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Abstract. The Eisenhart problem of finding parallel tensors is solved for the
symmetric case in the regular f-Kenmotsu framework. In this way, the Olszack-
Rosca example of Einstein manifolds provided by f-Kenmotsu manifolds via
locally symmetric Ricci tensors is recovered as well as a case of Killing vec-
tor fields. Some other classes of Einstein-Kenmotsu manifolds are presented.
Our result is interpreted in terms of Ricci solitons and special quadratic first
integrals.
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1. Introduction

In 1923, Eisenhart [9] proved that if a positive definite Riemannian manifold (M, g)
admits a second order parallel symmetric covariant tensor other than a constant
multiple of the metric tensor, then it is reducible. In 1926, Levy [18] proved that
a second order parallel symmetric non-degenerated tensor « in a space form is pro-
portional to the metric tensor. Note that this question can be considered as the
dual to the the problem of finding linear connections making parallel a given tensor
field; a problem which was considered by Wong in [35]. Also, the former question
implies topological restrictions, namely, if the (pseudo) Riemannian manifold M ad-
mits a parallel symmetric (0,2) tensor field, then M is locally the direct product
of a number of (pseudo) Riemannian manifolds [36] (cited by [37]). Another situa-
tion where the parallelism of « is involved appears in the theory of totally geodesic
maps, namely, as is point out in [22, p. 114], Va = 0 is equivalent with the fact
that 1: (M, g) — (M, ) is a totally geodesic map.
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While both Eisenhart and Levy work locally, Ramesh Sharma gives in [26] a global
approach based on Ricci identities. In addition to space-forms, Sharma considered
this Fisenhart problem in contact geometry [27, 28, 29|, for example, for K-contact
manifolds in [28]. Since then, several other studies appeared in various contact man-
ifolds: Nearly-Sasakian [33], (para) P-Sasakian [6, 19, 32], a-Sasakian [5]. Another
framework was that of quasi-constant curvature in [13]. Also, contact metrics with
nonvanishing &-sectional curvature are studied in [10].

Returning to contact geometry, an important class of manifolds are introduced by
Kenmotsu in [15] and generalized by Olszack and Rosca in [21]. Recently, there is an
increasing flow of papers in this direction, e.g., that of our Professor N. Papaghiuc
[23, 24] to whom we dedicate this short note. Motivated by this fact, we studied the
case of f-Kenmotsu manifolds satisfying a special condition called regular and show
that a symmetric parallel tensor field of second order must be a constant multiple
of the Riemannian metric. There are three remarks regarding our result:

(i) It is in agreement with what happens in all previously recalled contact ge-
ometries for the symmetric case,
(ii) it is obtained in the same manner as in Sharma’s paper [26], and
(iii) yields a class of Einstein manifolds already indicated by Olszack and Rosca
but with a more complicated proof.

Let us point out also that the anti-symmetric case appears without proof in [20].

Our main result is connected with the recent theory of Ricci solitons, a subject
included in the Hamilton-Perelman approach (and proof) of Poincaré conjecture.
Ricci solitons in contact geometry were first studied by Sharma in [11] and [30]; the
preprint [34] is also available in arxiv. In these papers the K-contact and (k, u)-
contact (including Sasakian) cases are treated; thus our treatment for the Kenmotsu
variant of almost contact geometry seems to be new.

Our work is structured as follows. The first section is a very brief review of Ken-
motsu geometry and Ricci solitons. The next section is devoted to the (symmetric
case of) Eisenhart problem in a f-Kenmotsu manifold and several situations yield-
ing Einstein manifolds are derived. Also, the relationship with the Ricci solitons is
pointed out. The last section offers a dynamical picture of the subject via Killing
vector fields and quadratic first integrals of a special type.

2. f-Kenmotsu manifolds. Ricci solitons

Let M be a real 2n + 1-dimensional differentiable manifold endowed with an almost
contact metric structure (p,&, 1, g9):

(@) ¢*=-I+n2& () 1€ =1 (c) nop=0,
(2.1) (d) ©(€) =0, (e) n(X)=yg(X,5),
(f) 9(eX,9Y) =g(X,Y) —n(X)n(Y),
for any vector fields X,Y € X (M) where T is the identity of the tangent bundle

TM, ¢ is a tensor field of (1,1)-type, n is a 1-form, ¢ is a vector field and g is a
metric tensor field. Throughout the paper all objects are differentiable of class C*°.
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We say that (M, p,&,1,9) is an f-Kenmotsu manifold if the Levi-Civita connec-
tion of g satisfy [20]:
(2.2) (Vxe)(Y) = f(g(pX,Y)E — o(X)n(Y))
where f € C°°(M) is strictly positive and df A = 0 holds. A f = constant =3 >0
is called (-Kenmotsu manifold with the particular case f = 1-Kenmotsu manifold

which is a usual Kenmotsu manifold [15].
In a general f-Kenmotsu manifold we have, [21]:

(2.3) Vx& = f(X —n(X)E)

and the curvature tensor field:

(2.4) R(X,Y)E = fP(n(X)Y —n(Y)X) +Y(f)p’X — X(f)¢’Y
while the Ricci curvature and Ricci tensor are, [16]:

(2.5) S(,€) = —2n(f* +£(f))

(2.6) Q(€) = —2nf*¢ — £(f)¢ — (2n — 1)gradf.

In the last part of this section we recall the notion of Ricci solitons according
to [30, p. 139]. On the manifold M, a Ricci soliton is a triple (g, V,\) with g a
Riemannian metric, V' a vector field and A a real scalar such that:

(2.7) Lyg+25+2Xg=0.

The Ricci soliton is said to be shrinking, steady or expanding according as A is
negative, zero or positive.

3. Parallel symmetric second order tensors and Ricci solitons in f-Kenmotsu
manifolds

Fix a a symmetric tensor field of (0,2)-type which we suppose to be parallel with
respect to V i.e. Va = 0. Applying the Ricci identity

V2a(X,Y; Z,W) -V X,Y;W,Z) =0
we obtain the relation (1.1) of [26, p. 787]:
(3.1) a(R(X,Y)Z, W)+ a(Z, R(X,Y)W) =0,
which is fundamental in all papers treating this subject. Replacing Z = W = £ and
using (2.4) results in
(32)  FhX)aY,€) —n(¥)a(X, 8] + Y (Ha(¢?X,€) - X(Ha(e?Y,€) =0,
by the symmetry of a. With X = £ we derive

2+ €NV €) — n(¥)a(&,€)] =0

and supposing f2 + £(f) # 0 it results
(3.3) a(Y,€) = n(Y)a(&.€).
Let us call a regular f-Kenmotsu manifold a f-Kenmotsu manifold with f2+¢&(f) # 0

and remark that g-Kenmotsu manifolds are regular.
Differentiating the last equation covariantly with respect to X we have

(3-4) a(VxY, &) + fla(X,Y) = n(X)n(Y)a(§, )] = X(n(Y))a(§, §),
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which means via (3.3) with Y — VxY=:
fl(X,Y) =n(X)n(Y)a(&, O] = [X(9(Y;€)) — 9(VxY, §]a(E,€)

(3.5) =g(Y,Vx§a(&, &) = flg(X.Y) = n(X)n(Y)]a(, §).
From the positiveness of f we deduce that
(3.6) a(X,Y) = a(§,§)g(X,Y)

which together with the standard fact that the parallelism of « implies the «(&,€)
is a constant, via (2.3) yields:

Theorem 3.1. A symmetric parallel second order covariant tensor in a reqular f-
Kenmotsu manifold is a constant multiple of the metric tensor. In other words, a
reqular f-Kenmotsu metric is irreducible which means that the tangent bundle does
not admits a decomposition TM = FE1 ® FEy parallel with respect of the Levi-Civita
connection of g.

Corollary 3.1. A locally Ricci symmetric (V.S = 0) regular f-Kenmotsu manifold
is an Einstein manifold.

Remark 3.1.

(1) The particular case of dimension three and (-Kenmotsu of our theorem
appears in Theorem 3.1 from [7, p. 2689]. The above corollary has been
proved by Olszack and Rosca in another way.

(2) In [2] it is shown the equivalence of the following statements for an Kenmotsu
manifold:

(i) Is Einstein,

(ii) is locally Ricci symmetric,
(iii) is Ricci semi-symmetric i.e. R-S = 0 where
(R(X,Y) - 9)(X1, Xp) = =S(R(X,Y) X3, Xp) — S(X1, R(X,Y) X3).
The same implication (iii) — (i) for Kenmotsu manifolds is Theorem 1 from
[14, p. 438]. But we have the implication (iii) — (i) in the more general
framework of regular f-Kenmotsu manifols since R - S = 0 means exactly

(3.1) with « replaced by S. Every semisymmetric manifold, i.e. R- R = 0,
is Ricci-semisymmetric but the converse statement is not true.

In conclusion:

Proposition 3.1. A Ricci-semisymmetric, particularly semisymmetric, regular f-
Kenmotsu manifold is Einstein.

Another class of spaces related to the Ricci tensor was introduced in [31]; namely
a Riemannian manifold is a special weakly Ricci symmetric space if there exists a
1-form p such that

(37 (VxS)(V.Z) = 2p(X)S(Y. Z) + p(Y)S(Z. X) + p(Z)S(X,Y).

The same condition was sometimes called generalized pseudo-Ricci symmetric man-
ifold [12] or simply pseudo-Ricci symmetric manifold [3]. By taking X =Y =27 =¢
yields

(3.8) £(5(£,€)) = 4p(£)S(&,€)
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and then for a S-Kenmotsu manifold we get p(§) = 0. Returning to (3.7) with
Y = Z = £ will result in p(X) = 0 for every vector field X and thus lead to a
generalization of Theorem 3.3. in [1, p. 96].

Proposition 3.2. A §-Kenmotsu manifold which is special weakly Ricci symmetric
1s an Einstein space.

We close this section with applications of our Theorem to Ricci solitons:

Corollary 3.2. Suppose that on a reqular f-Kenmotsu manifold the (0,2)-type field
Ly g+28 is parallel where V is a given vector field. Then (g, V') yield a Ricci soliton.
In particular, if the given regular f- Kenmotsu manifold is Ricci-semisymmetric or
semisymmetric with Ly g parallel, we have the same conclusion.

Naturally, two situations appear regarding the vector field V: V € spané and
V L& but the second class seems far too complex to analyse in practice. For this
reason it is appropriate to investigate only the case V = €.

We are interested in expressions for L¢g + 25. A straightforward computation
gives
(3.9) Leg(X,Y) =2f(9(X,Y) —n(X)n(Y)) = 2fg(¢X, ¢Y).

A general expression of S is known by us only for the the 3-dimensional case and
n-Einstein Kenmotsu manifolds. Let us treat these situations in the following manner

(I) [8, p. 251]:

SCY) = (5+E0) +12) 9, Y) = (5 +€00) +372) n(X)n(Y)
(3.10) — Y (Fn(X) = X(Fn(Y)

where r is the scalar curvature. Then, for a 3-dimensional f-Kenmotsu manifold we
obtain

a = (Leg+29)(X,Y)
= (r+26(f) +2f +2f)g(X,Y) = (r+26(f) + 2 + 6/)n(X)n(Y)

(3.11) =2V (f)n(X) —2X(f)n(Y)

while, for S-Kenmotsu

(3.12) a(X,Y) = (r+28+28%)g(0X,Y) — 48 n(X)n(Y),
(Vza)(X,Y) = Z(r)g(eX, oY) — B(r + 28 + 66%)[n(X)g(¢Y, ¢Z)

(3.13) +n(Y)g(pX, 0Z)].

Substituting Z = ¢, X =Y € (spanf)=*, and respectively X =Y = Z € (span&)~*
in (3.13), we derive that r is a constant, provided « is parallel. Thus, we can state
the following.

Proposition 3.3. A 3-dimensional 5-Kenmotsu Ricci soliton (g,&,\) is expanding
and with constant scalar curvature.

Proof. A = —a(&,£)/2 =232 1
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At this point we remark that the Ricci solitons of almost contact geometry stud-
ied in [30] and [34] in relationship with the Sasakian case are shrinking and this
observation is in accordance with the diagram of Chinea from [4] that Sasakian and
Kenmotsu are opposite sides of the trans-Sasakian moon. Also, the expanding char-
acter may be considered as a manifestation of the fact that a S-Kenmotsu manifold
can not be compact.

(IT) Recall that the metric g is called n-Finstein if there exists two real functions
a,b such that the Ricci tensor of g is

S=ag+bnemn.

For an n-Einstein Kenmotsu manifold we have, [14, p. 441]:

(3.14) S(X,Y) = (% + 1) 9(X,Y) - (% +2n+ 1) n(X)n(Y)
and then
(3.15) a(X,Y) = (% +4) g(X,Y) — (% + 44 4n) n(X)n(Y)

(V2a)(X,Y) = = Z()g(eX, o¥) — (L + 40+ 4) (¥ )g(0X, 92)
(3.16) +n(X)g(pY, 0Z)].

Proposition 3.4. An n-Einstein Kenmotsu Ricci soliton (g,&, \) is expanding and
with constant scalar curvature, thus Finstein.

Proof. A = —a(£,£)/2 = 2n. The same computation as in Proposition 3.3 implies
constant scalar curvature. 1

4. The dynamical point of view

We begin this section with a straightforward consequence of the main theorem, which
also appears in the Olzack-Rosca paper, and is related to the last part of Corollary
3.2.

Corollary 4.1. An affine Killing vector field in a B-Kenmotsu manifold is Killing.
As consequence, that scalar provided by the Ricci soliton (g,V) of a Ricci-semi-
symmetric B-Kenmotsu manifold is A = —S(V, V).

Proof. (Inspired by [10, p. 504]), fix X € X(M) an affine Killing vector field:
VLxg = 0. From Theorem 3.1 it follows that X is conformal Killing i.e. Lxg = cg;
more precisely X is homothetic since c¢ is a constant. Lie differentiating the identity
(2.5) along X and using LxS = 0 (since X is homothetic) and equation (2.6) we
obtain g(Lx&,€) = 0. Hence ¢ = (Lxg)(&, &) = —29(LxE,€) = 0. Thus X is
Killing. 1

Let us present another dynamical picture of our results. Let (M,V) be a m-
dimensional manifold endowed with a symmetric linear connection. A quadratic
first integral (QFI in short) for the geodesics of V is defined by F = aijdd—f% with
a symmetric 2-tensor field a = (a;;) satisfying the Killing-type equations

(4.1) Qijik + Qjkii + kiiy = 0,
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where, as usual, the double dot means the covariant derivative with respect to V.
The QFI defined by a is called special (SQFI) if a;;., = 0 and the maximum

number of linearly independent SQFI a pair (M,V) can admit is W; a flat
space will admit this number. In [17, p. 117] it is shown that a non-flat Riemannian
manifold may admit as many as Mg(m) = 1+% linearly independent SQFT.
Therefore, for an almost contact manifold (m = 2n + 1) the maximum number of
SQFTis Ms(2n+1)=1+n(2n—1) > 1.

Our main result implies that for a regular f-Kenmotsu manifold the number of
SQFI is exactly 1 and the only SQFT is the kinetic energy F = gijdd—’;%. So,

Proposition 4.1. There exist almost contact manifolds which does not admit Mg
(2n+1) SQFL

It remains as an open problem to find examples of almost contact metrics with
exactly Mg(2n + 1) SQFL.
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