BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

On Weakly π -Subcommutative near-Rings

P. NANDAKUMAR

Department of Mathematics Perunthalaivar Kamarajar Institute of Engineering and Technology (PKIET) (Government of Puducherry Institution) Nedungadu (Post), Karaikal-609 603, Union Territory of Puducherry, India drpnandakumar@gmail.com

Abstract. In this paper we introduce the concept of weakly π -subcommutative near-rings. We give some characterization of weakly π -subcommutative near-rings. We obtain necessary and sufficient conditions for a near-ring to be π -regular. We have found conditions under which \sqrt{K} is a two-sided N-subgroup, when K is a two-sided N-subgroup. Conditions are obtained for a weakly π -subcommutative near-ring to be subcommutative.

2000 Mathematics Subject Classification: 16Y30

Key words and phrases: Near-rings, subcommutative, regular, unit regular.

1. Introduction

A near-ring N is said to be weakly π -subcommutative if whenever a in N there exists a positive integer $n \geq 1$ such that $Na^n \subseteq aN$ and $a^n N \subseteq Na$. Throughout this paper N stands for a near-ring with identity, Id(N) denotes the set of all idempotent elements of N, C(N) denotes the center of N and Nil(N) denotes the set of all nilpotent elements of N. Recall that N is said to be regular (unit regular) if for each a in N, there exists y in N (a unit u in N) such that xyx = x(xux = x). A near-ring N is said to be an S-near-ring if $a \in Na$ for each a in N. The purpose of this paper is to extend the result obtained for rings by A. Badawi [1, Theorem 2] and [2, Theorem 1] to near-rings. We have also obtained the necessary and sufficient condition for a near-ring to be π -regular. If S is any nonempty subset of N, then the left annihilator of S in N is $l(S) = \{x \in N/xs = 0 \text{ for all } s \text{ in } S\}$. For any subset K of N, we write $\sqrt{K} = \{x \in N | x^n \in K, \text{ for some positive integer } n\}$. Very few theorems are available for the structure of \sqrt{K} . We have obtained conditions for \sqrt{K} to be two-sided N-subgroup, when K is a two-sided N-subgroup. A near-ring N is said to be subcommutative if Na = aN for each a in N. A natural example of a near-ring is given by the set $M(\Gamma)$ of all mappings of a group Γ into itself with

Received: October 4, 2006; Revised: August 5, 2008.

componentwise addition and composition. For the basic terminology and notation we refer to Pilz [6].

Definition 1.1. A near-ring N is said to be weakly π -subcommutative if whenever a in N there exists a positive integer $n \ge 1$ such that $Na^n \subseteq aN$ and $a^nN \subseteq Na$.

Remark 1.1. A subcommutative near-ring is weakly π -subcommutative. But the converse is not true as the following example shows.

Example 1.1. Consider the near-ring $(N, +, \cdot)$ defined on the Kleins four group (N, +) with $N = \{0, a, b, c\}$, where \cdot is defined as follows (as per scheme 16, p. 408 of Pilz [6]).

•	0	a	b	с
0	0	0	0	0
a	0	0	0	0
b	0	0	0	a
с	0	0	0	\mathbf{a}

 $(N, +, \cdot)$ is a near-ring which is weakly π -subcommutative but not subcommutative, since $bN = \{0, a\}$ where as $Nb = \{0\}$.

Lemma 1.1. If N is weakly π -subcommutative, then every idempotent of N is central.

Proof. Suppose that N is weakly π -subcommutative. Let e be an idempotent of N. Hence $Ne^n \subseteq eN$ and $e^n N \subseteq Ne$. Hence for every x in N, there exist y and z in N such that xe = ey and ex = ze. It follows that ex(=exe) = xe.

Lemma 1.2. Let $x \in N$. If x is unit regular, then x = eu for some idempotent e and a unit u.

Proof. Suppose x is unit regular. Then for some $v \in U(N)$, we have xvx = x. Let $e = xv \in Id(N)$ and $u = v^{-1}$. Then x = eu.

Theorem 1.1. Suppose that $Id(N) \subset C(N)$ and $x \in N$. Then x is regular if and only if x is unit regular.

Proof. Let $x \in N$ and let us assume that x is regular. Hence there exists $y \in N$ such that xyx = x. Clearly $xy, yx \in Id(N) \subset C(N)$. Hence xy = x(yx)y = (xy)yx = y(xy)x = yx. Let u = x - 1 + xy and $v = xy^2 - 1 + xy$. Then

$$uv = x(xy^{2} - 1 + xy) - 1(xy^{2} - 1 + xy) + xy(xy^{2} - 1 + xy)$$

$$= xyx(xy^{2} - 1 + xy) - xy + 1 - xy^{2} + xyxy^{2} - xy + xy$$

$$= x(yxxyy - yx + yxxy) - xy + 1 - xy^{2} + xy^{2}$$

$$= 1.$$

Similarly vu = 1. Thus $u, v \in U(N)$. Moreover $xvx = x(xy^2 - 1 + xy)x = x$. Hence x is unit regular.

Converse is obvious.

Corollary 1.1. [2, Theorem 2] Let K be a ring with 1 such that $Id(K) \subset C(K)$ and $x \in K$ is regular, then x is unit regular.

132

Corollary 1.2. Let N be weakly π -subcommutative. Then N is regular if and only if N is unit regular.

Theorem 1.2. Suppose that $Id(N) \subset C(N)$ and $x \in N$. Then x is π -regular if and only if there exists $e \in Id(N)$ such that ex is regular and $(1 - e)x \in Nil(N)$.

Proof. Let $x \in N$ and let us assume that x is π -regular. Since x is π -regular, for some $n \geq 1$, x^n is regular. Hence by Theorem 1.1 and Lemma 1.2, we have $x^n = eu$ for some $e \in Id(N)$ and $u \in U(N)$. Then

$$ex(u^{-1}x^{n-1})ex = ex(u^{-1}x^{n-1})xe = ex(u^{-1}eue) = ex(u^{-1}uee) = exe = eex = ex.$$

Hence ex is regular. Since (1 - e) is an idempotent,

$$[(1-e)x]^n = (1-e)x^n = (1-e)eu = 0.$$

For the converse, suppose for some $e \in Id(N)$, ex is regular and $(1-e)x \in Nil(N)$. Then for some $n \ge 1$,

$$[(1-e)x]^n = (1-e)x^n = 0.$$

Hence, $ex^n = x^n$. Since ex is regular, by Lemma 1.2, ex = cu for some $c \in Id(N)$ and $u \in U(N)$. Hence $(ex)^n = (cu)^n = cu^n$. But $(ex)^n = ex^n = x^n$. Thus $x^n = cu^n$. Let $y = cu^{-n}$. Then $x^n y x^n = x^n$ and hence x is π -regular.

Corollary 1.3. [1, Theorem 1] Let R be a ring. Suppose $Id(R) \subset C(R)$. Let $x \in R$. Then x is π -regular if and only if there exists $e \in Id(R)$ such that ex is regular and $(1-e)x \in Nil(R)$.

Corollary 1.4. Let N be weakly π -subcommutative and $x \in N$. Then x is π -regular if and only if there exists $e \in Id(N)$ such that ex is regular and $(1 - e)x \in Nil(N)$.

Theorem 1.3. Suppose $Id(N) \subset C(N)$. Let $x \in N$ such that x is π -regular. Then for some $e \in Id(N)$ and $u \in U(N)$ we have ex = eu.

Proof. Since x is π -regular, for some $m \geq 1$, we have $x^m = ev$ and ex is regular. Hence, by Theorem 1.1 and Lemma 1.2, ex = cu for some $c \in Id(N)$ and $u \in U(N)$. In fact, e = c. For, e(ex) = e(cu). But e(ex) = ex = cu. Thus, e(cu) = cuand therefore ec = c. Since $e, c \in C(N)$, we have $(ex)^m = ex^m = cu^m$. Since $x^m = ev, ex^m = ev = cu^m$. Hence $e = cu^m v^{-1}$. Thus $ec = cu^m v^{-1}c = cu^m v^{-1}$, since $c \in C(N)$. Hence ec = e. Since ec = c and ec = e, e = c. Thus ex = eu.

Corollary 1.5. [2, Lemma 2] Let R be a ring. Suppose $Id(R) \subset C(R)$. Let $x \in R$ such that x is π -regular. Then for some $e \in Id(R)$ and $u \in U(R)$ we have ex = eu.

Corollary 1.6. Let N be a weakly π -subcommutative. Let $x \in N$ such that x is π -regular. Then for some $e \in Id(N)$ and $u \in U(N)$ we have ex = eu.

Theorem 1.4. N is π -regular if and only if for each a in N there exists a positive integer $n \ge 1$ and an idempotent e such that $a^n \in Na^n = Ne$.

Proof. Let N be a π -regular near-ring. Then for every a in N there exists x in N and an integer t such that $a^t = a^t x a^t$. Let $xa^t = e$, then e is clearly an idempotent and $Na^t = Ne$. Since $a^t = a^t x a^t$, we have $a^t \in Na^t$. Therefore $a^t \in Na^t = Ne$.

Conversely, let $a \in N$, and let us assume that there exists an idempotent b and an integer t such that $a^t \in Na^t = Nb$. This gives $a^t = ub$ for some u in N. Also $b \in Nb = Na^t$ gives $b = ya^t$ for some y in N. Therefore

$$a^t y a^t = u b y a^t = u b b = u b^2 = u b = a^t$$

Hence N is a π -regular near-ring.

Lemma 1.3. If N is an S-near-ring, then the following are equivalent:

(a) $l(a) = l(a^2)$ for every a in N,

(b) $x^3 = x^2$ implies $x^2 = x$ for every x in N.

Proof. (a) \Rightarrow (b) : Suppose $x^3 = x^2$ for some x in N. Since N is an S-near-ring, x = ex for some e in N. Now $(e - x)x^2 = 0$. Hence by (a), (e - x)x = 0. Thus $x = ex = x^2$.

(b) \Rightarrow (a) : Let $a \in N$. Clearly $l(a) \subseteq l(a^2)$. Suppose $ya^2 = 0$ for some y in N. Now $(aya)^2 = ay(aa)ya = aya^2ya = a0$ so that $(aya)^3 = (aya)^2aya = a0(aya) = a0$. Thus $(aya)^3 = (aya)^2$. Hence by (b), $aya = (aya)^2 = a0$. Now $(ya)^2 = y(aya) = ya0$ so that $(ya)^3 = (ya)^2ya = (ya0)ya = ya0$. Thus $(ya)^3 = (ya)^2$. Again by (b), $(ya) = (ya)^2 = ya0$. Now $0 = ya^2 = (ya)a = (ya0)a = ya0 = ya$. Hence $y \in l(a)$ that is $l(a^2) \subseteq l(a)$. Thus $l(a) = l(a^2)$.

Definition 1.2. A near-ring N is said to be left bipotent if $Na = Na^2$ for all $a \in N$.

Definition 1.3. A near-ring N is strongly regular if for each a in N, there exists an element b in N such that $a = ba^2$.

Lemma 1.4. Let N be a left bipotent S-near-ring. Then the following are true:

- (a) $x^3 = x^2$ implies $x^2 = x$ for every x in N,
- (b) $l(a) = l(a^2)$ for every a in N.

Proof. (a) Suppose $x^3 = x^2$ for some x in N. Since N is a left bipotent S-near-ring, $x \in Nx = Nx^2$. Hence $x = yx^2$ for some y in N so that $x^2 = yx^3 = yx^2 = x$. (b) follows from Lemma 1.3 and from (a).

Theorem 1.5. If N is zero-symmetric and regular near-ring then the following are equivalent:

- (a) N is subcommutative,
- (b) N is left bipotent,
- (c) $N = l(a) \oplus Na$ for each a in N,
- (d) N is weakly π -subcommutative.

Proof. (a) \Rightarrow (b): Clearly $Na^2 \subseteq Na$. Let $a \in N$. Now a = axa for some x in N. Since N is subcommutative, ax = ya for some y in N. Hence $Na = Naxa = Nyaa = Nya^2 \subseteq Na^2$. These implies that N is left bipotent.

(b) \Rightarrow (c): Let *a* be in *N*. Since *N* is left bipotent, $Na = Na^2$. Hence for any $n \in N$, $na = xa^2$ for some *x* in *N*. Since n = (n - xa) + xa and $(n - xa) \in l(a)$ we hav N = l(a) + Na. Hence by [5, Corollary 2.7], l(a) is an ideal and since *N* is regular, a = axa for some *x* in *N*. Let e = xa then clearly Na = Ne and also we can easily shows that Na = Ne = l(1 - e). These implies that Na is an ideal. Suppose $y \in l(a) \cap Na$. Then ya = 0 and y = za for some *z* in *N*. Hence

 $0 = ya = (za)a = za^2$ so that $z \in l(a^2)$. By Lemma 1.4, we have $z \in l(a)$. Thus 0 = za = y. Hence the result.

(c) \Rightarrow (d): Since $N = l(a) \oplus Na$ for each a in N, 1 = y + na for some n in N. Then $a = ya + na^2$ and hence $a = na^2$ for some n in N. This implies that N is strongly regular. Hence by [6, 9.158] idempotent elements are central. Let a = axa for some x in N. For any $n \in N$, $na^2 = (na)a = n(axa)a = axnaa \in aN$ and so we have $Na^2 \subseteq aN$. Next $a^2n = a(axa)n = aanxa \subseteq Na$ and so we have $a^2N \subseteq Na$. These implies that N is weakly π -subcommutative.

(d) \Rightarrow (a): Let *a* be in *N*. Since *N* is regular, a = axa for some *x* in *N*. Since *ax* and *xa* are idempotents by Lemma 1.1, $Na = Naxa = axNa \subseteq aN$ and $aN = axaN = aNxa \subseteq Na$. Hence *N* is subcommutative.

Remark 1.2. The above theorem will fail if N is not zero-symmetric. Consider the near-ring $(N, +, \cdot)$ defined on the Klein's four group (N, +) with $N = \{0, a, b, c\}$, where \cdot is defined as follows (as per scheme 20, p.408 of Pilz [6]).

•	0	a	b	\mathbf{c}
0	0	0	0	0
a	a	a	a	\mathbf{a}
b	0	a	b	\mathbf{c}
\mathbf{c}	a	0	с	\mathbf{b}

 $(N, +, \cdot)$ is a near-ring which is regular with identity and left bipotent but not subcommutative, since $aN = \{a\}$ where as $Na = \{0, a\}$.

Definition 1.4. A near-ring N is said to be Expansion Possible near-ring (EP nearring) if given a, b in N for all $k \ge 1$, $(a + b)^{2k} = \sum n_i a^k n_j + \sum n'_i b^k n'_j + \sum a^k b^k$ where each summation contains only a finite number of terms.

Commutative rings, rings which are subcommutative and strongly regular nearrings are EP near-rings.

Theorem 1.6. If N is an EP near-ring and N is weakly π -subcommutative, then for any two-sided N-subgroup K, \sqrt{K} is also a two-sided N-subgroup of N.

Proof. Let $a, b \in \sqrt{K}$ there is a natural number k_1, k_2 such that $a^{k_1}, b^{k_2} \in K$. Let $k = \max\{k_1, k_2\}$. Therefore $a^k, b^k \in K$. Since N is an EP near-ring, $(a + b)^{2k} = \sum n_i a^k n_j + \sum n'_i b^k n'_j + \sum a^k b^k \in K$ where each summation contains only a finite number of terms. Therefore $(a + b) \in \sqrt{K}$. Hence \sqrt{K} is a subgroup of N. Let $g \in \sqrt{K}$ and let $n \in N$. Since N is weakly π -subcommutative, there exists a positive integer t such that $N(gn)^t \subseteq (gn)N$. By induction on k, we will prove $(gn)^{kt} \in g^k N$. When k = 1 the assertion is clearly true. Suppose that the assertion is true for k that is $(gn)^{kt} = g^k h$ for some $h \in N$. Since $N(gn)^t \subseteq (gn)N$, $h(gn)^t = (gn)n_1$, for some $n_1 \in N$. Then $(gn)^{(k+1)t} = (gn)^{kt}(gn)^t = g^k h(gn)^t = g^k(gn)n_1 \in g^{k+1}N$. This completes the induction. Hence we obtain $gn \in \sqrt{K}$. Since N is weakly π -subcommutative, there exists a positive integer m such that $Ng^m \subseteq gN$. Then $(ng)^{mt+1} = n(gn)^{mt}g \in Ng^mN \subseteq gN \subseteq \sqrt{K}$. Hence $ng \in \sqrt{K}$. These proves that \sqrt{K} is a two-sided N-subgroup of N.

P. Nandakumar

References

- [1] A. Badawi, On semicommutative π -regular rings, Comm. Algebra 22 (1994), no. 1, 151–157.
- [2] A. Badawi, On abelian π -regular rings, Comm. Algebra 25 (1997), no. 4, 1009–1021.
- [3] P. Dheena, A generalization of strongly regular near-rings, Indian J. Pure Appl. Math. 20 (1989), no. 1, 58–63.
- [4] J. L. Jat and S. C. Choudhary, On left bipotent near-rings, Proc. Edinburgh Math. Soc. 22 (1979), no. 2, 99–107.
- [5] Y. S. Park and W. J. Kim, On structures of left bipotent near-rings, Kyungpook Math. J. 20 (1980), no. 2, 177–181.
- [6] G. Pilz, Near-rings, Second edition, North-Holland, Amsterdam, 1983.

136