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Abstract. The Eisenhart problem of finding parallel tensors is solved for the

symmetric case in the regular f -Kenmotsu framework. In this way, the Olszack-
Rosca example of Einstein manifolds provided by f -Kenmotsu manifolds via

locally symmetric Ricci tensors is recovered as well as a case of Killing vec-

tor fields. Some other classes of Einstein-Kenmotsu manifolds are presented.
Our result is interpreted in terms of Ricci solitons and special quadratic first

integrals.
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1. Introduction

In 1923, Eisenhart [9] proved that if a positive definite Riemannian manifold (M, g)
admits a second order parallel symmetric covariant tensor other than a constant
multiple of the metric tensor, then it is reducible. In 1926, Levy [18] proved that
a second order parallel symmetric non-degenerated tensor α in a space form is pro-
portional to the metric tensor. Note that this question can be considered as the
dual to the the problem of finding linear connections making parallel a given tensor
field; a problem which was considered by Wong in [35]. Also, the former question
implies topological restrictions, namely, if the (pseudo) Riemannian manifold M ad-
mits a parallel symmetric (0, 2) tensor field, then M is locally the direct product
of a number of (pseudo) Riemannian manifolds [36] (cited by [37]). Another situa-
tion where the parallelism of α is involved appears in the theory of totally geodesic
maps, namely, as is point out in [22, p. 114], ∇α = 0 is equivalent with the fact
that 1 : (M, g)→ (M,α) is a totally geodesic map.
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While both Eisenhart and Levy work locally, Ramesh Sharma gives in [26] a global
approach based on Ricci identities. In addition to space-forms, Sharma considered
this Eisenhart problem in contact geometry [27, 28, 29], for example, for K-contact
manifolds in [28]. Since then, several other studies appeared in various contact man-
ifolds: Nearly-Sasakian [33], (para) P -Sasakian [6, 19, 32], α-Sasakian [5]. Another
framework was that of quasi-constant curvature in [13]. Also, contact metrics with
nonvanishing ξ-sectional curvature are studied in [10].

Returning to contact geometry, an important class of manifolds are introduced by
Kenmotsu in [15] and generalized by Olszack and Rosca in [21]. Recently, there is an
increasing flow of papers in this direction, e.g., that of our Professor N. Papaghiuc
[23, 24] to whom we dedicate this short note. Motivated by this fact, we studied the
case of f -Kenmotsu manifolds satisfying a special condition called regular and show
that a symmetric parallel tensor field of second order must be a constant multiple
of the Riemannian metric. There are three remarks regarding our result:

(i) It is in agreement with what happens in all previously recalled contact ge-
ometries for the symmetric case,

(ii) it is obtained in the same manner as in Sharma’s paper [26], and
(iii) yields a class of Einstein manifolds already indicated by Olszack and Rosca

but with a more complicated proof.

Let us point out also that the anti-symmetric case appears without proof in [20].
Our main result is connected with the recent theory of Ricci solitons, a subject

included in the Hamilton-Perelman approach (and proof) of Poincaré conjecture.
Ricci solitons in contact geometry were first studied by Sharma in [11] and [30]; the
preprint [34] is also available in arxiv. In these papers the K-contact and (k, µ)-
contact (including Sasakian) cases are treated; thus our treatment for the Kenmotsu
variant of almost contact geometry seems to be new.

Our work is structured as follows. The first section is a very brief review of Ken-
motsu geometry and Ricci solitons. The next section is devoted to the (symmetric
case of) Eisenhart problem in a f -Kenmotsu manifold and several situations yield-
ing Einstein manifolds are derived. Also, the relationship with the Ricci solitons is
pointed out. The last section offers a dynamical picture of the subject via Killing
vector fields and quadratic first integrals of a special type.

2. f-Kenmotsu manifolds. Ricci solitons

Let M be a real 2n+ 1-dimensional differentiable manifold endowed with an almost
contact metric structure (ϕ, ξ, η, g):

(a) ϕ2 = −I + η ⊗ ξ, (b) η(ξ) = 1, (c) η ◦ ϕ = 0,

(d) ϕ(ξ) = 0, (e) η(X) = g(X, ξ),(2.1)

(f) g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ),

for any vector fields X,Y ∈ X (M) where I is the identity of the tangent bundle
TM , ϕ is a tensor field of (1, 1)-type, η is a 1-form, ξ is a vector field and g is a
metric tensor field. Throughout the paper all objects are differentiable of class C∞.
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We say that (M,ϕ, ξ, η, g) is an f -Kenmotsu manifold if the Levi-Civita connec-
tion of g satisfy [20]:

(2.2) (∇Xϕ)(Y ) = f(g(ϕX, Y )ξ − ϕ(X)η(Y ))

where f ∈ C∞(M) is strictly positive and df ∧η = 0 holds. A f = constant ≡ β > 0
is called β-Kenmotsu manifold with the particular case f ≡ 1-Kenmotsu manifold
which is a usual Kenmotsu manifold [15].

In a general f -Kenmotsu manifold we have, [21]:

(2.3) ∇Xξ = f(X − η(X)ξ)

and the curvature tensor field:

(2.4) R(X,Y )ξ = f2(η(X)Y − η(Y )X) + Y (f)ϕ2X −X(f)ϕ2Y

while the Ricci curvature and Ricci tensor are, [16]:

(2.5) S(ξ, ξ) = −2n(f2 + ξ(f))

(2.6) Q(ξ) = −2nf2ξ − ξ(f)ξ − (2n− 1)gradf.

In the last part of this section we recall the notion of Ricci solitons according
to [30, p. 139]. On the manifold M , a Ricci soliton is a triple (g, V, λ) with g a
Riemannian metric, V a vector field and λ a real scalar such that:

(2.7) LV g + 2S + 2λg = 0.

The Ricci soliton is said to be shrinking, steady or expanding according as λ is
negative, zero or positive.

3. Parallel symmetric second order tensors and Ricci solitons in f-Kenmotsu
manifolds

Fix α a symmetric tensor field of (0, 2)-type which we suppose to be parallel with
respect to ∇ i.e. ∇α = 0. Applying the Ricci identity

∇2α(X,Y ;Z,W )−∇2(X,Y ;W,Z) = 0

we obtain the relation (1.1) of [26, p. 787]:

(3.1) α(R(X,Y )Z,W ) + α(Z,R(X,Y )W ) = 0,

which is fundamental in all papers treating this subject. Replacing Z = W = ξ and
using (2.4) results in

(3.2) f2[η(X)α(Y, ξ)− η(Y )α(X, ξ)] + Y (f)α(ϕ2X, ξ)−X(f)α(ϕ2Y, ξ) = 0,

by the symmetry of α. With X = ξ we derive

[f2 + ξ(f)][α(Y, ξ)− η(Y )α(ξ, ξ)] = 0

and supposing f2 + ξ(f) 6= 0 it results

(3.3) α(Y, ξ) = η(Y )α(ξ, ξ).

Let us call a regular f -Kenmotsu manifold a f -Kenmotsu manifold with f2+ξ(f) 6= 0
and remark that β-Kenmotsu manifolds are regular.

Differentiating the last equation covariantly with respect to X we have

(3.4) α(∇XY, ξ) + f [α(X,Y )− η(X)η(Y )α(ξ, ξ)] = X(η(Y ))α(ξ, ξ),
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which means via (3.3) with Y → ∇XY :

f [α(X,Y )− η(X)η(Y )α(ξ, ξ)] = [X(g(Y, ξ))− g(∇XY, ξ)]α(ξ, ξ)

= g(Y,∇Xξ)α(ξ, ξ) = f [g(X,Y )− η(X)η(Y )]α(ξ, ξ).(3.5)

From the positiveness of f we deduce that

(3.6) α(X,Y ) = α(ξ, ξ)g(X,Y )

which together with the standard fact that the parallelism of α implies the α(ξ, ξ)
is a constant, via (2.3) yields:

Theorem 3.1. A symmetric parallel second order covariant tensor in a regular f -
Kenmotsu manifold is a constant multiple of the metric tensor. In other words, a
regular f -Kenmotsu metric is irreducible which means that the tangent bundle does
not admits a decomposition TM = E1 ⊕ E2 parallel with respect of the Levi-Civita
connection of g.

Corollary 3.1. A locally Ricci symmetric (∇S ≡ 0) regular f -Kenmotsu manifold
is an Einstein manifold.

Remark 3.1.
(1) The particular case of dimension three and β-Kenmotsu of our theorem

appears in Theorem 3.1 from [7, p. 2689]. The above corollary has been
proved by Olszack and Rosca in another way.

(2) In [2] it is shown the equivalence of the following statements for an Kenmotsu
manifold:

(i) Is Einstein,
(ii) is locally Ricci symmetric,
(iii) is Ricci semi-symmetric i.e. R · S = 0 where

(R(X,Y ) · S)(X1, X2) = −S(R(X,Y )X1, X2)− S(X1, R(X,Y )X2).

The same implication (iii)→ (i) for Kenmotsu manifolds is Theorem 1 from
[14, p. 438]. But we have the implication (iii) → (i) in the more general
framework of regular f -Kenmotsu manifols since R · S = 0 means exactly
(3.1) with α replaced by S. Every semisymmetric manifold, i.e. R · R = 0,
is Ricci-semisymmetric but the converse statement is not true.

In conclusion:

Proposition 3.1. A Ricci-semisymmetric, particularly semisymmetric, regular f -
Kenmotsu manifold is Einstein.

Another class of spaces related to the Ricci tensor was introduced in [31]; namely
a Riemannian manifold is a special weakly Ricci symmetric space if there exists a
1-form ρ such that

(3.7) (∇XS)(Y, Z) = 2ρ(X)S(Y,Z) + ρ(Y )S(Z,X) + ρ(Z)S(X,Y ).

The same condition was sometimes called generalized pseudo-Ricci symmetric man-
ifold [12] or simply pseudo-Ricci symmetric manifold [3]. By taking X = Y = Z = ξ
yields

(3.8) ξ(S(ξ, ξ)) = 4ρ(ξ)S(ξ, ξ)
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and then for a β-Kenmotsu manifold we get ρ(ξ) = 0. Returning to (3.7) with
Y = Z = ξ will result in ρ(X) = 0 for every vector field X and thus lead to a
generalization of Theorem 3.3. in [1, p. 96].

Proposition 3.2. A β-Kenmotsu manifold which is special weakly Ricci symmetric
is an Einstein space.

We close this section with applications of our Theorem to Ricci solitons:

Corollary 3.2. Suppose that on a regular f -Kenmotsu manifold the (0, 2)-type field
LV g+2S is parallel where V is a given vector field. Then (g, V ) yield a Ricci soliton.
In particular, if the given regular f - Kenmotsu manifold is Ricci-semisymmetric or
semisymmetric with LV g parallel, we have the same conclusion.

Naturally, two situations appear regarding the vector field V : V ∈ spanξ and
V⊥ξ but the second class seems far too complex to analyse in practice. For this
reason it is appropriate to investigate only the case V = ξ.

We are interested in expressions for Lξg + 2S. A straightforward computation
gives

(3.9) Lξg(X,Y ) = 2f(g(X,Y )− η(X)η(Y )) = 2fg(ϕX,ϕY ).

A general expression of S is known by us only for the the 3-dimensional case and
η-Einstein Kenmotsu manifolds. Let us treat these situations in the following manner

(I) [8, p. 251]:

S(X,Y ) =
(r

2
+ ξ(f) + f2

)
g(X,Y )−

(r
2

+ ξ(f) + 3f2
)
η(X)η(Y )

− Y (f)η(X)−X(f)η(Y )(3.10)

where r is the scalar curvature. Then, for a 3-dimensional f -Kenmotsu manifold we
obtain

α := (Lξg + 2S)(X,Y )

= (r + 2ξ(f) + 2f + 2f2)g(X,Y )− (r + 2ξ(f) + 2f + 6f2)η(X)η(Y )

− 2Y (f)η(X)− 2X(f)η(Y )(3.11)

while, for β-Kenmotsu

(3.12) α(X,Y ) = (r + 2β + 2β2)g(ϕX,ϕY )− 4β2η(X)η(Y ),

(∇Zα)(X,Y ) = Z(r)g(ϕX,ϕY )− β(r + 2β + 6β2)[η(X)g(ϕY, ϕZ)

+ η(Y )g(ϕX,ϕZ)].(3.13)

Substituting Z = ξ,X = Y ∈ (spanξ)⊥, and respectively X = Y = Z ∈ (spanξ)⊥

in (3.13), we derive that r is a constant, provided α is parallel. Thus, we can state
the following.

Proposition 3.3. A 3-dimensional β-Kenmotsu Ricci soliton (g, ξ, λ) is expanding
and with constant scalar curvature.

Proof. λ = −α(ξ, ξ)/2 = 2β2.
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At this point we remark that the Ricci solitons of almost contact geometry stud-
ied in [30] and [34] in relationship with the Sasakian case are shrinking and this
observation is in accordance with the diagram of Chinea from [4] that Sasakian and
Kenmotsu are opposite sides of the trans-Sasakian moon. Also, the expanding char-
acter may be considered as a manifestation of the fact that a β-Kenmotsu manifold
can not be compact.

(II) Recall that the metric g is called η-Einstein if there exists two real functions
a, b such that the Ricci tensor of g is

S = ag + bη ⊗ η.
For an η-Einstein Kenmotsu manifold we have, [14, p. 441]:

(3.14) S(X,Y ) =
( r

2n
+ 1

)
g(X,Y )−

( r

2n
+ 2n+ 1

)
η(X)η(Y )

and then

(3.15) α(X,Y ) =
( r
n

+ 4
)
g(X,Y )−

( r
n

+ 4 + 4n
)
η(X)η(Y )

(∇Zα)(X,Y ) =
1
n
Z(r)g(ϕX,ϕY )−

( r
n

+ 4n+ 4
)

[η(Y )g(ϕX,ϕZ)

+ η(X)g(ϕY, ϕZ)].(3.16)

Proposition 3.4. An η-Einstein Kenmotsu Ricci soliton (g, ξ, λ) is expanding and
with constant scalar curvature, thus Einstein.

Proof. λ = −α(ξ, ξ)/2 = 2n. The same computation as in Proposition 3.3 implies
constant scalar curvature.

4. The dynamical point of view

We begin this section with a straightforward consequence of the main theorem, which
also appears in the Olzack-Rosca paper, and is related to the last part of Corollary
3.2.

Corollary 4.1. An affine Killing vector field in a β-Kenmotsu manifold is Killing.
As consequence, that scalar provided by the Ricci soliton (g, V ) of a Ricci-semi-
symmetric β-Kenmotsu manifold is λ = −S(V, V ).

Proof. (Inspired by [10, p. 504]), fix X ∈ X (M) an affine Killing vector field:
∇LXg = 0. From Theorem 3.1 it follows that X is conformal Killing i.e. LXg = cg;
more precisely X is homothetic since c is a constant. Lie differentiating the identity
(2.5) along X and using LXS = 0 (since X is homothetic) and equation (2.6) we
obtain g(LXξ, ξ) = 0. Hence c = (LXg)(ξ, ξ) = −2g(LXξ, ξ) = 0. Thus X is
Killing.

Let us present another dynamical picture of our results. Let (M,∇) be a m-
dimensional manifold endowed with a symmetric linear connection. A quadratic
first integral (QFI in short) for the geodesics of ∇ is defined by F = aij

dxi

dt
dxj

dt with
a symmetric 2-tensor field a = (aij) satisfying the Killing-type equations

(4.1) aij:k + ajk:i + aki:j = 0,
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where, as usual, the double dot means the covariant derivative with respect to ∇.
The QFI defined by a is called special (SQFI) if aij:k = 0 and the maximum

number of linearly independent SQFI a pair (M,∇) can admit is m(m+1)
2 ; a flat

space will admit this number. In [17, p. 117] it is shown that a non-flat Riemannian
manifold may admit as many asMS(m) = 1+ (m−2)(m−1)

2 linearly independent SQFI.
Therefore, for an almost contact manifold (m = 2n + 1) the maximum number of
SQFI is MS(2n+ 1) = 1 + n(2n− 1) > 1.

Our main result implies that for a regular f -Kenmotsu manifold the number of
SQFI is exactly 1 and the only SQFI is the kinetic energy F = gij

dxi

dt
dxj

dt . So,

Proposition 4.1. There exist almost contact manifolds which does not admit MS

(2n+ 1) SQFI.

It remains as an open problem to find examples of almost contact metrics with
exactly MS(2n+ 1) SQFI.
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