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1. Introduction

This paper is concerned with the existence of periodic solutions for the following
p-Laplacian system:

(1.1) −(|u′(t)|p−2u′(t))′ = ∇F (t, u(t)), a.e. t ∈ R,

where p ≥ 2, T > 0 and F : R × RN → R with N ≥ 2 is T -periodic in its first
variable and satisfies the following assumption:

(A) F (t, x) is measurable in t for all x ∈ RN and continuously differentiable in x
for a.e. t ∈ [0, T ] and there exist a ∈ C(R+,R+) and b ∈ L1(0, T ; R+) such
that

|F (t, x)| ≤ a(|x|)b(t), |∇F (t, x)| ≤ a(|x|)b(t)
for all x ∈ RN and a.e. t ∈ [0, T ].

When p = 2, there are many existence results of periodic solutions for system
(1.1) (see [5–11] and references therein). However, in these references, all authors
studied only the existence of solutions. In [12] and [15], by using the local Linking
Theorem, the authors considered the existence of nontrivial solutions. In [13], Tao
and Tang considered the existence of non-constant solutions and they obtained the
following theorem:
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Theorem 1.1. Assume that F satisfies (A) and the following conditions:

F (t, x) ≥ 0, ∀ (t, x) ∈ [0, T ]× RN ,

lim
|x|→0

F (t, x)
|x|2

<
ω2

2
uniformly for a.e. t ∈ [0, T ],

lim inf
|x|→∞

F (t, x)
|x|2

>
ω2

2
uniformly for a.e. t ∈ [0, T ],

where ω = 2π/T . There exist constants r > 2 and µ > r − 2 such that

lim sup
|x|→∞

F (t, x)
|x|r

<∞ uniformly for a.e. t ∈ [0, T ],

lim inf
|x|→∞

(
∇F (t, x), x

)
− 2F (t, x)

|x|µ
> 0 uniformly for a.e. t ∈ [0, T ].

Then system (1.1) with p = 2 has a non-constant T -periodic solution.

When p > 1, in [14] and [16], the authors considered system (1.1) by using the dual
least action principle and the Saddle Point Theorem, respectively, and they also only
obtained the existence results of solutions for system (1.1). In our paper, motivated
by idea of [13, 14, 16], we shall use the method in [13] to study the existence of
non-constant solutions for system (1.1) with p ≥ 2. The corresponding conditions
in Theorem 1.1 are generalized and it is proved that under these conditions, the
corresponding energy functional also satisfies (C) condition. Then an existence result
for problem (1.1) is obtained by Linking Theorem.

2. Main results

Let

W 1,p
T = {u : R→ RN | u(t) is absolutely continuous on R, u(t) = u(t+ T )

and u̇ ∈ Lp(0, T ; RN )}.

On W 1,p
T , we define the norm as follows:

‖u‖ =

[∫ T

0

|u(t)|pdt+
∫ T

0

|u̇(t)|pdt

]1/p

, u ∈W 1,p
T .

Then,
(
W 1,p
T , ‖ · ‖

)
is a reflexive and uniformly convex Banach space (see e.g. [1,

Theorem 3.3 and Theorem 3.6]). From [4], one can know that a locally uniformly
convex Banach space has the Kadec-Klee property, that is for any sequence {un}
satisfying un ⇀ u weakly in Banach space (X, ‖·‖) and ‖un‖ → ‖u‖, one has un → u
strongly in X. This property will be used later.

Let ϕ : W 1,p
T → R be defined by

ϕ(u) =
1
p

∫ T

0

|u̇(t)|pdt−
∫ T

0

F (t, u(t))dt.
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It follows from assumption (A) that ϕ is continuously differentiable on W 1,p
T and

〈ϕ′(u), v〉 =
∫ T

0

(
|u̇(t)|p−2u̇(t), v̇(t)

)
dt−

∫ T

0

(∇F (t, u(t)), v(t))dt

for u, v ∈ W 1,p
T (see [6, Theorem 1.4]). Similar to [6, Corollary 1.1], it is easy to

know that the solutions of problem (1.1) correspond to the critical points of ϕ. By
[6, Proposition 1.1], there is a constant C0 > 0 such that

(2.1) ‖u‖∞ := max
t∈[0,T ]

|u(t)| ≤ C0‖u‖, for every u ∈W 1,p
T .

Let

W̃ 1,p
T =

{
u ∈W 1,p

T

∣∣∣∣∣
∫ T

0

u(t)dt = 0

}
.

It is easy to know that W̃ 1,p
T is a closed subspace of W 1,p

T and W 1,p
T = RN ⊕ W̃ 1,p

T .

For u ∈ W 1,p
T , let ū = 1

T

∫ T
0
u(t)dt and ũ(t) = u(t)− ū. It follows from the proof of

in [6, Proposition 1.1] that

(2.2)
∫ T

0

|u(t)|pdt ≤ T p
∫ T

0

|u′(t)|pdt, for every u ∈ W̃ 1,p
T ,

(Wirtinger’s inequality). Hence,

(2.3) ‖u‖p ≤ (T p + 1)
∫ T

0

|u′(t)|pdt, for every u ∈ W̃ 1,p
T .

The main result of this paper is the following theorem:

Theorem 2.1. Assume that F satisfies (A) and the following conditions:

F (t, x) ≥ 0, ∀ (t, x) ∈ [0, T ]× RN ,(2.4)

lim
|x|→0

F (t, x)
|x|p

<
1
pT p

uniformly for a.e. t ∈ [0, T ],(2.5)

lim inf
|x|→∞

F (t, x)
|x|p

>
ωp

p
uniformly for a.e. t ∈ [0, T ],(2.6)

where ω = 2π/T. There exist constants r > p and µ > r − p such that

lim sup
|x|→∞

F (t, x)
|x|r

<∞ uniformly for a.e. t ∈ [0, T ],(2.7)

lim inf
|x|→∞

(
∇F (t, x), x

)
− pF (t, x)

|x|µ
> 0 uniformly for a.e. t ∈ [0, T ].(2.8)

Then system (1.1) has a non-constant T -periodic solution.

3. Proof of theorem

Lemma 3.1. Assume that condition (A), (2.7) and (2.8) hold, then the functional ϕ
satisfies condition (C), that is {un} has a convergent subsequence in W 1,p

T , whenever
ϕ(un) is bounded and ‖ϕ′(un)‖ × (1 + ‖un‖)→ 0 as n→∞.
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Proof. Let {un} be a sequence in W 1,p
T such that ϕ(un) is bounded and ‖ϕ′(un)‖ ×

(1 + ‖un‖)→ 0 as n→∞. Then there exists a constant M such that

(3.1) |ϕ(un)| ≤M, ‖ϕ′(un)‖(1 + ‖un‖) ≤M

for all n ∈ N . By (2.7), there are constants C1 > 0 and δ1 > 0 such that

(3.2) F (t, x) ≤ C1|x|r, for all |x| > δ1 and a.e. t ∈ [0, T ].

It follows from by assumption (A) that

F (t, x) ≤ max
s∈[0,δ1]

a(s)b(t), for all |x| ≤ δ1 and a.e. t ∈ [0, T ].

Hence, for all x ∈ RN and a.e. t ∈ [0, T ], one has

(3.3) F (t, x) ≤ max
s∈[0,δ1]

a(s)b(t) + C1|x|r.

It follows from (3.1), (3.3) and Hölder’s inequality that

1
p
‖un‖p = ϕ(un) +

∫ T

0

F (t, un(t))dt+
1
p

∫ T

0

|un(t)|pdt

≤M + C2 + C1

∫ T

0

|un(t)|rdt+
1
p

∫ T

0

|un(t)|pdt

≤M + C2 + C1

∫ T

0

|un(t)|rdt+
1
p
T
r−p
r

(∫ T

0

|un(t)|rdt

) p
r

,(3.4)

where C2 = maxs∈[0,δ1] a(s)
∫ T
0
b(t)dt. By (2.8), there are constants C3 > 0 and

δ2 > 0 such that

(∇F (t, x), x)− pF (t, x) ≥ C3|x|µ > 0, for all |x| > δ2 and a.e. t ∈ [0, T ].

By assumption (A), one has∣∣∣(∇F (t, x), x)− pF (t, x)
∣∣∣ ≤ C4b(t), for all |x| ≤ δ2 and a.e. t ∈ [0, T ],

where C4 = (p+ δ2) maxs∈[0,δ2] a(s). Hence one can obtain that

(∇F (t, x), x)− pF (t, x) ≥ C3|x|µ − C3δ
µ
2 − C4b(t)

for all x ∈ RN and a.e. t ∈ [0, T ]. Then one has

(p+ 1)M ≥ pϕ(un)− (ϕ′(un), un)

=
∫ T

0

|u′n(t)|pdt− p
∫ T

0

F (t, un(t))dt−
∫ T

0

(
|u′n(t)|p−2u′n(t), u′n(t)

)
dt

+
∫ T

0

(
∇F (t, un(t)), un(t)

)
dt

=
∫ T

0

(
∇F (t, un(t)), un(t)

)
dt− p

∫ T

0

F (t, un(t))dt

=
∫ T

0

[(
∇F (t, un(t)), un(t)

)
− pF (t, un(t))

]
dt
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≥ C3

∫ T

0

|un(t)|µdt− TC3δ
µ
2 − C4

∫ T

0

b(t)dt,

which implies that
∫ T
0
|un(t)|µdt is bounded. If µ ≥ r, by (3.4) and Hölder’s inequal-

ity ∫ T

0

|un(t)|rdt ≤ T
µ−r
µ

(∫ T

0

|un(t)|µdt
) r
µ

,

one has ‖un‖ is bounded. If µ ≤ r, by (2.1), one has∫ T

0

|un(t)|rdt =
∫ T

0

|un(t)|r−µ|un(t)|µdt

≤ ‖un‖r−µ∞
∫ T

0

|un(t)|µdt

≤ Cr−µ0 ‖un‖r−µ
∫ T

0

|un(t)|µdt.

Thus, by (3.4) and r−µ < p, one can know that ‖un‖ is bounded, too. Hence ‖un‖
is bounded in W 1,p

T . Since for the set in a reflexive Banach space, boundedness and
weak compactness are equivalent, then there is a subsequence of {un}, again denoted
by {un}, such that

(3.5) un ⇀ u weakly in W 1,p
T .

Furthermore, by [6, Proposition 1.2], one has

un → u strongly in C([0, T ],RN ).

Then we can use the same argument as in [16] to obtain that ‖un‖ → ‖u‖. Because
of the uniform convexity of W 1,p

T and (3.5), it follows that un → u strongly in W 1,p
T

from the Kadec-Klee property. The proof is completed.

The Linking Theorem introduced in [9] (also see [3, Theorem 2.1 and Example 3
in Chapter 3]) by Rabinowitz will be used to obtain the critical point of ϕ.

Theorem 3.1 (Linking Theorem). Let E = E1 ⊕ E2 be a Banach space, where E1

is a finite dimensional subspace of E and E2 = E⊥1 . Suppose that ϕ(·) ∈ C1(E,R)
satisfies the Palais-Smale condition and the following conditions:

(i) There are constants ρ > 0 and α such that ϕ|∂Bρ∩E2 ≥ α, where Bρ = {u ∈
E : ‖u‖E < ρ},

(ii) there is a constant d < α and e ∈ E2, ‖e‖E = 1, s1 > 0, s2 > ρ such that
ϕ|∂Q ≤ d where Q = {u ∈ E|u = z + λe, z ∈ E1, ‖z‖ ≤ s1, λ ∈ [0, s2]}.

Then ϕ possesses a critical value.

Proof of Theorem 2.1. As shown in [2], a deformation lemma can be proved with
the weaker condition (C) replacing the usual Palais-Smale condition, and it turns
out that the Linking Theorem holds under the condition (C). Let E1 = RN , E2 =
W̃ 1,p
T = {u ∈ W 1,p

T |
∫ T
0
u(t)dt = 0}. Then, by Lemma 3.1, one only needs to prove

(i) and (ii) in Linking Theorem hold.
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By (2.5), there is ε0 > 0 such that

lim
|x|→0

F (t, x)
|x|p

≤ 1
pT p

− 2ε0.

Thus, there is a constant δ0 ∈ (0, δ1) such that

(3.6) F (t, x) ≤
(

1
pT p

− ε0
)
|x|p, for all |x| ≤ δ0 and a.e. t ∈ [0, T ].

It follows from assumption (A) that

(3.7) |F (t, x)| ≤ max
s∈[δ0,δ1]

a(s)b(t), for all δ0 ≤ |x| ≤ δ1 and a.e. t ∈ [0, T ].

Then, by (3.2), (3.6) and (3.7), for all x ∈ RN and a.e. t ∈ [0, T ], one has

(3.8) F (t, x) ≤
(

1
pT p

− ε0
)
|x|p +

(
max

s∈[δ0,δ1]
a(s)b(t)δ−r0 + C1

)
|x|r.

Hence, by (2.2), (2.3), (3.8) and (2.1), for every u ∈ W̃ 1,p
T , one has

ϕ(u) =
1
p

∫ T

0

|u′(t)|pdt−
∫ T

0

F (t, u(t))dt

≥ 1
p

∫ T

0

|u′(t)|pdt−
(

1
pT p

− ε0
)∫ T

0

|u(t)|pdt

− max
s∈[δ0,δ1]

a(s)
∫ T

0

b(t)dt δ−r0 ‖u‖r∞ − C1‖u‖r−p∞
∫ T

0

|u(t)|pdt

≥ 1
p

∫ T

0

|u′(t)|pdt−
(

1
pT p

− ε0
)
T p
∫ T

0

|u′(t)|pdt

− max
s∈[δ0,δ1]

a(s)
∫ T

0

b(t)dt δ−r0 ‖u‖r∞ − C1‖u‖r−p∞
∫ T

0

|u(t)|pdt

= ε0T
p

∫ T

0

|u′(t)|pdt− max
s∈[δ0,δ1]

a(s)
∫ T

0

b(t)dt δ−r0 ‖u‖r∞

− C1‖u‖r−p∞
∫ T

0

|u(t)|pdt

≥ ε0T p(T p + 1)−1‖u‖p − (C1C
r−p
0 + C2δ

−r
0 Cr0)‖u‖r.

Thus it is easy to know that there exist constants α > 0 and ρ ∈ (0, 1) such that

ϕ(u) ≥ α, for every u ∈ W̃ 1,p
T and ‖u‖ = ρ.

which shows that (i) holds. Next it will be shown that (ii) also holds. By (2.6), for

ε1 = essinf
t∈[0,T ]

lim inf
|x|→∞

F (t, x)
|x|p

− ωp

p
> 0,

there exists δ3 > ρT−
1
p such that

F (t, x) ≥
(
ωp

p
+ ε1

)
|x|p, for all |x| ≥ δ3 and a.e. t ∈ [0, T ].
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Hence, by (2.4), for all x ∈ RN and a.e. t ∈ [0, T ], one has

(3.9) F (t, x) ≥
(
ωp

p
+ ε1

)
|x|p −

(
ωp

p
+ ε1

)
δp3 .

Let
e =

sinωt

(T + ωpT )
1
p

e1 +
cosωt

(T + ωpT )
1
p

e2,

e1 = (1, 0, 0, . . . , 0) ∈ RN ,
e2 = (0, 1, 0, . . . , 0) ∈ RN .

Then it is easy to know that

|e| = 1

(T + ωpT )
1
p

,

|ė| = ω

(T + ωpT )
1
p

,

‖e‖ = 1 and e ∈ W̃ 1,p
T . Let

Q =

{
x+ se|x ∈ RN , |x| ≤

(
ωp

pε1
+ 1
) 1
p

δ3, 0 ≤ s ≤
(
ωp

pε1
+ 1
) 1
p

δ3(T + Tωp)
1
p

}

and C6 =
(
ωp

p + ε1

)
Tδp3 . It follows from Hölder’s inequality that

∫ T

0

|x+ se|2dt ≤

[∫ T

0

(
|x+ se|2

) p
2 dt

] 2
p

· T 1− 2
p .

Thus one has

ωp
∫ T

0

|x+ se|pdt ≥ ωpT 1− p2

(∫ T

0

|x+ se|2dt

) p
2

= ωpT 1− p2

(∫ T

0

|x|2dt+
∫ T

0

|se|2dt

) p
2

≥ ωpT 1− p2

(∫ T

0

|se|2dt

) p
2

=
Tspωp

T + ωpT

=
∫ T

0

|sė|pdt.(3.10)

Then for every x+ se ∈ Q, by (3.9) and (3.10), one has

ϕ(x+ se) =
1
p

∫ T

0

|sė|pdt−
∫ T

0

F (t, x+ se)dt

≤ ωp

p

∫ T

0

|x+ se|pdt−
(
ωp

p
+ ε1

)∫ T

0

|x+ se|pdt+ C6
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= −ε1
∫ T

0

|x+ se|pdt+ C6

≤ −ε1T 1− p2

(∫ T

0

|x|2dt+
∫ T

0

s2

(T + ωpT )
2
p

dt

) p
2

+ C6.(3.11)

For every x+ se ∈ Q, where |x| =
(
ωp

pε1
+ 1
) 1
p

δ3, one has

(3.12) ϕ(x+ se) ≤ −ε1T 1− p2

(∫ T

0

|x|2dt

) p
2

+ C6 = 0.

For every x+ se ∈ Q, where s =
(
ωp

pε1
+ 1
) 1
p

δ3(T + Tωp)
1
p , one has

(3.13) ϕ(x+ se) ≤ −ε1T 1− p2

(∫ T

0

s2

(T + ωpT )
2
p

dt

) p
2

+ C6 = 0.

If s = 0, for all x ∈ RN , by (2.4), one has

(3.14) ϕ(x) = −
∫ T

0

F (t, x)dt ≤ 0.

Therefore, by (3.12)–(3.14), one has ϕ|∂Q ≤ 0. Let d = 0, s1 = T
1
p

(
ωp

pε1
+ 1
) 1
p

δ3

and s2 =
(
ωp

pε1
+ 1
) 1
p

δ3(T + Tωp)
1
p > ρ. Thus (ii) is proved. Hence, by Linking

Theorem, system (1.1) has a non-constant T -periodic solution.
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