 3.15. BR(P4 ∪K2, Z3) = 6.

Proof. Since BR(P4, Z3) = R(P4, Z3) = 5 then for any f : E(K6) → Z3, there exists
in K5 a zero-sum P4. This path with a vertex-disjoint edge from it, in K6, defines
a barycentric P4 ∪K2.

The lower bound 6 ≤ BR(P4 ∪K2, Z3) is obvious. Thus we have the theorem.

Theorem 3.16. BR(P3 ∪K2, Z4) = 6.

Proof. If E(K4) ⊆ E(K5) is colored by a and the remaining edges from K5 by a+ 1
then K5 is P3 barycentric free. Hence the lower bound is obtained.

The upper bound follows directly from the fact that BR(P3 ∪K2, Z5) = 6.

Theorem 3.17. BR(P3 ∪ 2K2, Z3) = 7.

Proof. Since BR(P3∪K2, Z3) = R(P3∪K2, Z3) = 6 then there exists in K7, for any
f : E(K7) → Z3, a zero-sum P3 ∪K2. This graph with a vertex-disjoint edge from
it in K7, defines a barycentric P3 ∪ 2K2.

Moreover, since the lower bound must be 7, we are done.

Theorem 3.18. BR(P4 ∪K2, Z5) = 8.

Proof. By Lemma 2.1, K8 with the edges colored with at least three colors, contains
a P4 ⊆ K8 colored by a, b and c. Set K4 the complete graph induced by P4 and
K1

4 built with the vertices in K8 different from K4. Set K4,4 the bipartite graph
from K4 to K1

4 . If some edge in K1
4 is colored from {a, b, c} we are done. Else

K1
4 is colored from {d, e}. If K1

4 contains a monochromatic C4 then with any edge
of K4,4, we can define a barycentric P4 ∪ K2. Else in K1

4 , there exists a P 1
4 with

edge color sequence dde, or eed, or ded; hence with some edge in P4 a barycentric
P4 ∪ K2 is obtained. Assume that the edges of K8 are colored by a and b. Then,
since R(P4 ∪K2, 2) = 8 (see Table 1) there exists a monochromatic P4 ∪K2. Hence
we have the upper bound.

The lower bound is obtained from 8 = R(P4 ∪K2, 2) ≤ BR(P4 ∪K2, Z5).

Theorem 3.19. BR(P3 ∪ 2K2, Z5) = 9.

Proof. Since BR(3K2, Z5) = 8 there exists, for any f : E(K8) → Z5, a monochro-
matic or with three different colors 3K2 ⊆ K8. Set 3K2 = v1v2, v3v4, v5v6. Let K6

be the complete graph induced by 3K2 and K3 the complete graph in K9 built with
vertices different from K6, set V (K3) = {v7, v8, v9}. Assume E(3K2) is colored by
a, b and c. Then for any color of E(K3) we obtain a barycentric P3 ∪ 2K2. As-
sume 3K2 is a-monochromatic. Consider the bipartite graph K3,6 from V (K3) to
V (K6), and the nine edge-disjoint stars v1viv2, v3viv4, v5viv6 with 7 ≤ i ≤ 9. If
some edge in K3,6 is colored by a, we are done. Hence these stars are colored from
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{b, c, d, e}. If there exists a no monochromatic star we have a barycentric P3 ∪ 2K2,
else all are monochromatic; in this case we can also derive a barycentric P3 ∪ 2K2.
In consequence we have the upper bound.

The lower bound follows from 9 = R(P3 ∪ 2K2, 2) ≤ BR(P3 ∪ 2K2, Z5).

3.4. Barycentric Ramsey number for modified stars, circuit-matching and
stars-matching

Theorem 3.20. BR(MK1,4, Z5) = 6.

Proof. Since BR(MK1,4, Z4) = 6, there exists in K6, for any f : E(K6) → Z4 a
barycentric MK1,4, monochromatic or with edge colors a, a, a + 1, a + 3 or a, a, a +
2, a+2. In the first two cases MK1,4 is also barycentric with respect to Z5. Consider
now the third case where MK1,4 has as edge colors a, a, a + 2, a + 2. In this case,
the only way to avoid a barycentric MK1,4 with colors from Z5 is to have each
K1,5 ⊆ K6 colored by a or a + 2. Then since R(MK1,4, 2) = 6 we are done.

It is clear that 6 = R(MK1,4, 2) ≤ BR(MK1,4, Z5). Therefore we have the lower
bound.

Theorem 3.21. BR(MK1,4, Z3) = 5.

Proof. Let vi with 1 ≤ i ≤ 5 be the vertices of K5. Since R(K1,3, Z3) = 6 then there
exists some coloring of E(K5) with a zero-sum free K1,3. Let K1

1,3 be the zero-sum
free star centered in v1 and edges v1v2, v1v3, and v1v4; the coloring of its edges must
be a, a, b respectively. Let K2

1,3 be the star centered in v5 and edges v5v2, v5v3 and
v5v4. Then for any coloring of the edges of K2

1,3, we obtain a barycentric MK1,4.
The lower bound is obvious.

Corollary 3.3. BR(C3 ∪K2, Z3) = 5.

Proof. Since BR(MK1,4, Z3) = 5 then for any f : E(K5) → Z3 there exists a
barycentric MK1,4 in K5. Let v1, v2, v3, v4, v5 be the vertices of K5. We have the
following barycentric MK1,4 types: A : constituted by star K1

1,3 centered in v1 and
edges v1v2, v1v3 and v1v4 colored by a, a, b respectively and the edge v2v5 colored
by c. B : constituted by star K2

1,3 centered in v1 and edges v1v2, v1v3 and v1v4

colored by a, a, a respectively and the edge v2v5 colored by a. C : constituted by
star K3

1,3 centered in v1 and edges v1v2, v1v3 and v1v4 colored by a, a, a respectively
and the edge v2v5 colored by b. It is easy to see that from types A and B we can
obtain a barycentric C3 ∪K2 with the different colors assigned to edge v3v4. In case
of type C we can obtain a barycentric C3 ∪K2 with f(v3v4) ∈ {a, c}.

Set f(v3v4) = b hence, if f(v1v5) = c then circuit C3 = v1v5v2v1 and edge
v3v4 constitute a barycentric C3∪K2. If f(v1v5) = b then the circuit C3 = v1v5v2v1

and the edge v3v4 constitute a barycentric C3∪K2. Assuming now that f(v1v5) = a.

Case 1. If f(v5v4) = a then it easy to see that from the different values of f(v2v3)
we obtain a barycentric C3 ∪K2.

Case 2. If f(v5v4) = b when f(v2v3) ∈ {a, c} we can obtain a barycentric C3 ∪K2.
Set f(v2v3) = b. If f(v5v3) ∈ {b, c} we obtain a barycentric C3∪K2. Set f(v5v3) = a
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If f(v2v4) ∈ {b, c} then circuit C3 = v2v3v4v2 and the edge v5v1 constitute a barycen-
tric C3∪K2. Set f(v2v4) = a then the circuit C3 = v3v1v5v3 and edge v2v4 constitute
a barycentric C3 ∪K2.

Case 3. If f(v5v4) = c then for each value of f(v3v5) ∈ Z3, circuit C3 = v3v5v4v3

and edge v2v1 constitute a barycentric C3 ∪K2.

The lower bound is obvious.

Theorem 3.22. BR(K1,3 ∪K2, Z3) = 6.

Proof. Since BR(K1,3, Z3) = R(K1,3, Z3) = 6, there exists a zero-sum K1,3 ⊆ K6,
for any f : E(K6) → Z3. Then this star with some edge in K6, vertex-disjoint with
K1,3, defines a barycentric K1,3 ∪K2. In consequence we have the upper bound.

The lower bound follows trivially.

Corollary 3.4. BR(K1,3 ∪K2, Z5) = 7.

Proof. Since BR(C3 ∪ K2, Z5) = 7 there exists in K7, for any f : E(K7) → Z5, a
barycentric C3 ∪ K2 i.e. monochromatic or colored by three different colors. Set
C3 : v0v1v2v0, K2 : v3v4 and K4 ⊆ K7 the complete graph built with vertices
v3, v4, v5, v6. We have two cases:

Case 1. E(C3∪K2) is colored as follows: v0v1 by a, v1v2 by b, v0v2 by c, and v3v4 by
a. Then for any color of f(v2v5) from {a, b, c} we are done. Set f(v2v5) = d,
if f(v4v6) ∈ {b, c, d} we have the corollary. Else, when f(v4v6) = a or
f(v4v6) = e we have for any value of f(v5v4) from Z5 a barycentric K1,3∪K2.
Now, set f(v5v2) = e, if f(v4v6) ∈ {b, c, e} we have the corollary. Else,
when f(v4v6) = a or f(v4v6) = d we have for any value of f(v5v4) from
Z5 a barycentric K1,3 ∪ K2. Let us consider now the case: f(v0v1) = a,
f(v1v2) = a, f(v0v2) = b, and f(v3v4) = c. If f(v2v5) ∈ {a, b, c} we are
done. Set f(v2v5) = d then for any value of f(v4v6) ∈ {a, b, d} we have the
corollary. Set f(v4v6) = c then for any value of f(v2v6) ∈ {a, b, c, d} we
are done. Set f(v2v6) = e then for any value of f(v2v3) ∈ Z5. we have the
result. Set f(v4v6) = e then we must have f(v2v6) = e else we are done.
Therefore, for any value of f(v2v3) ∈ Z5. we have the corollary. The case,
when f(v2v5) = e follows in a similar way.

Case 2. E(C3 ∪K2) is a-monochromatically colored as follows: v0v1, v1v2, v0v2 and
v3v4 colored by a. Assuming v4v5 is colored by x ∈ {b, c, d, e}, say c. If v3v5

is colored by some x ∈ {b, d, e} then, since v0v1 is colored by a, we have case
1. Coloring edge v3v5 by a then edges v6v0, v6v1, v6v2 must be also colored
by a. Else we have case 1. Hence star K1,3 centered in v0 with end vertices
in {v6, v1, v2}, and edge v3v5 define an a-monochromatic C3∪K2. Assuming
now that v3v5 is colored by c. Hence from any coloring given to star K1,3,
centered in v6 with end vertices in {vo, v1, v2}, we can derive a barycentric
K1,3 ∪K2.
Therefore v4v5 must be colored by a. Hence by coloring edge v3v5 from
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{b, c, d, e} we are done. Assuming v3v5 is colored by a, hence for any color
of edge v5v6 we can derive the theorem.

The lower bound follows from 7 = R(K1,3 ∪K2, 2) ≤ BR(K1,3 ∪K2, Z5).

Corollary 3.5. BR(K3 + e, Z5) = 7.

Proof. Since BR(K1,3 ∪ K2, Z5) = 7, there exists in K7, for any f : E(K7) → Z5,
a barycentric K1,3 ∪ K2, i.e. monochromatic or colored by a, a, b, c. We have the
following cases:

Case 1. K1,3 = v1v2, v1v3, v1v4 and K2 = v5v6 are a-monochromatic coloring: set
f(v2v3) ∈ {b, c, d, e}, else we have the corollary. Without loss of generality,
set f(v2v3) = b then f(v3v4) = b, otherwise we are done. Hence f(v2v4) = b,
else we have the corollary. Therefore f(v4v5) = a, else we have the result.
Finally for each value of f(v4v6) in Z5 we have a barycentric K3 + e.

Case 2. K1,3 = v1v2, v1v3, v1v4 and K2 = v5v6 are colored as: f(v1v2) = f(v1v3) =
a, f(v1v4) = b, and f(v5v6) = c : if f(v2v3) ∈ {c, d, e} or f(v3v4) ∈ {c, d, e}
we are done. If f(v3v4) ∈ {a, b} then for any values of f(v4v5) and f(v3, v5)
we have also the corollary. Set f(v1v2) = f(v5v6) = a, f(v1v3) = b and
f(v1v4) = c: then if f(v2v3) ∈ {a, b, c} or f(v3v4) ∈ {a, b, c} we are done.
Otherwise, if f(v2v3) = f(v3v4) we have the corollary, else with any color in
Z5 given to f(v3v6) we have a barycentric K3 + e.

The lower bound is derived coloring the edges of two vertices-disjoint complete
graphs K3 ⊆ K6 by a and the remaining edges of K6 by b.

Corollary 3.6. BR(K3 + e, Z3) = 4.

Proof. Set f : E(K4) → Z3 and let K1,3 be defined by v1v2, v1v3, v1v4. It is easy to
see that we have the following alternative cases:

Case 1. K1,3 is a-monochromatic. Set f(v1v2) = f(v1v3) = f(v1v4) = a. Then for
any value of f(v3v4) in Z3 we have the corollary.

Case 2. K1,3 is colored with two different colors. Set f(v1v2) = f(v1v3) = a, hence
f(v1v4) ∈ {b, c}. Set f(v1v4) = b, when f(v3v4) ∈ {a, c} we have the corollary.
Assuming f(v3v4) = b then for any value of f(v4v2) in Z3 we are done. Set now
f(v1v4) = c, when f(v3v4) ∈ {a, b} we are also done. Set f(v3v4) = c then for any
value of f(v4v2) in Z3 we have a barycentric K3 + e.

Case 3. K1,3 is colored with three different colors. Set f(v1v2) = a, f(v1v3) = b
and f(v1v4) = c. Therefore for any value of f(v1v4) ∈ Z3 we have the result.

The lower bound is obvious.

Corollary 3.7. BR(K1,3, Z4) = 6.
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Proof. The lower bound is derived coloring one of the two edge-disjoint hamiltonian
cycles of K5 by a and the other one by a+1. The upper bound follows directly from
the fact that BR(K1,3, Z5) = 6 (see Table 2).

4. Conclusion

The combinatorial arguments used in this paper are really elementary. Having in
mind a possible automation, we have detailed them. The computation of BR(H, Zn),
n ≥ 6 for the graphs given in Table 4, are open problems. We expect that their de-
gree of difficulty will increase, as in case of the computation of the classic Ramsey
numbers and the zero-sum Ramsey numbers involving many colors.

Acknowledgement. Heartfelt thanks go to the referees for the patience to indicate
precise weaknesses and the useful remarks that allowed us to improve some of the
proofs.
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