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Abstract. Many medical investigations generate both repeatedly-measured

(longitudinal) biomarker and survival data. One of complex issue arises when

investigating the association between longitudinal and time-to-event data when
there are cured patients in the population, which leads to a plateau in the

survival function S(t) after sufficient follow-up. Thus, usual Cox proportional
hazard model [11] is not applicable since the proportional hazard assumption

is violated. An alternative is to consider survival models incorporating a cure

fraction. In this paper, we present a new class of joint model for univariate
longitudinal and survival data in presence of cure fraction. For the longitudinal

model, a stochastic Integrated Ornstein-Uhlenbeck process will present, and for

the survival model a semiparametric survival function will be considered which
accommodate both zero and non-zero cure fractions of the dynamic disease pro-

gression. Moreover, we consider a Bayesian approach which is motivated by the

complexity of the model. Posterior and prior specification needs to accommo-
date parameter constraints due to the non-negativity of the survival function.
A simulation study is presented to evaluate the performance of the proposed

joint model.
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1. Introduction

Joint models for longitudinal and survival data have recently become quite popular
in cancer, AIDS, and environmental health studies where a longitudinal biologic
marker of the health-related outcome such as CD4 counts in HIV trials, immune
response to vaccine, or quality of life in clinical trial can be an important predictor
of survival or some other time-to-event. Often the observed longitudinal data are

Received: December 14, 2006; Revised: January 4, 2008.



76 M. R. Abu Bakar, K. A. Salah, N. A. Ibrahim and K. Haron

incomplete or may be subject to error. Since such longitudinal markers (covariates)
are measured with error, the analysis become more complex than one that treats
these as fixed covariates in a survival model.

In many clinical studies, especially in cancer research, there are settings in which
it is meaningful to consider the existence of a fraction of individuals who have little
to no risk ”cured” of experiencing the event of interest. For such failure time-data,
a proportion of subjects are susceptible to, and others are not susceptible to, the
target event. Empirical evidence to confirm this feature of the population is a long
and stable plateau with heavy censoring at the tail of the Kaplan-Meire survival
curve. With long term survivors, the usual Cox proportional hazard model [11] is
not applicable since the proportional hazard assumption is violated. An alternative
is to consider survival models incorporating a cure fraction, which, often referred to
as a cure rate models.

The most popular type of cure rate model is the mixture model discussed by
Berkson and Gage [1]. In this model, they assume a certain fraction θ of the
population is ”cured” and the remaining (1−θ) are not cured. The survival function
for the entire population, denoted by S(t) for this model is given by

(1.1) S(t) = θ + (1− θ)S1(t),

where S1(t) denotes the survivor function for the non-cured group in the population.
Clearly (1.1) is improper since S(∞) = θ, and when covariates are included we have
a different θi for each subject i = 1, ...n. A logistic regression structure for θi is
usually given by

(1.2) θi =
exp

(
δTZi

)
1 + exp (δTZi)

,

as assumed by Kuk and Chen [26], where θi is a probability and cannot be zero and
Zi is a vector of covariates. The standard mixture cure model has been extensively
studied in the literature [2, 19, 29, 30, 34, 35, 41, 42] among others.

The main drawback of model (1.1) is that it lacks a proportional hazard structure
if the covariates are modelled through θ, which is desirable property in carrying out
covariates analysis. An alternative cure rate model, with a proportional hazards
structure for the population, sometimes called the promotion time cure rate model
discussed by Yakovlev and Tsodikov [40] and Chen et al. [7]. They developed their
model by hypothesized the genesis of a cancer, which initiated by the mutation of
some carcinogenic cells (metastasis-competent tumor cells). They assume a Poisson
distribution to the number of carcinogenic cells left active after the initial treatment,
denoted by N . Given N , the survival function for the entire population is given by

(1.3) S(y) = exp (−λF (y)) ,

where λ is the mean of the Poisson count. The cure fraction is then given by

S(∞) ≡ P (N = 0) = exp(−λ).

Hence, model (1.3) can be written as

(1.4) S(y) = exp (−λF (y)) = exp {ln(θ)F (y)} ,
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where F (t) is a proper cumulative distribution function represents the promotion
time, that is, time to development of a detectable tumor mass. Common parametric
choices for F (t) are exponential [18] and Weibull distribution [8, 14]. Nonparametric
choices have also been considered [22, 26, 34, 35]. There are also formulations of
non-mixture cure models to incorporate long-term survivors [3, 4, 6, 7, 22, 39, 40].

A joint model is comprised of two linked submodels, one for the true longitudi-
nal process and one for the failure time, along with additional specifications and
assumptions that allow ultimately a full representation of the joint distribution of
the observed data. In the statistical literature, maximum likelihood and Bayesian
approaches have been used to obtain the estimates of the unknown joint model
parameters. Law et al. [27] proposed a joint longitudinal and survival cure mix-
ture model, they obtained maximum likelihood estimations of the parameters using
Monte Carlo Expectation Maximization (MCEM) algorithm. However, this ap-
proach seems very difficult to apply to joint model. It would involve integrating the
two component models over the distribution of the longitudinal process to obtain
the marginal likelihood of the observed data, this requires numerical integration in a
very high dimension space. This seems algebraically intractable. On the other hand,
Ibrahim et al. [22], Brown and Ibrahim [3], Chen et al. [6], Chi and Ibrahim [8] and
Cowling et al. [9] obtained the parameter estimation using the Bayesian approach.
The Bayesian approach avoids the troubles in maximizing the likelihood function,
making inferences based on the posterior density of the parameters. Hence, we will
use this approach in our modelling, focusing on the estimation of the joint posterior
density of all unknown model parameters.

Most joint models developed so far in the statistical literature have focused on
time-to-event data models with no survival fraction, this motivate us to develop a
survival model capable of accommodating a possible cure fraction survival function
as well as linking relevant longitudinal markers to such a model. Then, the objective
of this research is to develop a flexible longitudinal and survival joint cure rate model
with a biological and medical meaning that it can be accommodate both zero and
nonzero cure fraction and utilizing the latent class regression framework developed
for single events, that allowed for event-specific survival processes. This can be done
be achieving the following:

(1) To present a stochastic model for longitudinal measurements that has a
capability of updating and predicting the longitudinal measurements at any
time.

(2) To modify a semiparametric survival function that can control the para-
metricity at the tail of the survival curve as well as the nonparametrecity at
the beginning and at the middle of the survival curve.

(3) To introduce some auxiliary variables (latent) that can acknowledge the
convergence of sampling methods.

The development of the proposed joint model was primarily motivated by a clini-
cal trial conducted by international cancer study group. A primary study goal is
to investigate covariates (longitudinal and baseline) in terms of their effect on the
probability of tumor cure and the progression time. This data set has been analyzed
with cure models motivated by medical findings which suggest the existence of a
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cured proportion. Failing to account for cure may lead to incorrect inferences thus
motivating our main research.

The presentation of our proposed joint model in this article proceeds as follows.
In Subsection 2.1, a longitudinal model is presented. In this model the response
measurements are consisting of a combination of fixed effect, random effect, an
Integrated Ornstein-Uhlenbeck (IOU) stochastic process and measurement error. In
Subsection 2.2, we propose a cure rate model with semiparametric link function for
the promotion time. Then these two models are combined to obtain a joint model. In
Section 3, the likelihood function will be derived after introducing a semiparametric
function. In Sections 4 and 5, we review model selection and simulation study. Then
we conclude with discussion.

2. A new class of longitudinal and survival joint model

Given that the subject i, i = 1, ..., n, is observed at time t, that is i ∈ <(t),
where <(t) is the risk set at time t. let Yi and Ci denote the event time and
censoring time respectively; let Zi be a q-dimensional vector of baseline covariates
and let Xi(t) be the longitudinal process at time t ≥ 0. Components of Zi might
also be time dependent covariates whose values are known exactly and that are
”external” in the sense described by Kalbfleisch and Prentice [25]. Rather than
observe Vi for all i, we observe only Vi = min(Yi, Ci) and the censored indicator
∆i = I(Yi ≤ Ci), which equals one for time-to-event and zero otherwise. Values
of Xi(t) are measured intermittently at times tij ≤ Vi, j = 1, ..., ni, for subject i,
which may be different for each i; often; target values for the observations times are
specified by a study protocol, although deviations from protocol are common. The
observed longitudinal data on subject i may be subject to ”error”, thus we observed
only X∗i = {X∗i (ti1), ..., X∗i (tini

)}T , whose elements may not exactly equal the
corresponding Xi(tij).

A joint model is comprised of two linked submodels, one for the ”true” longitu-
dinal process X∗i (tij) and one for the failure time Yi, along with additional spec-
ifications and assumptions that allow ultimately a full representation of the joint
distribution of the observed data Di = {Vi,∆i, X

∗
i , ti}, where ti = (ti1, ...tini)

T .
The D′is are taken to be independent across i, reflecting the belief that the disease
process evolves independently for each subject. In the framework of joint modelling,
we specifically assume that the time-to-event Y and vector of repeated measurements
X, are conditionally independent given X∗.

2.1. The longitudinal process

In this article, following Taylor et al. [36], we consider the longitudinal process
consisting of a combination of fixed effect, random effect, an Integrated Ornstein-
Uhlenbeck (IOU) stochastic process and measurement error. In general, we assume
that

(2.1)
{
Xi(tij) = X∗i (tij) + εi(tij)
X∗i (tij) = $1U1(tij) +$2U2(tij) +Wi(tij),

where Xi(tij) and X∗i (tij) denote the observed and true value of a continuous time-
dependent covariates ( or disease marker) for subject i at time tij , U1(tij) and
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U2(tij) represent fixed and random effects with respectively coefficients $1 and $2,
εi(tij) is measurement error and Wi(tij) are independent IOU stochastic process
with covariance structure given by

(2.2) Cov(Wi(t),Wi(s)) =
σ2

2α3

(
2αmin(s, t) + e−αs + e−αt − 1− e−α|t−s|

)
;

where α and σ2 are parameters. An appealing feature of model (2.1) is that it
corresponds to a random effects model as α approaches zero and σ2/2α maintains
a constant. This can be seen directly from the observation under this circumstance,
the IOU process is no more than a random effects model. Also, it is interesting to
note that scaled Brownian motion is a special case of W (t) in which α is infinitely
large and σ2/2α is constant. In general, this model is more flexible and plausible
than a random effects model since it allows the marker to vary around a straight
line and allows the data to determine the degree of this variation.

Note that Cov(Wi(t),Wi(s)) in (2.2) depends on s and t and not just on their
difference, which can be described as a disadvantage of the IOU process, that is not
a stationary, and hence it is necessary to have a natural time zero for each subject.
In some applications it may be that there is no natural time zero or that time zero
is not exactly known. Thus, following Taylor [35], we can overcoming this problem
by analyzing the differences as follows:

Let YiFi be the first measurements on subject i at time Fi, and let Dit =
Yit − YiFi ; for t > Fi. Then

(2.3) Dit = b(t− Fi) + β(Xit −XiFi) +Wit −WiFi + εit − εiFi ,

and

(2.4) Cov(Dit1 , Dit2) = A+B + C,

where

A = (t1 − Fi)(t2 − Fi) var(b)− (Xit1 −XiFi
)(Xit2 −XiFi

) var(β)

B = Cov(Wit1 −WiFi
, Wit2 −WiFi

)

=
σ2

2α3

(
2α(t1 − Fi)− 1− e−α(t2−t1) + e−α(t2−Fi) + e−α(t1−Fi)

)
C = σ2

e (1 + I(t1 = t2)) =
{

2σ2
e if t1 = t2

σ2
e if t1 6= t2 ,

for t1 ≤ t2. By this assumption, we note that Cov(Dit1 , Dit2) and hence Cov(Wi(t),
Wi(s)), depends only on the difference in times, so it avoids the need to define natural
time zero.

2.2. The time-to-event model

Motivated by the promotion time model, discussed by Yakovlev and Tsodikov [40],
and following Chi and Ibrahim [8], we present a model which allows for a zero as
well as a nonzero cure fraction. We propose such model by specifying an alternative
mechanism for the characteristics of tumor growth. Instead of assuming the carcino-
genic cells turn active only at the beginning of the study, we allow the possibility
that active carcinogenic cells may occur at anytime after the start of the study. So
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that, in addition to some carcinogenic cells remaining active after initial treatment,
new carcinogenic cells are assumed to occur over time after this treatment. Thus the
number of carcinogenic cells changes over time, and the risk of developing a cancer
relapse becomes dynamic over time, the development of any active carcinogenic cells
to become a detectable tumor then leads to relapse. Figure 1 shows a simple dia-
gram to illustrate this idea. In the diagram, eight carcinogenic cells occurred during
ten-years follow-up, and the patient relapses before the ninth year when the second
metastasis-competent tumor cell first develops to become a real tumor. In terms
of the statistical modelling, the promotion times for carcinogenic cells to become
detectable tumor are assumed to be independent and identically distributed with
a common distribution function, moreover, we consider a semiparametric version
of the parametric cure rate model in (1.4). A stochastic nonhomogeneous Poisson
process is also introduced to model the variation of the number of carcinogenic cells
over time.

 

Figure 1. Disease progression diagram

For an individual in the population let N(t) denote the number of carcinogenic
cells occurring at time t and Cl, (l = 1, ..., N∗) denote the random time for the
l-th carcinogenic cell to produce a detectable cancer mass, Cl are independent and
identically distributed with a common distribution function

(2.5) F (y) = 1− S(y)

where N∗ =
∫ y

0
N(t)dt, represents the total number of active carcinogenic cells that

have occurred before relapse at Y = y. Note, here if the patient is cured then no
carcinogenic cells occurring, that is N∗ = 0. In the promotion time model, N is
assumed to be independent of t and has a Poisson distribution at the beginning of
the study, in our model we propose to have N(t) changed over time so that N(t)
will follow the non-homogeneous Poisson process with mean λ(t).

Theorem 2.1. If N(t), t > 0 is a Poisson process with mean λ(t), then N∗ =∫ y
0
N(t)dt is a Poisson random variable with parameter Λ(y) =

∫ y
0
λ(t)dt. i.e.

P (N∗ = k) = [Λ(y)]k e−Λ(y)/k!.
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Moreover, for t ∈ (0, y), the conditional distribution of the exact time of the
occur of an active carcinogenic cells given N∗(> 0) are independent and identically
with probability density function g(t) = λ(t)/

∫ y
0
λ(t)dt = λ(t)

Λ(y) , t ∈ (0, y).
Given N∗, the random variable Cl is assumed to be i.i.d with a common dis-

tribution function F (y) = 1 − S(y), which is independent of N∗. The conditional
population survival function given N∗(> 0) can then be derived as

Š(y) = P (Y > y|N∗)
= P (no carcinogenic cells by time y given N∗)

=
N∗∏
i=1

{∫ y

0

λi(t)(1− F (y − t))∫ y
0
λi(ξ)dξ

dt

}

=
{∫ y

0

g(t)S(y − t)dt
}N∗

.(2.6)

Note, N∗ is not observed (latent) variable in the model formulation. Thus, summing
(2.6) out N∗, one can obtain the unconditional population survival function as

SP (y) = P (no cancer cells by time y)

= P (N∗ = 0) + P (C1 > y, C2 > y ,...,CN∗ > y, N∗ ≥ 1)

= exp(−Λ(y)) +
∞∑
k=1

{[∫ y

0

g(t)S(y − t)dt
]k
× (Λ(y))k exp(−Λ(y))

k!

}

= exp
[∫ y

0

−λ(t)F (y − t)dt
]
.(2.7)

We emphasize here that population survival function is the sum of the cured (N∗ =
0) and non-cured (N∗ > 0) patients. The cure fraction is thus given by

(2.8) SP (∞) = exp
{
− lim
y→∞

∫ y

0

λ(t)F (y − t)dt
}
,

if the integral in (2.8) is bounded then the survival function has a non-zero cure
fraction, otherwise the survival function in (2.7) leads to a proper survival function,
that is SP (∞) = 0.

Using the properties of a distribution function F (t) and the fact that λ(t) is
non-negative, as y →∞ the population survival function in (2.8) reduces to

(2.9) SP (∞) = exp
{
− lim
y→∞

Λ(t)
}
,

that’s to say, a cure rate model is characterized by a bounded cumulative mean
for the number of carcinogenic cells, while a proper survival model is characterized
by an unbounded cumulative risk. And hence, this development of the stochastic
disease process allows models for both zero and non-zero cure fractions.

The density function corresponding to (2.7) is given by

fP (y) =
d

dy
FP (y)
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=
∫ y

0

λ(t)f(y − t)dt exp
[
−
∫ y

0

λ(t)F (y − t)dt
]

(2.10)

where f(y) = d
dyF (y). The hazard function is then given by

(2.11) hP (y) =
fP (y)
SP (y)

=
∫ y

0

λ(t)f(y − t)dt.

Since SP (y) is not a proper survival function when the integral
∫ y

0
λ(t)F (y − t)dt is

unbounded, and hence fP (y) is not a proper probability density function and hP (y)
is not a hazard function corresponding to a probability distribution. However, f(y)
is a proper probability density function and hP (y) is compound of λ, F (y), and
f(y). Thus, it has the proportional hazard structure when the covariates modelled
through λ(t).

The survival function for the non-cured population is given by

S1(y) = P (Y > y|N∗ ≥ 1)

= P (N∗ ≥ 1, Y > y)/P (N∗ ≥ 1)

=
exp

[
−
∫ y

0
λ(t)F (y − t)dt

]
− exp [−Λ(y)]

1− exp [−Λ(y)]
.(2.12)

Note that S1(0) = lim
y→0

S1(y) = 1 , and S1(∞) = lim
y→∞

S1(y) = 0, that is, S1(y)

is a proper survival function. The probability density function for the non-cured
population is given by

f1(y) = − d

dy
S1(y)

=
exp

[
−
∫ y

0
λ(t)F (y − t)dt

]
1− exp [−Λ(y)]

∫ y

0

λ(t)f(y − t)dt,(2.13)

and the hazard function for the non-cured population is then given by

h1(y) =
f1(y)
S1(y)

=
exp

[
−
∫ y

0
λ(t)F (y − t)dt

]
exp

[
−
∫ y

0
λ(t)F (y − t)dt

]
− exp [−Λ(y)]

∫ y

0

λ(t)f(y − t)dt.(2.14)

The hazard function in (2.14) depends on y, then, we can say that h1(y) does not
have a proportional hazard structure. To write SP (y) in term of the cure fraction
θ, one can use the mathematical relationship between the models in (1.1), (2.7) and
(2.9), then the model can be written as

SP (y) = exp
[
−
∫ y

0

λ(t)F (y − t)dt
]

= exp [−Λ(y)] + {1− exp [−Λ(y)]}S1(y),(2.15)

thus, SP (y) is a standard cure rate model with cure fraction θ = exp [−Λ(y)] .
To incorporate information from both the longitudinal trajectories X∗(t) and

the other potential covariates (time dependent or time fixed) for survival model.
With N(t) being the Poisson count, suppose that we want to let the mean λ(t)
depend on a vector of explanatory variables (longitudinal trajectories and the other
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potential covariates), we take log (canonical link) and assume that the transformed
mean follows a linear model. Thus, we consider a generalized linear model with link
log as

Log(λ(t)) = γX∗(t) + δZ(t),
equivalently, the above model can be written as

(2.16) λ(t) = exp {γX∗(t) + δZ(t)}

where γ is a p×1 vector of regression coefficient represents the effects of the marker
on the disease risk, and δ is q × 1 vector of regression coefficient corresponding to
the other covariates Z(t). Thus λ(t) is the conditional mean of N(t) given X∗(t).
Entering the covariates in this fashion corresponds to a canonical link in a Poisson
generalized linear model, all covariates are assumed to affect survival through their
impact on the mean number of metastasis-competent tumor cells over time. The
case γ = 0 implies that the subject-specific marker response is not associated with
the number of carcinogenic cells in the body, i.e. we got separate model.

3. Joint likelihood and priors

In this section, we construct the joint likelihood with a specific choice of the longi-
tudinal trajectory function and distribution assumption of the promotion time. For
the longitudinal process, we consider the situation where the only coefficients in U1

and U2 in model (2.1), are the intercept t, then, with some change in notation, (2.1)
can be written as

(3.1)
{
Xi(tij) = X∗i (tij) + εi(tij)
X∗i (tij) = ai + btij + βUi(tij) +Wi(tij),

where Xi(tij), X∗i (tij) denote the observed and the true values of a continuous
time-dependent covariates at time tij respectively, ai ∼ N(µa, σ2

a) are independent
random intercept of subject i, b is the average rate of decline of the marker, Ui(tij)
is a (p × 1) vector of the values of p variables for subject i at time tij , the 1 × p
vector of unknown regression parameter β represents the effect of the p variables
on the marker, Wi(tij) ∼ N(0,Σ) are independent IOU stochastic process with
covariance structure Σ given in (2.2), and εi(tij) ∼ N(0, σ2

ε ) represents deviations
due to measurement error. With the above changes, model in (2.16), then can be
written as

(3.2) λi(t) = exp {γ [ai + bt+ βUi(t) +Wi(t)] + δZi(t)} .

We will use Bayesian approach in our modeling, focusing on the estimation of the
joint posterior density of all unknown model parameters Ω = {µa, σ2

a, b, β, γ, δ, σ
2
e ,

α, σ2, π}, where π is the promotion time parameter. In the proposed joint model
the observed data is given by Dobs = {n,M,X, Y,∆, U, Z} and the complete data is
given by D = Dobs ∪ {N∗, a1, ..., an,W1(t), ...,W1(t)}, where M =

∑n
i=1 ni.

The joint posterior density of the parameters depends on their prior density and
likelihood assumptions, we will specify these assumptions as in model (3.1). We use
the notation [·] and [· | ·] to denote marginal and conditional densities respectively.
For the likelihood function, we assume:

(1) The data from different subjects are independent.
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(2) For each subject i, given all the unknown parameters in Ω and covariates
(Ui, Zi), his longitudinal data is independent of his survival data.

(3) For each subject i, given {X∗i (tij), j = 1, ..., ni}, {Xi(tij)}ni
j=1 are indepen-

dent and Xi(tij) has normal distribution N(X∗i (tij), σ2
e).

Thus, the contribution of subject i to the conditional likelihood is

[Xi(tij), (yi,∆i) | Ω, Xi, Zi]

= [Xi(tij) | Ω, Xi, Zi] [yi,∆i | Ω, Xi, Zi]

=
ni∏
j=1

1√
2πσ2

e

× exp

{
− (Xi(tij)− (ai + bt+ βUi(t) +Wi(t)))

2

2σ2
e

}

× (Si(yi))N
∗
i ∆i(N∗i fi(yi))

∆i × Λi(yi)N
∗
i exp(−Λi(yi))
N∗i !

.

(3.3)

The likelihood function for the joint model involves two components. The first
component involves the longitudinal process denoted by L1. The second component
involves the likelihood function of the time-to-event variable Y , denoted by L2. Then
the likelihood function for the joint model will be the product of L1 and L2.

Given the parameters Ω1 =
{
b, µa, σ

2
a, β, α, σ

2, σ2
e

}
. From (3.3) and the longi-

tudinal model assumptions (model (3.1)), then L1 can be defined as:

L1(Ω1) =
n∏
i=1

{
ni∏
j=1

[
Yi(tij) | ai, b, Wi(t), β, σ2

e Xi

]
}

×
[
Wi(t) | α, σ2

] [
ai | µa, σ2

a

]
=

n∏
i=1

 ni∏
j=1

1√
2πσ2

e

exp

{
− (Xi(tij)− (ai + bt+ βUi(t) +Wi(t)))

2

2σ2
e

}(3.4)

×Σ−
1
2

i

2π
exp

(
−W

T
i Σ−1

i Wi

2

)
× 1√

2πσ2
a

exp

(
− (ai − µa)2

2σ2
a

)]
.

To complete the second piece of the joint likelihood, we assume that the promotion
time of an active metastasis-competent tumor cell independent comes from a com-
mon semi-parametric exponential distribution [22]. In this function, we partition the
time scale yi, i = 1, ..., n into J intervals, i.e. 0 < s1 < s2 < · · · < sJ , sJ > yi for all
i. Thus we have J intervals (0, s1] , (s1, s2] , ..., (sJ−1, sJ ] , we thus assume that the
hazard for F (y) is constant and equal to πj for the jth interval, j = 1, ..., J . Then,
this function is given by

(3.5) F (y) = 1− exp

{
−πj (y − sj−1)−

j−1∑
q=1

πq (sq − sq−1)

}
.

By substituting function (3.5) into model (2.6), the conditional survival function
of an active carcinogenic cell to become detectable tumor at time yi given N∗, can
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be derived as

Š(yi) =
∫ yi

0

gi(t)S(yi − t)dt

=
1

Λi(yi)

∫ yi

0

λi(t)(1− F (yi − t))dt

=
1

Λi(yi)

∫ yi

0

λi(t) exp

{
−πj (yi − t− sj−1)−

j−1∑
q=1

πq (sq − sq−1)

}
dt

=
1

Λi(yi)

∫ yi

0

exp {γ [ai + bt+ βXi(t) +Wi(t)] + δZi(t)}

× exp

{
−πj (yi − t− sj−1)−

j−1∑
q=1

πq (sq − sq−1)

}
dt

=
1

Λi(yi)

(
j∑

k=1

I(yi > sk−1)
∫ r

sk−1

exp {γ [ai + bt+ βXi(t) +Wi(t)] + δZi(t)}

× exp

{
−πk (r − t− sk−1)−

k−1∑
q=1

πq (sq − sq−1)

}
dt

)

=
exp (γai)

Λi(yi)

( j∑
k=1

exp

{
−πk (r − sk−1)−

k−1∑
q=1

πq (sq − sq−1)

}
(3.6)

× I(yi > sk−1)ξ(ς)
)

where j is the interval index such that yi ∈ (sj−1, sj ], r = min(yi, sk) and

ξ(ς) =
∫ r

sk−1

exp {γ [ai + bt+ βXi(t) +Wi(t)] + δZi(t) + πkt} dt.

Information about the continuous stochastic process Wi(t) is needed to calculate
ξ(ς). We approximate the continuous function Wi(t) by its value at a finite set of iw
grid points (twi1, t

w
i2, ..., t

w
iiw

) in order to facilitate the estimation of all parameters in
the joint model. The iw grid points are chosen to contain all the time points where
marker measurements is taken for subject i, since the value of Wi(t) at these points
are used in the longitudinal model and needed to be estimated, also we choose the
grid points so that the maximum of {twij − twij−1, j = 1, ..., iw} (assuming twi0 = 0)
is very small and Wi(t) can be considered as constant over the interval

(
twij−1, t

w
ij

]
.

Further, we assume also that the time dependent covariates (if there any) are con-
stant over the same interval. Since we already partition the scalar time yi into J
intervals then the iw grid points will be considered only in one interval of J, so that
in each grid iw interval we will assume twi0 = sk−1, k = 1, ..., J. Thus ξ(ς) can be
evaluated as

ξ(ς) =
li∑
l=1

∫ l

t′l−1

exp {γ (bt+ βXi(t) +Wi(t)) + δZi(t) + πkt} dt
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−
∫ r

t′li

exp {γ (bt+ βXi(t) +Wi(t)) + δZi(t) + πkt} dt

=
li∑
l=1

Mi(l)∑
m=1

∫ t′′lm

t′′
l(m−1)

exp {γ (bt+ βXi(t) +Wi(t)) + δZi(t) + πkt} dt

−
Mi(r)∑
m=1

∫ t′′rm

t′′
r(m−1)

exp {γ (bt+ βXi(t) +Wi(t)) + δZi(t) + πkt} dt

=
li∑
l=1

Mi(l)∑
m=1

exp {γ (βXi(t′′lm) +Wi(t′′lm)) + δZi(t′′lm)}

×
exp (γb+ πk) t′′lm − exp (γb+ πk) t′′l(m−1)

(γb+ πk)

−
Mi(r)∑
m=1

exp {γ (βXi(t′′rm) +Wi(t′′rm)) + δZi(t′′rm)}

×
exp (γb+ πk) t′′rm − exp (γb+ πk) t′′r(m−1)

(γb+ πk)
,

where r = min(yi, sk), li = max {l : t′l ≤ r} , for l = 1, ..., li, t′′l0 = t′l−1, t
′′
lMi(l)

= t′l

and
(
t′′l1, t

′′
l2, ..., t

′′
l(M(l)−1)

)
all are grid points ordered in interval

(
t′l−1, t

′
l

)
, for

subject i ; ( t′′r1, t
′′
r2, . . . , t′′r(Mi(r)−1)

)
all are grid points ordered in interval (t′li, r)

for subject i, t′′r0 = t′li, t
′′
liMi(r)

= r, and t′0 = sk−1.

Given N∗i the conditional distribution function F̃i(yi) for an active carcinogenic
cells to become a detectable tumor cells at time yi is given by

(3.7) F̃ (yi) = 1− Š(yi)

also the conditional density function is given by

(3.8) f̃(yi) =
d

dyi
F̃ (yi) =

d

dyi
(1− Ši(yi)) = πjŠi(yi).

In the same manner, the cumulative rate Λi(yi) is given by

Λi(yi) =
∫ yi

0

λi(t)dt

=
ki∑
k=1

Ji(k)∑
j=1

exp
{
γ
(
ai + btikj + βXi(tikj) +Wi(tikj)

)
+ δZi(tikj)

}
×
{

exp
(
γbtikj

)
− exp

(
γbtik(j−1)

)}
/γb(3.9)

−
Ji(yi)∑
j=1

exp
{
γ
(
ai + btiyiij + βXi(tiyiij) +Wi(tiyiij)

)
+ δZi(tiyiij)

}
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×

exp
(
γbtiyij

)
− exp

(
γbtiyi(j−1)

)
γb

 .

Given the parameters Ω2 = {γ, δ, π1, ..., πJ} . From (3.3) and the survival model
assumptions, then the second component of the likelihood function L2 can be derived
as

L2(Ω2) = P (yi; ∆i | ai, b, Wi(t), β, Xi, Zi, N
∗
i )P (N∗i | γ, δ)

=
n∏
i=1

J∏
j=1

(
Ši(yi)

)(N∗i −∆i)∆ij
(
N∗i f̃(yi)

)∆i∆ij

× exp

{
n∑
i=1

N∗i log (Λi(yi))− log (N∗i !)− Λi(yi)

}
,

(3.10)

where Ši(yi), f̃(yi) and Λi(yi) are given in (3.6), (3.8) and (??) respectively, ∆ij

censored indicator equal one if the ith subject fails in the jth interval and zero
otherwise.

The prior specification for Ω = Ω1 ∪ Ω2 are given jointly as

(3.11) [Ω] = [b] [µa]
[
σ2
a

]
[β] [α]

[
σ2
] [
σ2
e

]
[γ] [δ] [πj ] ,

and hence, the joint likelihood of the complete data is given by

(3.12) L(Ω) = L1(Ω1)L2(Ω2) [Ω]

We take b, µa, β, γ, δ to have normal priors. For σ2
a, σ

2, σ2
e we take inverse gamma

priors. The corresponding prior for α has a scaled F distribution F(r, s) if r 6= s;
otherwise is a F distribution F(r, r). Finally, we take independent gamma prior for
π as follows:

[π] ∝
J∏
j=1

πζ0−1
j exp(τ0πj),

where ζ0 and τ0 are pre-specified hyperparameters. The choices of these priors are
based on the joint posterior distributions. (See the Appendix)

4. Bayesian model assessment

To assess the model fit and compare different models, we calculate the Conditional
Predictive Ordinate (CPO), Gelfand et al.[16], and the Deviance Information Crite-
rion (DIC) recently proposed by Spiegelhalter et al. [33] where the formulas given
by

(4.1) CPOi =
(∫

1
f(X∗i , Yi,∆i | φ,Ui, Zi)

[φ | D]dφ
)−1

where [φ | D] is the posterior density of φ based on the data including all subjects.

Using (4.1) a Monte Carlo method presented in Chen et al. [7] is readily used for
computing CPOi if f(X∗i , Yi,∆i | φ,Ui,Zi) can be evaluated for each φ. However,
due to the complexity of the joint model, an analytical evaluation of f(X∗i , Yi,∆i |
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φ,Ui,Zi) does not appear possible. Therefore, an alternative Monte Carlo approxi-
mate of CPOi will be used, which is given by

(4.2) ĈPOi =

(
1
M

M∑
m=1

1
Li(φ[m])

)−1

models with greater
∑n
i=1 log(CPOi) indicate a better fit, and

(4.3) DIC = − 4
M

M∑
m=1

logL(φ[m]) + 2 log(φ[m]),

the smallest the DIC, the better the fit of the model.

5. Sampling methods and simulation study

In this section, we will evaluate the performance of the proposed joint model by
conducting a simulation study. We investigate how will the population parameters
can be estimated in terms of bias and converge rate, and compare these results to
that of the separate modeling approach by applying methods of MCMC sampler.
Also we study how the following factor affect the performance of the joint model:
Censoring rate and prior information for the parameters.

5.1. Simulation design

To illustrate our joint semiparametric model, we setup our simulation study rep-
resent a randomize clinical trial, in which n = 100 subjects are randomized. Each
longitudinal marker in model (3.1), Xi(tij) , i = 1, ..., n; j = 1, ..., ni, was simulated
as the sum of the trajectory function X∗i (tij) and the error terms εi(tij), each subject
has its observed longitudinal measured ni = 10 at time points t1 = 0.1, ..., t10 = 1,
until the relapse or the end of the study. For the survival data, we consider a model
in the presence of cure; that is we took the mean of the Poisson process at time t as
in (3.2) to be for i = 1, ..., 100, where Zi is a binary baseline covariates with half of
the subjects having one and the other half having zero, and the promotion time was
considered as in (3.5) with J = 1. This setup leads to a cure rate structure for the
survival time in model (3.6). We will modeled the longitudinal data and survival
data separately, i.e. for longitudinal data, we will use model (3.1) and for survival
data we will use model (3.2) with γ = 0 along with model (3.6), then the maximum
likelihood in (3.4) and (3.10) were estimated to get an initial estimate of the popu-
lation parameters Ω = {µa, σ2

a, b, β, γ, δ, σ
2
e , α, σ

2, π1} say Ω(0) = {µ(0)
a ,
(
σ2
a

)(0)
,

b(0), β(0), γ(0), δ(0),
(
σ2
e

)(0)
, α(0),

(
σ2
)(0)

, (π1)(0)} and use them as initial values in
MCMC sampler.

With the Bayesian approach, all estimates and inferences are made on the poste-
rior distribution of the parameters of interest. Combining with the likelihood based
on the available data, prior distributions are used to derive the posterior density
of the parameters. To implementing the MCMC sampler algorithms for our joint
modeling approach, based on the joint posterior distribution of the parameters in
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section 4, the full conditional distribution of the parameters are derived (see Ap-
pendix). We note that the the full conditional distributions of the parameters σ2

e ,
µa , σ2

a and σ2 that appearing only in the longitudinal model are a product of its
prior density and some standard distribution which are conjugate priors for these
parameters. While the conditional distribution of the parameters b, (β1, ..., βp) , if
the contributions from the survival data are ignored, then the normal distribution
are conjugate priors, if the contributions from the survival data are not ignored, then
we will use it as a proposed density in ARMS sampler. The main difficulty which
we will meet in the prior distributions is that when no standard form appears in the
posterior distribution. In general, we do not have performance in choosing priors
for the parameters α, γ, δ since their full conditional densities have no conjugate
priors. One may use normal priors for γ, δ since they take values belong to the real
line R. For the IOU stochastic process parameter α, gamma and inverse gamma
distributions are potential choices as priors since it takes only positive values.

Throughout this section, the true values of the population parameters, which
are used to generate the 100 data sets are b = −3.5, β = 1, µa = 4.0, σ2

a =
0.02, α = 0.138, σ2 = 0.12, σ2

e = 0.05, γ = −1, δ = 2.4, and π1 = 0.05. All
the parameters were assumed independent a proiori and assigned non-informative
priors, so we choose b ∼ N(−4.00, 1.00); β ∼ N(1.5, 0.50); µa ∼ N(4.00, 1.00);
σ2
a ∼ IG(2.00, 0.01); α ∼ F (1.5, 1.5); σ2 ∼ IG(1.00, 0.02); σ2

e ∼ IG(2.00, 0.01);
γ ∼ N(−1.5, 1.0); δ ∼ N(3.0, 1.0) and πk ∼ G(0.02, 1.0).

For the parameters
{
µa, σ

2
a, σ2, σ2

e , π1

}
drawing random variates from their full

conditional distribution is straight forward, therefore, we will use the full conditional
density as a proposal density in Gibbs sampler algorithm, and in sampling process
each updating step for these parameters, a new draw from the full conditional density
is always accepted. We perform this algorithm for each parameter 2,000 Gibbs
samples after 1,000 burn-in. The histogram, the time series plots of one sequence
of Gibbs samples for different number of iterations and the average number of these
iterations for the parameter µa are presented in Figure 2.

For the parameters {b, β} one can not draw a random variate from these densities
directly due to the terms from the time-to-event data. For each one of these param-
eters, we use the Metropolis-Hastings (M-H) algorithm to obtain the update in the
Gibbs sampling sequence. With the Gibbs algorithm, a proposal density is required
to draw a random variates and to be compared with the full conditional density at
this random variate and at the current value of the parameter. So we will use the
standard density, which we got from the contribution of the longitudinal data and
priors as a proposal density. The histogram, the time series plots of one sequence
of Gibbs samples for different number of iterations and the average number of these
iterations for the parameter β are presented in Figure 3.

For the parameters {α, γ, δ1..., δp} is not follow any standard distribution, it is
just an algebraic expression which come from the contribution of the longitudinal
and time-to-event data, so that, for such parameters, one can not draw random
variates from their full conditional densities. For each of these parameters we propose
using a normal density as a proposal density, and then the Adaptive Rejection
Metropolis Sampling (ARMS) [17] within Gibbs sampling will be used by considering
f(x) = q(θ|D), and then constructing a sampling distribution function g(x) for which
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Figure 2. Histogram, time series and average values plots respectively for the
parameter values µa at 500, 1000, and 2000 iterations respectively, using Gibbs

sampler.

samples can be readily drawn. The histogram, the time series plots of one sequence
of Gibbs samples for different number of iterations and the average number of these
iterations for the parameter δ are presented in Figure 4. Figures 2, 3 and 4 show
that these sequences are mix well and converge within 2,000 iterations after 1,000
iterations are burn-in.

Given a set of values of parameters in Ω, the data for subject i can be generated
as follows:

(1) Simulate the discrete IOU process Wi = (Wij = Wi(tj)) by drawing a mul-
tivariate random variates from the normal distribution N10(0,Σ), where Σ
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 Figure 3. Posterior histogram, time series and average value plots respectively
for the parameter values β at 500, 1000, and 2000 iterations respectively, using
MH sampler.

is the variance covariance matrix defined by (2.4). Simulate random inter-
cept ai by drawing a random variate from the univariate normal distribu-
tion N(µa, σ2

a). Simulate the true longitudinal measurements X∗i , by the
lower part of model (3.1). Simulate the measurements error εi from the
univariate normal distribution N(0, σ2

e). Simulate the observed longitudinal
measurements Xi by adding a measurement error to the true longitudinal
measurements as in upper part of model (3.1).

(2) Simulate the failure time Yi under model (3.2), and suppose that a subject
has not contracted an active carcinogenic cells up to time tj , then the



92 M. R. Abu Bakar, K. A. Salah, N. A. Ibrahim and K. Haron

 Figure 4. Posterior histogram, time series and average values plots, respectively
for the parameter values δ at 500, 1000, and 2000 iterations respectively, using
ARMS sampler.

probability that he will develop carcinogenic tumor cells during the time
period (tj , tj+1] is approximately pi = λi(t | X∗i (s), Zi, s ≤ t)× (tj+1 − tj) .
We draw a random variable U1 ∼ U(0, 1). If pi < U1, we say that he
develops carcinogenic cells over time interval (tj , tj+1], and draw a random
variate U2 ∼ U(0, 1) and define his survival time as Yi = tj+U2×(tj+1 − tj),
otherwise he is still carcinogenic cells free at time tj+1, in this case set
∆i = 0. We continue this process until either he develop carcinogenic cells
or the time reached the maximum follow-up period. Following this process,
generating of censoring indicator ∆i. Also by the above techniques one can
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controls the cure and censoring rates. In this simulation study, we choose
moderate cure-rate (15−30)%, and moderate censoring (30−50)%. Simulate
the Poisson process Ni(t) by drawing a random variates from Pois(Λi(yi)
Š(yi)) + ∆i.

(3) Fit the generated data with proposed joint modelling approach model (3.6).
For the purpose of comparison, also model the longitudinal measurements
and the survival data separately to obtain CPOi, DIC, and corresponding
parameter estimates.

We repeat the above process 100 times and pool the results to evaluate the overall
performance of the estimates of the parameters by evaluating the summary statistics.

5.2. Numerical results

With the initial values of the parameters for which the data are generated consid-
ered as the truth values of the parameters, estimate Monte Carlo Summary statistics,
Monte Carlo Standard Deviation (MCSD), Mean Squared Error (MSE), 95% Con-
fidence Converge Rate (CCR), and Bias in Percentage Terms (BPT) are presented
in Table 1, where, MCE stand for Monte Carlo Error and it can be evaluated as
follows: In our simulate study we used 100 data replications, thus the resulting esti-
mates are subject to sampling variation (Monte Carlo Error), this variation for the
point estimate can be calculated as p̂ = MCSD/

√
100, the MCE then can be found

by MCE =
√

p̂(1−p̂)
100 .

The results in Table 1 assert the convergence of the Markov Chain and the sam-
plers reached the convergence after 2,000 iterations after 1,000 iterations are burn-in.
Posterior means, posterior standard deviations, Bias as percent of true parameter
and 95% highest posterior density intervals for each parameter in the joint and
separate models, are represented in Table 2. These summarize the results for the
parameters in the longitudinal model and in the survival model. The estimates of all
parameters from the joint modelling analysis are quite accurate and efficient. The
estimates are close to the true values of the parameters and have good coverage rates.
The small biases of the estimates are due to Monte Carlo simulation error. Com-
pared to the separate model, the joint model results in improved estimates almost
for all parameters in both longitudinal and survival model.

By using M = 1000 for model assessment for measuring the LPML statistic,
also to assert our assessment, DIC were calculated for different models, the results
are described in Table 4. A1–A3 models in this table referred to model (3.6) along
with some changes in model (3.2), that is, model (A1) referred to model (3.1) include
the IOU term (α is finite), model (A2) referred to mixed effects model i.e. model
(3.1) excluded the IOU term, in model (A3) the Brownian motion term replaced by
the IOU term in model (3.1) (α is infinitely large). Model (B1) referred to model
(3.1), and model (B2) referred to model (3.6) with (γ = 0) in model (3.2). We
observe that the joint model that include the IOU stochastic process and the Joint
Model corresponds to Brownian Motion give a better fit to the data than the one
excluding the IOU term and separately. In other words, the longitudinal model with
the IOU stochastic process or Brownian motion (α is finite or infinitely large) yields
a superior fit than the model with the random effects, also comparing the values
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Table 1. Monte Carlo Summary statistics of the parameter estimates.

Para- True Estimated 95%
meter Value Value MCSD MSE CCR BP MCE
b −3.500 −3.498 0.031 8.236× 10−4 95% −0.057% 6× 10−3

µa 4.000 4.001 0.019 3.450× 10−4 98% 0.025% 4× 10−3

σ2
a 0.020 0.020 0.005 2.471× 10−5 99% −0.001% 2× 10−3

α 0.138 1.400 0.967 0.928 93% 1.450% 3× 10−2

σ2 0.120 0.119 0.0823 6.622× 10−3 96% −0.833% 9× 10−3

β 1.000 0.997 0.041 1.688× 10−3 95% −.274% 6× 10−3

σ2
e 0.050 0.050 0.008 6.855× 10−5 94% 0.140% 3× 10−3

γ −1.000 −1.003 0.117 1.469× 10−4 97% 0.291% 1× 10−2

δ 2.400 2.401 0.259 0.0701 94% 0.042% 2× 10−2

Table 2. Posterior estimates from joint and separate models for J = 1.

Joint Models Separate Models

Para-
meter

mean SD Bias% 95% C.I. Mean SD Bias% 95% C.I.

b -3.490 .102 -1.0% (-3.69, -3.290) -3.489 .110 -1.1% (-3.71, -3.273)
β 0.997 .028 0.3% (0.942, 1.052) 0.991 .090 0.9% (0.815, 1.167)
µa 4.001 .013 -0.1% (3.975, 4.026) 4.001 .013 -0.1% (3.975, 4.026)
σ2

a 0.019 .011 0.1% (0.000, 0.041) 0.019 .011 0.1% (0.000, 0.041)
α 1.530 .283 -15.% (0.850, 1.960) 1.570 .352 -19.% (0.724, 2.104)
σ2 0.119 .016 0.1% (0.088, 0.150) 0.119 .016 0.1% (0.088, 0.150)
σ2

e 0.051 .011 -0.1% (0.294, 0.073) 0.051 .011 -0.1% (0.294, 0.073)
γ -1.008 .080 0.8% (-1.17, -0.851) -1.013 .127 1.3% (-1.26, -0.76)
δ 2.405 .051 -0.5% (2.305, 2.505) 2.391 .088 0.9% (2.219, 2.563)
π1 0.052 .045 -0.2% (0.000, 0.140) 0.094 .067 -4.4% (0.000, 0.225)

of LPML and DIC statistics for joint model and the separate models, the results
indicate that the joint cure rate model appear to provide a more adequate fit to the
simulated data than the separate models.

Table 3. The LPML and DIC statistics for different models.

Model LPML DIC
(A1) Joint Model IOU included −728.23 1379.04
(A2) Joint Model IOU excluded −767.39 1409.20
(A3) Joint Model with Brownian Motion −729.17 1390.75

(B1) Survival −286.91 633.670
Separate Models : (B2) Longitudinal −550.72 778.430

Total −837.63 1412.10
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6. Summary, conclusion and future study

We have proposed a new model for jointly modeling longitudinal and survival data
in presence of cure fraction. For the longitudinal process, our model consisting of
a combination of mixed effects and an IOU stochastic process. This model is more
flexible and plausible than a random effects model since it allows the marker to vary
a round a straight line and allows the data to determine the degree of this variation.

Motivated by the promotion time model, a cure rate survival model is proposed
by specifying an alternative mechanism for the characteristics of tumor growth.
Instead of assuming the carcinogenic cells turn active only at the beginning of the
study, we allow the possibility that active carcinogenic cells may occur at any time.
Thus, the risk of developing a cancer relapse becomes dynamic over time. Moreover,
to control the parametricity and the nonparametricity of the survival function, a
common semi-parametric exponential function was assumed for the promotion time
of an active metastasis-competent tumor cell. To incorporate information from both
the longitudinal trajectories and other covariates, we let all the covariates depend
on the rate λ(t) through a relation corresponds to a canonical link in a Poisson
generalized linear model.

The proposed joint model has several advantages. First, each longitudinal com-
ponent has its own treatment dependent process Yi(t). Second, the joint model does
not require that all longitudinal response be observed at a given time point for the
ith patient. This is an important feature of the model since in cancer trials, it is
very difficult to take some measurements at time t. Finally, the proposed joint model
is suitable for any type of survival data as long as the data can be thought of as
being generated by process of latent risks. Thus the model can be useful for ana-
lyzing various types of survival data, also can accommodate a proper and improper
survival function.

A Bayesian approach was taken to fit the proposed joint model through a sim-
ulation study. The numerical results in the simulation study demonstrate that the
joint modelling method results in efficient estimates and good coverage for the pop-
ulation parameters. Also it indicates that when ignoring the association between
the longitudinal and the survival data would lead to biased estimates for the most
important parameters.

For future works, the proposed joint model will be extended to include multivari-
ate longitudinal and multivariate time-to-event data. However, to induce correlation
between failure times, shared frailty will be introduced.

Appendix.

For each of the parameters {σ2
e , µa , σ2

a, σ2, πj}, the full conditional posterior
distribution is the product of its prior density and some standard distribution. As
an example, we derive the conditional posterior of σ2

e as follows:

[σ2
e | ·] ∝

n∏
i=1

ni∏
j=1

[Xi(tij | ai, b, Wi(t), Ui(tij)][σ2
e ]

∝
n∏
i=1

ni∏
j=1

1√
σ2
e

exp

(
− (Xi(tij)− (ai + btij + βUi(tij) +Wi(tij)))

2

2σ2
e

)
[σ2
e ]
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∝ IG
(
ασ2

e
, βσ2

e

)
[σ2
e ],

where

ασ2
e

=
∑n
i=1 ni
2

,

and

βσ2
e

=

∑n
i=1

∑ni

j=1 (Xi(tij)− (ai + btij + βUi(tij) +Wi(tij)))
2

2
.

In the same manner we found that the full conditional posterior distributions of
{µa , σ2

a, σ2, πj} are

[µa | ·] ∝ N

(∑n
i=1 ai
n

,
σ2
a

n

)
[ µa] ,

[
σ2
a | ·

]
∝ IG

((n
2
− 1
)
,

∑n
i=1 (ai − µa)2

2

)[
σ2
a

]
,

[
σ2 | ·

]
∝ IG

∑n
i=1 iw
2

− 1,
∑n
i=1W

T
i

Σ−1
i

σ2 Wi

2

[ σ2
]
,

and

[πj | ·] ∝ G (απ, βπ) ,

where

απ =
n∑
i=1

∆iI (sk−1 < yi ≤ sk)

and

βπ =
n∑
i=1

I (yi > sk−1)
∫ r

sk−1

exp {γ [ai + bt+ βXi(t) +Wi(t)] + δZi(t)} .

For each of the parameters {b, β, ai, N∗i }, the full conditional posterior distribu-
tion is the product of its prior density, some standard distribution and a thired term.
As an example, for the average rate of decline of the longitudinal measurements b,
the full conditional distribution can be derived as follows:

[b | ·] ∝
n∏
i=1

ni∏
j=1

[Xi(tij) | ai, b, β, Wi(t), σ2
e ][b]

×
n∏
i=1

(Λi(yi)f̃i(yi))∆i exp(−Λi(yi)(1− Ši(yi)))

∝ exp

{
−
∑n
i=1

∑ni

j=1 (Xi(tij)− (ai + btij + βUi(tij) +Wi(tij)))
2

2σ2
e

}
[b]

× exp
n∑
i=1

{∆i log(f̃i(yi)) + ∆i log (Λi(yi))− Λi(yi)(1− Ši(yi))}
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∝ exp

{
−
∑n
i=1

∑ni

j=1 b
2t2ij − btij [Xi(tij)− ai − βUi(tij)−Wi(tij)]

2σ2
e

+
[Xi(tij)− ai − βUi(tij)−Wi(tij)]2

2σ2
e

}
× exp

n∑
i=1

{∆i log(f̃i(yi)) + ∆i log (Λi(yi))− Λi(yi)(1− Ši(yi))}[b]

∝ exp

{
−
∑n
i=1

∑ni

j=1 t
2
ij (b− tijXi(tij)− ai − βUi(tij)−Wi(tij))

2

2σ2
e

}
[b]

× exp
n∑
i=1

{∆i log(f̃i(yi)) + ∆i log (Λi(yi))− Λi(yi)(1− Ši(yi))}

∝ N(µb, σ2
b ) exp

n∑
i=1

{∆i log(f̃i(yi)) + ∆i log (Λi(yi))− Λi(yi)(1− Ši(yi))}[b],

where,

µb =

∑n
i=1

∑ni

j=1 tij (Xi(tij)− ai − βUi(tij)−Wi(tij))∑n
i=1

∑ni

j=1 t
2
ij

and

σ2
b =

σ2
e∑n

i=1

∑ni

j=1 t
2
ij

.

In the same way, we found that the full conditional posterior distributions of {β,
ai, N

∗
i } are

[βl | ·] ∝ N(mβl
, vβl

) [ βl]

× exp
n∑
i=1

{
∆i log

(
f̃i(yi)

)
+ ∆i log (Λi(yi))− Λi(yi)

(
1− Ši(yi)

)}
,

where

mβl
=

∑n
i=1

∑ni

j=1Xil(tij) (Yi(tij)− (ai + btij + β(−l)Xi(−l)(tij) +Wi(tij)))∑n
i=1

∑ni

j=1X
2
il(tij)

,

and

vβl
=

σ2
e∑n

i=1

∑ni

j=1X
2
il(tij)

,

[ai | ·] ∝ N(ma, va) exp
{

∆i log
(
f̃i(yi)

)
+ ∆i log (Λi(yi))− Λi(yi)

(
1− Ši(yi)

)}
,

where

ma =
µa

σ2
a

+
∑ni

j=1 (Yi(tij)− btij − βXi(tij)−Wi(tij))
ni

σ2
e

+ 1
σ2

a

,
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and

va =
1

ni

σ2
e

+ 1
σ2

a

,

[N∗i | ·] ∝ Pois(Ši(yi)Λi(yi)) + ∆i.

For the IOU parameter α, the full conditional density can be derived as:

[α | ·] ∝
n∏
i=1

[
Wi =

(
Wi(twi1), Wi(twi2), ..., Wi(twiiw )

)
| α, σ2

]
[ α]

∝
n∏
i=1

1

Σ
1
2
i

exp
(
−W

T
i Σ−1

i Wi

2

)
[ α]

∝
exp

(
−0.5σ2

∑n
i=1W

T
i

Σ−1
i

σ2 Wi

)
∏n
i=1

∣∣Σi

σ2

∣∣ 12 [ α] .

Finally, for the regression coefficients parameters γ and δ in the joint model, their
full conditional densities are given by

[γ | ·] ∝
n∏
i=1

(Λi(yi)f̃i(yi))∆i exp(−Λi(yi)(1− Ši(yi))) [γ]

∝ exp
n∑
i=1

(∆i log(Λi(yi)f̃i(yi))− Λi(yi)(1− Ši(yi)))[γ].

and

[δ | ·] ∝
n∏
i=1

(Λi(yi)f̃i(yi))∆i exp(−Λi(yi)(1− Ši(yi)))[δ]

∝ exp
n∑
i=1

(
∆i log (Λi(yi))− Λi(yi)

(
1− Ši(yi)

))
[δ]

These densities do not have a standard form.
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