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Abstract. In this paper, new types of continuous linear operator, such as
continuous, strongly continuous, weakly continuous and sequentially continu-
ous linear operators, in probabilistic normed space are introduced. Also, the
relation between the boundedness and continuity of these linear operators in
probabilistic normed spaces is studied.
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1. Introduction and preliminaries

In 1942, Menger introduced the notion of probabilistic metric space as a natural
generalization of the notion of a metric space. In complete analogy with the classical
case, we then have the notion of a probabilistic normed space. This was introduced
by Serstnev in 1963 and later improved by Alsina, Schweizer, and Sklar in 1993.

Before we proceed we must state some definitions, known facts, and, technical
results to be used in the sequel; the concepts used are those of [3] and [9]. The space
of probability distribution functions (d.f.) which we will consider are

∆+ = {F : [−∞,∞] → [0, 1] | F is left-continuous, non-decreasing,

F (0) = 0 and F (+∞) = 1}.

In particular for any a ≥ 0, εa is the d.f. defined by

εa(x) =

{

0, if x ≤ a,

1, if x > a.

The space ∆+ is partially ordered by the usual pointwise ordering of functions, the
maximal element for ∆+ in this order is the d.f. given by

ε0(x) =

{

0, if x ≤ 0,
1, if x > 0.
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A triangle function is a binary operation on ∆+, namely a function τ : ∆+ ×∆+ →
∆+ that is associative, commutative, non-decreasing and which has ε0 as unit, viz.
for all F,G,H ∈ ∆+, we have

τ(τ(F,G), H) = τ(F, τ(G,H)),

τ(F,G) = τ(G,F ),

τ(F,H) ≤ τ(G,H) if F ≤ G,

τ(F, ε0) = F.

Continuity of a triangle function means continuity with respect to the topology of
weak convergence in ∆+. Typical continuous triangle functions are convolution and
the operations τT and τT∗ , which are given by

τT (F,G)(x) = sup
s+t=x

T (F (s), G(t)),

and
τT∗(F,G)(x) = inf

s+t=x
T ∗(F (s), G(t)),

for all F,G in ∆+ and all x in < [9; Secs.7.2 and 7.3]. Here T is a continuous t-norm,
i.e. a continuous binary operation on [0, 1] that is associative, commutative, non-
decreasing and has 1 as identity; T ∗ is a continuous t-conorm, namely a continuous
binary operation on [0, 1] that is related to continuous t-norm T through

T ∗(x, y) = 1 − T (1 − x, 1 − y).

The notion of a probabilistic normed space was first introduced by Serstnev [9] in
1963. In 1993, Alsina, Schweizer and Sklar gave a new definition of a probabilistic
normed space [2].

Definition 1.1. A probabilistic normed space is a quadruple (V, v, τ, τ∗), where V is
a real vector space, τ and τ∗ are continuous triangle functions, and v is a mapping
from V into ∆+ such that, for all p, q in V , the following conditions hold:

(PN1) vp = ε0 if and only if p = θ, θ being the null vector in V ;
(PN2) ν−p = νp;
(PN3) vp+q ≥ τ(νp, νq);
(PN4) νP ≤ τ∗(ναp, v(1−α)p), for all α in [0,1].

If, instead of (PN1), we only have vθ = ε0, then we shall speak of a Probabilistic
Pseudo Normed space (PPN space). If the inequality (PN4) is replaced by the equality
νP = τM (ναp, v(1−α)p), then the PN space is called a Serstnev space. The pair (V, v)

is said to be a Probabilistic Seminormed space (PSN space) if v : V → ∆+ satisfies
(PN1) and (PN2).

There is a (ε, λ)-topology in the PN space (V, v, τ, τ∗) which is generated by the
family of neighborhoods, Np of p ∈ V in the following way:

Np(ε, λ) = {Np(ε, λ)}ε>0,λ∈(0,1), Np(ε, λ) = {q ∈ V : vq−p(ε) > 1 − λ}.
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2. Continuous linear operator in probabilistic normed spaces

The definition of a bounded linear operator in PN space previously studied by
Lafuerza Guillén, Rodŕıguez Lallena and Sempi [6], Jebril and Ali [3], and Jebril and
Noorani [4].

Definition 2.1. Let (V, v, τ, τ∗) and (V ′, µ, σ, σ∗) be PN spaces. A linear map T :
V → V ′ is said to be bounded if it satisfies one of the following conditions:

(a) Certainly bounded: If every certainly bounded set A of the space (V, v, τ, τ∗)
has, as image under T a certainly bounded set TA of the space (V ′, µ, σ, σ∗),
i.e., if there exists x0 ∈ (0,+∞) such that vp(x0) = 1 for all p ∈ A, then
there exists x1 ∈ (0,+∞) such that µTp(x1) = 1 for all p ∈ A.

(b) D-bounded: If it maps every D-bounded set of V into a D-bounded set of V ′,
i.e., if, and only if, it satisfies the implication,

lim
x→+∞

inf
p∈A

vp(x) = 1 ⇒ lim
x→+∞

inf
p∈A

vTp(x) = 1,

for every nonempty subset A of V .
(c) Strongly B-bounded: if there exists a constant k > 0 such that, for every

p ∈ V and for every x > 0, µTp(x) ≥ vp(x /k ), or equivalently if there exists
a constant h > 0 such that, for every p ∈ V and for every x > 0,

µTp(hx) ≥ vp(x).

(d) Strongly ψ-bounded: if there exists a function ψ : [0,+∞) → [0,+∞) such
that ψ(x) < x, for every x > 0 so that the following implication holds for
every p ∈ V and for every x > 0,

vp(x) > 1 − x⇒ µTp(ψ(x)) > 1 − ψ(x).

Definition 2.2. Let (V, v, τ, τ∗) and (V ′, µ, σ, σ∗) be PN spaces. A linear map
T : V → V ′ is said to be continuous at p0 ∈ V , if for given ε > 0 and α ∈ (0, 1),
there exist β = β(α, ε) ∈ (0, 1) and δ = δ(α, β) > 0 such that for every p in V ,

vp−p0
(δ) > 1 − β ⇒ µTp−Tp0

(ε) > 1 − α.

Theorem 2.1. Let (V, v, τ, τ∗) and (V ′, µ, σ, σ∗) be PN spaces. A linear map T :
V → V ′ is continuous at a point then it is continuous on V .

Proof. Since T is continuous at p0 ∈ V , thus for each given ε > 0 and α ∈ (0, 1),
there exist β = β(α, ε) ∈ (0, 1) and δ = δ(α, β) > 0 such that for every p in V ,

vp−p0
(δ) > 1 − β ⇒ µTp−Tp0

(ε) > 1 − α.

Taking any q in V and replacing p by p+ p0 − q, we get

vp+p0−q−p0
(δ) > 1 − β ⇒ µTp+p0−q−Tp0

(ε) > 1 − α.

So that,
vp−q(δ) > 1 − β ⇒ µTp−Tq(ε) > 1 − α.

Since q is arbitrary, it follows that T is continuous on V .
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Definition 2.3. Let (V, v, τ, τ∗) and (V ′, µ, σ, σ∗)be PN spaces. A linear map T :
V → V ′ is said to be strongly continuous atp0 ∈ V , if for each ε > 0, there exist
δ > 0 such that for every p in V ,

µTp−Tp0
(ε) ≥ vp−p0

(δ).

Theorem 2.2. Let (V, v, τ, τ∗) and (V ′, µ, σ, σ∗) be PN spaces. A linear map T :
V → V ′ is strongly continuous at a point then it is strongly continuous on V .

Proof. Since T is strongly continuous at p0 ∈ V , for each ε > 0, there exist δ > 0
such that for every p in V , we have

µTp−Tp0
(ε) ≥ vp−p0

(δ).

Taking any q in V and replacing p by p+ p0 − q, we get

µTp−Tq(ε) = µTp+p0−q−Tp0
(ε) ≥ vp+p0−q−p0

(δ) = vp−q0
(δ).

Since q is arbitrary, it follows that T is strongly continuous at on V .

Definition 2.4. Let (V, v, τ, τ∗) and (V ′, µ, σ, σ∗) be PN spaces. A linear map
T : V → V ′ is said to be weakly continuous at p0 ∈ V , if for given ε > 0 and
α ∈ (0, 1), there exist δ = δ(α, ε) > 0 such that for every p in V ,

vp−p0
(δ) ≥ 1 − α⇒ µTp−Tp0

(ε) ≥ 1 − α.

Theorem 2.3. Let (V, v, τ, τ∗) and (V ′, µ, σ, σ∗) be PN spaces. A linear map T :
V → V ′ is weakly continuous at a point then it is weakly continuous on V .

Proof. Since T is weakly continuous at p0 ∈ V , for each given ε > 0 and α ∈ (0, 1),
there exist δ = δ(α, β) > 0 such that for every p in V ,

vp−p0
(δ) ≥ 1 − α⇒ µTp−Tp0

(ε) ≥ 1 − α.

Taking any q in V and replacing p by p+ p0 − q, we get

vp−q(δ) = vp+p0−q−p0
(δ) > 1 − α⇒ µTp+p0−q−Tp0

(ε) = µTp−Tq(ε) > 1 − α.

Since q is arbitrary, it follows that T is weakly continuous on V .

Remark 2.1. It is easy to see that if a mapping is strongly continuous then it is
weakly continuous.

Definition 2.5. Let (V, v, τ, τ∗) and (V ′, µ, σ, σ∗) be PN spaces and T is a linear
operator from V into V ′. T is said to be sequentially continuous at p0 ∈ V , if for
every sequence (pn)n∈N

of elements of V that converges to p0 the sequence (Tpn)
n∈N

converges to Tp0
, i.e. if for all ε > 0, λ ∈ (0, 1), there exists n0 ∈ N such that, for

n ≥ n0,
vpn − p0(ε) ≥ 1 − λ⇒ µTpn−Tp0

(ε) ≥ 1 − λ.

Theorem 2.4. Let (V, v, τ, τ∗) and (V ′, µ, σ, σ∗) be PN spaces. A linear map T :
V → V ′ is sequentially continuous at a point then it is sequentially continuous on
V .

Proof. Let q be in V , (qn)n∈N
be a sequence in V converging to q and set n ∈ N,

pn := qn − q + p0, so that (pn)n∈N
converges to p0; thus, for all ε0 > 0, there is

n0 ∈ N such that, for n ≥ n0,

vpn−p0
(ε) = vqn−p0

(ε) ≥ 1 − λ.
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Since T is sequentially continuous at p0 ∈ V, the previous inequality yields

µTqn−Tp(ε) = µTpn−Tp0
(ε) ≥ 1 − λ,

which proves the assertion.

Theorem 2.5. Let (V, v, τ, τ∗) and (V ′, µ, σ, σ∗) be PN spaces. A linear map T :
V → V ′ is strongly continuous then it is sequentially continuous.

Proof. Let T be strongly continuous at p0 ∈ V , if for each ε > 0, there is δ > 0 such
that for every p in V ,

(2.1) µTp−Tp0
(ε) ≥ vp−p0

(δ).

Let (pn)n∈N
be a sequence in V such that for all x > 0 and λ ∈ (0, 1) we have

(2.2) vpn − p0(x) ≥ 1 − λ.

Now from (2.1) and (2.2) we have, µTpn−Tp0
(ε) ≥ vpn−p0

(δ) ≥ 1 − λ, for n ∈ N so
that (Tpn

)
n∈N

converge to (Tp0
).

The converse is not true, as can be seen from the following example.

Example 2.1. Let V = V ′ = R and v0 = µ0 = ε0, while, if p 6= 0, then, for ε > 0,

let vp(ε) = G

(

ε

|p|

)

and µp(ε) = U

(

ε

|p|

)

, where

G(ε) =

{

1
2 , 0 < ε ≤ 1,
1, 1 < ε ≤ ∞,

and U is d.f. of the uniform low on (0,1),

U(ε) =

{

ε, 0 < ε ≤ 1,
1, 1 < ε ≤ ∞.

Consider now the identity map I : (R, |.| , G, v) → (R, |.| , U, µ).

(1) I is not strongly continuous, because, such that for every δ and for every
p− p0 6= 0, one has, for ε < |p− p0|min{ 1

2 ,M}, ∀M > 0, then

µIp−Ip0
(ε) = µp−p0

(ε) = U

(

ε

|p− p0|

)

=
ε

|p− p0|

<
1

2
= G

(

ε

M |p− p0|

)

= vp−p0
(
ε

M
) = vp−p0

(δ),

where δ =
ε

M
.

(2) I is a sequentially continuous at p0 ∈ V , if for any sequence {pn}
∞

n=1, pn ∈ V

converge to {p0} that implies vpn−p(ε) > 1− λ satisfied for every ε > 0 and
λ ∈ (0, 1),

µIpn−Ip0
(ε) = µp−p0

(ε) = ε0(x) > 1 − x,

so that I is a sequentially continuous.

Theorem 2.6. Let (V, v, τ, τ∗) and (V ′, µ, σ, σ∗) be PN spaces. A linear map T :
V → V ′ is continuous if and only if it is sequentially continuous.
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Proof. Let T be continuous at p0 ∈ V . Let {pn}
∞

n=1 be a sequence in V such that
it is converge to p0. Let ε > 0 be given, choose α ∈ (0, 1). Since T is continuous at
p0 ∈ V , there exist β = β(α, ε) ∈ (0, 1) and δ = δ(α, β) > 0 such that for every p in
V ,

vp−p0
(δ) > 1 − β ⇒ µTp−Tp0

(ε) > 1 − α.

Since {pn}
∞

n=1 converge to {p0} in V , there exist a positive integer n0 such that,
∀n ≥ n0

vpn−p0
(δ) > 1 − β ⇒ µTpn−Tp0

(ε) > 1 − α.

This implies {Tpn
}∞n=1 is converge to {Tp0

} in (V, v, τ, τ∗).
Next we suppose that T is sequentially continuous at p0 ∈ V . If possible suppose

that T is not continuous at p0. Thus there exist ε > 0 and α > 0 such that for all
δ > 0 and β > 0, there exist q = q(δ, β) such that vp0−q(δ) > 1 − β but

(2.3) µTp0−Tq(ε) ≤ 1 − α,

let δ = β = 1
n+1 , n = 1, 2, ....., there exist {qn} such that

vp0−qn

(

1

n+ 1

)

> 1 −
1

n+ 1
,

but µTp0−Tqn
(ε) ≤ 1−α, taking δ > 0, there exist n0 such that δ =

1

n+ 1
, ∀n ≥ n0.

Then,

vp0−qn
(δ) = vp0−qn

(

1

n+ 1

)

> 1 −
1

n+ 1
, ∀n ≥ n0.

That means {qn}
∞

n=1 is converge top0, where n→ ∞. But from (2.3) we have,

µTp0−Tqn
(ε) ≤ 1 − α, where n→ ∞.

Thus (Tqn
)
n∈N

does not converge to our assumption. Hence T is continuous at p0.

Theorem 2.7. Let (V, v, τ, τ∗) and (V ′, µ, σ, σ∗) be PN spaces. A linear map T :
V → V ′ is strongly continuous if and only if is strongly B-bounded.

Proof. First we suppose that T is strongly B-bounded. Thus there is exist M > 0
such that

µTp(ε) ≥ vp

( ε

M

)

, ∀p ∈ V, ∀ε > 0.

i.e.

µTp−Tθ
(ε) ≥ vp−θ

( ε

M

)

, ∀p ∈ V, ∀ε > 0,

so that,

µTp−Tθ
(ε) ≥ vp−θ(δ) where δ =

ε

M
.

This implies that T is strongly continuous at θ and hence it is strongly continuous
on V .

Conversely, suppose that T is strongly continuous on V. Using the strongly con-
tinuity of T at p = θ, for ε = δM, ∀M > 0, there exist δ > 0 such that

µTp−Tpθ
(ε) ≥ vp−θ(δ) = vp−θ

( ε

M

)

so that T is strongly bounded.
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Strongly B-bounded Strongly B-continuous

Continuous

Strongly ψ-bounded Sequentially Continuous

Theorem 2.14

Theorem 2.13Theorem 2.18

Theorem 2.11

Figure 1. Relations between continuous and bounded types

From Theorem 2.5, Theorem 2.6, and Theorem 2.7 the next result is immediate
(see Figure 1).

Remark 2.2. Every strongly B-bounded linear operator T is continuous. If T is
strongly continuous then it is continuous. If T is strongly B-bounded it is sequentially
continuous on V .

Theorem 2.8. Let (V, v, τ, τ∗)and (V ′, µ, σ, σ∗) be PN spaces. A linear map T :
V → V ′ is strongly ψ-bounded linear operator then T is continuous.

Proof. Let T is ψ-bounded, if there exists a ψ : [0,∞) → [0,∞) such that ψ(δ) < δ,
∀δ > 0 so that the following implication holds for every p ∈ V for every δ > 0:

vp(δ) > 1 − δ ⇒ µTp(ψ(δ)) > 1 − ψ(δ),

i.e.

vp−θ′(δ) > 1 − δ ⇒ µTp−T
θ′

(ψ(δ)) > 1 − ψ(δ).

So that, let ε > 0, be an arbitrary neighborhood of θ′ and λ > 0 are given, we choose
δ > 0 such that 0 < ψ(δ) < min{ε, λ}, then

vp−θ′(δ) > 1 − δ ⇒ µTp−T
θ′

(ψ(δ)) > 1 − ψ(δ)

⇒ µTp−T
θ′

(ε) > 1 − ψ(δ) > 1 − λ

This implies that T is ψ-bounded at θ′ and it is continuous.

The following example shows that the converse need not be true.

Example 2.2. Let V = V ′ = < and v0 = µ0 = ε0, while, if p 6= 0, then, for x > 0,

let vp(x) = G

(

x

|p|

)

, µp(x) = U

(

x

|p|

)

, where

G(x) =

{

9
10 , 0 < x ≤ 1,
1, 1 < x ≤ ∞,

, U(x) =

{

1
10 , 0 < x ≤ 1,
1, 1 < x ≤ ∞.

Consider now the identity map I : (R, |.| , G, v) → (R, |.| , U, µ).
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(1) I is a continuous, such that for every ε > 0 and every α ∈ (0, 1), let
δ > max{ε, |p− p0|} and β ∈ (0, 1) such that the following condition will
satisfied, ∀p, p0 ∈ <, vp(δ) > 1 − β. Since

δ > max {ε, |p− p0|} ⇒
δ

|p− p0|
>

max {ε, |p− p0|}

|p− p0|
≥

ε

|p− p0|
.

Therefore

µIp−Ip0
(ε) = µp−p0

(ε) = U

(

ε

|p− p0|

)

< U

(

δ

|p− p0|

)

= 1 > 1 − α.

(2) I is not strongly ψ-bounded, such that for every mapping ψ(x) < x ∀x > 0.
Let p ∈ (x, 9

10 ), x ∈ ( 1
10 ,

8
10 ), the condition vp(x) > 1 − x is satisfied, but

we note that

µIp(ψ(x)) = U

(

ψ(x)

|p|

)

≤ U

(

x

|p|

)

=
1

10
< 1 − x < 1 − ψ(x).

Hence I is continuous, but not strongly ψ-bounded.

From Example 2.1, Theorem 2.6, Theorem 2.7 and Theorem 2.8, the next result
is immediate (see Figure 1).

Remark 2.3. If T is strongly ψ-bounded then it is sequentially continuous. If T
is strongly ψ-bounded then it is not strongly continuous on V . If T is strongly
ψ-bounded then it is not strongly B-bounded on V .
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