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Abstract. This paper investigates the existence and uniqueness of C[0, 1] pos-

itive solutions for a second order integral boundary value problem. We mainly
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1. Introduction and the main result

The theory of boundary value problems with integral boundary conditions for or-
dinary differential equations arises in different areas of applied mathematics and
physics. For example, heat conduction, chemical engineering, underground water
flow, thermo elasticity and plasma physics can be reduced to the nonlocal prob-
lems with integral boundary conditions. For boundary value problems with integral
boundary conditions and comments on their importance, we refer the reader to the
papers by Gallardo [1], Karakostas and Tsamatos [4], Lomtatidze and Malaguti [5]
and the references therein.

In this paper, we shall consider the existence and uniqueness of positive solu-
tions to the following second order singular boundary value problems with integral
boundary conditions:

(1.1) −u′′(t) = f(t, u(t)), t ∈ (0, 1),

(1.2) u(0) =
∫ 1

0

u(t)dφ(t), u(1) = 0,
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where f : (0, 1) × (0,+∞) → [0,+∞), f(t, u) is decreasing with respect to u and∫ 1

0
u(t)dφ(t) denotes the Riemann-Stiejies integral.
The existence of positive solutions for nonlocal, including three-point, m-point,

and integral boundary value problems with nondecreasing nonlinearities has been
widely studied in recent years; the author refers the reader to [6, 7, 9] and references
therein. However, when f(t, u) is decreasing on u, there are only few published
papers that deal with the study on it.

Inspired by the above papers, the aim of the present paper is to establish a
sufficient condition for the existence of C[0, 1] positive solutions for the second order
integral boundary value problem. Obviously, what we discuss is different from those
in [1, 4–7, 9]. The main new features presented in this paper are as follows: Firstly,
f(t, u) is allowed to be not only singular at t = 0 and 1, but also singular at u = 0,
which brings about many difficulties. Secondly, we require that f(t, u) is decreasing
on u, which is seldom researched. Thirdly, we not only obtain the existence of C[0, 1]
positive solutions, but also obtain the uniqueness. Finally, the techniques used in
this paper are the method of lower and upper solutions and the maximal principle.

In this paper, we first introduce some preliminaries in Section 2, then we state
our main results in Section 3. Finally in Section 4 further discussions and remarks
are given. Now we are ready to state the main result in this paper.

(H1) f(t, u) ∈ C((0, 1)× (0,+∞), [0,+∞)) and f(t, u) is decreasing with respect
to u. φ is an increasing nonconstant function defined on [0,1], φ(0) = 0 and∫ 1

0
(1− s)dφ(s) ∈ [0, 1).

(H2) f(t, λ) 6≡ 0 for all t ∈ (0, 1) and λ > 0 and
∫ 1

0
t(1− t)f(t, λt(1− t))dt < +∞

for all λ > 0.

Theorem 1.1. Suppose that (H1), (H2) hold. Then the second order singular bound-
ary value problems with integral boundary conditions (1.1), (1.2) has a unique C[0, 1]
positive solution ω for which there exists m > 0 such that

(1.3) mt(1− t) ≤ ω(t).

When referring to singularity we mean that the function f in (1.1) is allowed to
be unbounded at the points u = 0, t = 0, 1. A function u ∈ C[0, 1]

⋂
C2(0, 1) is

called a C[0, 1] (positive) solution to (1.1) and (1.2) if it satisfies (1.1) and (1.2)
(u(t) > 0 for t ∈ (0, 1)). A C[0, 1] (positive) solution of (1.1) and (1.2) is called a
C1[0, 1] (positive) solution if both u′(0+) and u′(1−) exist (u(t) > 0, for t ∈ (0, 1)).

A function α is called a lower solution to the problem (1.1), (1.2), if α ∈ C[0, 1]
⋂
C2

(0, 1) and satisfies {
α′′(t) + f(t, α(t)) ≥ 0, t ∈ (0, 1),
α(0)−

∫ 1

0
α(t)dφ(t) ≤ 0, α(1) ≤ 0.

Upper solution is defined by reversing the above inequality signs. If there exist a
lower solution α and an upper solution β to problem (1.1), (1.2) such that α(t) ≤
β(t), then (α(t), β(t)) is called a couple of upper and lower solution to problem (1.1),
(1.2).
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2. Preliminaries

In our main results, we will make use of the following lemmas.

Lemma 2.1. Assume that (H1), (H2) hold. Then for y ∈ C((0, 1), [0,+∞)), bound-
ary value problem

(2.1)
{
−u′′(t) = y(t), t ∈ (0, 1),
u(0) =

∫ 1

0
u(t)dφ(t), u(1) = 0,

has a unique solution u(t) and u(t) can be expressed in the form

(2.2) u(t) =
∫ 1

0

H(t, s)y(s)ds,

where

(2.3) H(t, s) = G(t, s) +
1− t
1− σ

∫ 1

0

G(s, τ)dφ(τ), σ =
∫ 1

0

(1− s)dφ(s),

(2.4) G(t, s) =
{
t(1− s), 0 ≤ t ≤ s ≤ 1;
s(1− t), 0 ≤ s ≤ t ≤ 1;

and we define e(t) = G(t, t) = t(1− t), t ∈ [0, 1].

Proof. First suppose that u is a solution of problem (2.1). It is easy to see by
integration of (2.1) that

u′(t) = u′(0)−
∫ t

0

y(s)ds.

Integrate again, we can get

(2.5) u(t) = u(0) + u′(0)t−
∫ t

0

(t− s)y(s)ds.

Letting t = 1 in (2.5), we find

(2.6) u(0) + u′(0) =
∫ 1

0

(1− s)y(s)ds.

Substituting u(0) =
∫ 1

0
u(s)dφ(s) and (2.6) into (2.5), we obtain

(2.7) u(t) =
∫ 1

0

G(t, s)y(s)ds+ (1− t)
∫ 1

0

u(s)dφ(s)

where∫ 1

0

u(s)dφ(s) =
∫ 1

0

[∫ 1

0

G(s, τ)y(τ)dτ + (1− s)
∫ 1

0

u(τ)dφ(τ)
]
dφ(s)

=
∫ 1

0

[∫ 1

0

G(s, τ)y(τ)dτ + (1− s)
∫ 1

0

u(τ)dφ(τ)
]
dφ(s)

=
∫ 1

0

[∫ 1

0

G(s, τ)y(τ)dτ
]
dφ(s) +

∫ 1

0

(1− s)dφ(s)
∫ 1

0

u(s)dφ(s),
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and so,

(2.8)
∫ 1

0

u(s)dφ(s) =
1

1−
∫ 1

0
(1− s)dφ(s)

∫ 1

0

[∫ 1

0

G(s, τ)y(τ)dτ
]
dφ(s).

Substituting (2.8) into (2.7), we have

u(t) =
∫ 1

0

G(t, s)y(s)ds+
1− t

1−
∫ 1

0
(1− s)dφ(s)

∫ 1

0

[∫ 1

0

G(s, τ)y(τ)dτ
]
dφ(s)

=
∫ 1

0

H(t, s)y(s)ds,(2.9)

where H(t, s) is defined by (2.3).
Conversely, suppose that u(t) =

∫ 1

0
H(t, s)y(s)ds. Then

u(t) =
∫ t

0

s(1− t)y(s)ds+
∫ 1

t

t(1− s)y(s)ds

+
1− t

1−
∫ 1

0
(1− s)dφ(s)

∫ 1

0

[∫ 1

0

G(s, τ)y(τ)dτ
]
dφ(s).(2.10)

Direct differentiation of (2.10) implies

u′(t) = −
∫ t

0

sy(s)ds+ t(1− t)y(t) +
∫ 1

t

(1− s)y(s)ds− t(1− t)y(t)

− 1

1−
∫ 1

0
(1− s)dφ(s)

∫ 1

0

[∫ 1

0

G(s, τ)y(τ)dτ
]
dφ(s)

=
∫ 1

t

(1− s)y(s)ds−
∫ t

0

sy(s)ds

− 1

1−
∫ 1

0
(1− s)dφ(s)

∫ 1

0

[∫ 1

0

G(s, τ)y(τ)dτ
]
dφ(s),

and
u′′(t) = −ty(t)− (1− t)y(t) = −y(t).

It is easy to verify that u(0) =
∫ 1

0
u(t)dφ(t), u(1) = 0 and, so, our lemma is proved.

From (2.3) and (2.4), we can prove that H(t, s), G(t, s) have the following prop-
erties.

Proposition 2.1. Assume that (H1), (H2) hold. Then for t, s ∈ [0, 1], we have

(2.11) H(t, s) ≥ 0, G(t, s) ≥ 0.

Proposition 2.2. For t, s ∈ [0, 1], we have

(2.12) e(t)e(s) ≤ G(t, s) ≤ G(t, t) = t(1− t) = e(t) ≤ max
t∈[0,1]

e(t) =
1
4
.

Proposition 2.3. Assume that (H1), (H2) hold. Then for t, s ∈ [0, 1], we have

(2.13) ρe(t)e(s) ≤ H(t, s) ≤ γt(1− t) = γe(t),
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where

(2.14) γ =
1 +

∫ 1

0
sdφ(s)

1− σ
, ρ =

∫ 1

0
e(τ)dφ(τ)
1− σ

.

Proof. By (2.3) and (2.12), we have

H(t, s) = G(t, s) +
1− t
1− σ

∫ 1

0

G(s, τ)dφ(τ)

≥ 1− t
1− σ

∫ 1

0

G(s, τ)dφ(τ)

≥
∫ 1

0
G(s, τ)dφ(τ)

1− σ
t(1− t)

≥
∫ 1

0
e(τ)dφ(τ)
1− σ

t(1− t)s(1− s)

= ρe(t)e(s), t ∈ [0, 1].(2.15)

On the other hand, since G(t, s) ≤ s(1− s), we obtain

H(t, s) = G(t, s) +
1− t
1− σ

∫ 1

0

G(s, τ)dφ(τ)

≤ s(1− s) +
1− t
1− σ

∫ 1

0

s(1− s)dφ(τ)

≤ s(1− s)[1 +
1

1− σ

∫ 1

0

dφ(τ)]

= s(1− s)
1 +

∫ 1

0
sdφ(τ)

1− σ
= γe(s), t ∈ [0, 1].

Lemma 2.2. (Maximal principle) Suppose that

Fn = {u(t) ∈ C[0, bn]
⋂
C2(0, bn), u(0)−

∫ 1

0

u(t)dφ(t) ≥ 0, u(bn) ≥ 0}.

If u ∈ Fn such that −u′′(t) ≥ 0, t ∈ (0, 1), then u(t) ≥ 0, t ∈ [0, bn].

Proof. Let

(2.16) −u′′(t) = δ(t), t ∈ (0, bn),

(2.17) u(0)−
∫ 1

0

u(t)dφ(t) = r1, u(bn) = r2.

Then r1 ≥ 0, r2 ≥ 0 and δ(t) ≥ 0, t ∈ (0, bn).
By integrating (2.17) twice and noticing (2.18), we have

(2.18) u(t) = (1− t

bn
)r1 + r2 + (1− t

bn
)
∫ 1

0

u(t)dφ(t) +
∫ bn

0

Gn(t, s)δ(s)ds

where

Gn(t, s) =
1
bn

{
t(bn − s), 0 ≤ t ≤ s ≤ bn;
s(bn − t), 0 ≤ s ≤ t ≤ bn.
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In view of (2.19) and the definition of Gn(t, s), we can obtain u(t) ≥ 0, t ∈ [0, bn].
This completes the proof of Lemma 2.2.

Lemma 2.3. [2] Suppose that E is a real Banach space and D ⊂ E is convex and
bounded. A : D → D is continuous and A(D) is pre-compact. Then A has at least
one fixed point in D.

3. The proof of the main result

3.1. The existence of lower and upper solutions

Let E be the Banach space C[0, 1]. Define the set P and the operator T as follows:

(3.1)
P = {u ∈ E | there exists a positive number ku such that u(t) ≥ kue(t), t ∈ [0, 1]},

(3.2) Tu(t) =
∫ 1

0

H(t, s)f(s, u(s))ds.

Evidently e ∈ P. Therefore, P is not empty.
For all u ∈ P, by the definition of P , there exists a positive number ku such that

u(t) ≥ kue(t), t ∈ [0, 1]. It follows from (H2) that∫ 1

0

e(s)f(s, u(s))ds ≤
∫ 1

0

e(s)f(s, kue(s))ds < +∞.

By the definition of H(t, s) and (3.2) we have

Tu(t) ≤ γe(t)
∫ 1

0

f(s, u(s))ds.

Let B = maxt∈[0,1] u(t). By the condition (H2) and the continuity of f , we have that∫ 1

0
e(s)f(s, B)ds > 0. Thus,∫ 1

0

e(s)f(s, u(s))ds ≥
∫ 1

0

e(s)f(s,B)ds > 0.

On the other hand, by the definition of H(t, s) we see that

Tu(t) ≥ ρe(t)
∫ 1

0

e(s)f(s, u(s))ds = kTue(t), t ∈ [0, 1],

where kTu = ρ
∫ 1

0
e(s)f(s, u(s))ds. So Tu is well defined on P and

(3.3) Tu ∈ P, ∀u ∈ P.
Let

(3.4) b1(t) = min{e(t), (Te)(t)}, b2(t) = max{e(t), (Te)(t)}.
Obviously b1(t), b2(t) make sense and b1(t) ≤ b2(t). Since Te ∈ P it follows
that there exists a positive number kTe such that (Te)(t) ≥ kTee(t). Therefore,
b1(t) ≥ min{1, kTe}e(t) = k1e(t). This implies b1 ∈ P and b2 ∈ P. Furthermore,
Tb1(t), T b2(t) make sense and

(3.5) Tb2(t) ≤ Tb1(t) ≤ T (k1e)(t), t ∈ [0, 1].
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With the aid of (3.4) and the decreasing property of the operator T it follows that

(3.6) Tb2(t) ≤ (Te)(t) ≤ b2(t), T b1(t) ≥ (Te)(t) ≥ b1(t), t ∈ [0, 1].

Therefore

(3.7) (Tb2)′′(t) + f(t, T b2(t)) ≥ (Tb2)′′(t) + f(t, b2(t)) = 0,

(3.8) (Tb1)′′(t) + f(t, T b1(t)) ≤ (Tb1)′′(t) + f(t, b1(t)) = 0.

From (2.3) and (3.2), it is easy to verify that

(3.9) Tbi(0) =
∫ 1

0

Tbi(t)dφ(t), T bi(1) = 0, ı = 1, 2.

From (3.7) (3.8) and (3.9), it follows that

(3.10) (H(t), Q(t)) = (Tb2(t), T b1(t)), t ∈ [0, 1]

is a couple of upper and lower solution to (1.1) and (1.2). Furthermore, we have
H, Q are in P and H, Q are in C[0, 1]

⋂
C2(0, 1).

3.2. The existence of positive solution to (1.1) and (1.2)

First of all, we define a partial ordering in C[0, 1]
⋂
C2(0, 1) by u ≤ v, if and only if

u(t) ≤ v(t),∀t ∈ [0, 1].

Then for every function u(t) ∈ C[0, 1]
⋂
C2(0, 1) we define

(3.11) (gu)(t) =

 f(t,H(t)), if u 6≥ H,
f(t, u(t)), if H ≤ u ≤ Q,
f(t, Q(t)), if u 6≤ Q.

By the assumptions of Theorem 1.1, we have that the function g : (0, 1) ×
(−∞,+∞)→ [0,+∞) is continuous.

Let bn be a sequence satisfying b1 < . . . < bn < bn+1 < . . . < 1, and bn → 1 as
n→ +∞, and let rn be a sequence satisfying

H(bn) ≤ rn ≤ Q(bn), n = 1, 2, . . .

For each n, let us consider the following nonsingular problem

(3.12)
{
−u′′(t) = (gu)(t), t ∈ [0, bn],
u(0) =

∫ 1

0
u(t)dφ(t), u(bn) = rn.

Obviously, it follows from the proof of Lemma 2.2 that the problem (3.12) is equiv-
alent to the integral equation

u(t) = Anu(t)

= rn + (1− t

bn
)
∫ 1

0

u(t)dφ(t)

+
∫ bn

0

Gn(t, s)(gu)(s)ds, t ∈ [0, bn],(3.13)
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where Gn(t, s) is defined in Lemma 2.2. It is easy to verify that An : Xn → Xn =
C[0, bn] and

(3.14) e(t) ≤ en(t) ≤ 1
bn
e(t).

For any u ∈ Xn, from (H2), (2.12), (3.11) and (3.14), we have

Anu(t) = rn + (1− t

bn
)u(0) +

∫ bn

0

Gn(t, s)(gu)(s)ds

≤ rn + u(0) +
∫ bn

0

en(s)f(s,H(s))ds

≤ rn + u(0) +
∫ bn

0

en(t)f(t, λen(t))dt

≤ rn + u(0) +
1
bn

∫ bn

0

e(t)f(t, λe(t))dt < +∞,

where en(t) = Gn(t, t). Thus, An(Xn) is bounded. For any u ∈ Xn, t1, t2 ∈ [0, 1],
we have

|Anu(t2)−Anu(t1)| ≤
∫ bn

0

|Gn(t2, s)−Gn(t1, s)|f(s,H(s))ds.

This, together with the continuity of Gn(t, s), implies that {Anu | u ∈ Xn} is
equicontinuous. So An(Xn) is pre-compact.

Furthermore, it is easy to verify that An is continuous. From Lemma 2.3, we
assert that An has at least one fixed point un ∈ C[0, bn] ∩ C2(0, bn).

We claim that
H ≤ un ≤ Q,

that is

(3.15) H(t) ≤ un(t) ≤ Q(t), t ∈ [0, bn].

From this it follows that

(3.16) −u′′n(t) = f(t, un(t)), t ∈ [0, bn].

Suppose by contradiction that un 6≤ Q. Because of the definition of g we have

(gun)(t) = f(t, Q(t)), t ∈ [0, bn].

Consequently

(3.17) −u′′n(t) = f(t, Q(t)), t ∈ [0, bn].

On the other hand, since Q is an upper solution to (1.1) and (1.2), we obviously
have

(3.18) −Q′′(t) ≥ f(t, Q(t)), t ∈ (0, 1).

Let
z(t) = Q(t)− un(t), t ∈ [0, bn].

From (3.17) and (3.18), it follows that −z′′(t) ≥ 0, t ∈ [0, bn], z ∈ C[0, bn]
⋂
C2(0,

bn), z(0) −
∫ 1

0
z(t)dφ(t) ≥ 0, and z(bn) ≥ 0. By using Lemma 2.2 we have z(t) ≥

0, t ∈ [0, bn], a contradiction to the assumption un 6≤ Q. Hence un 6≤ Q is impossible.
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Similarly, suppose by contradiction that un 6≥ H. Because of the definition of g
we have

(gun)(t) = f(t,H(t)), t ∈ [0, bn].

Consequently

(3.19) −u′′n(t) = f(t,H(t)), t ∈ [0, bn].

On the other hand, since H is a lower solution to (1.1) and (1.2), we obviously
have

(3.20) −H ′′(t) ≤ f(t,H(t)), t ∈ (0, 1).

Let
z(t) = un(t)−H(t), t ∈ [0, bn].

From (3.18) and (3.19), it follows that −z′′(t) ≥ 0, t ∈ [0, bn], z ∈ C[0, bn]
⋂
C2(0,

bn), z(0) −
∫ 1

0
z(t)dφ(t) ≥ 0, and z(bn) ≥ 0. By using Lemma 2.2 we have z(t) ≥

0, t ∈ [0, bn], a contradiction to the assumption un 6≥ H. Hence un 6≥ H is impossible.
Consequently (3.15) holds.
Using the method of [8] and [3, Theorem 3.2], we can obtain that there is a C[0, 1]

positive solution ω(t) to (1.1), (1.2) such that H < ω < Q, and a subsequence of
un(t) converges to ω(t) on any compact subintervals of (0, 1).

3.3. Uniqueness of the C[0, 1] positive solution and the proof of (1.3)

Suppose that u1, u2 are C[0, 1] positive solutions to (1.1) and (1.2). We may assume,
without loss of generality, that there exists t∗ ∈ (0, 1) such that u2(t∗) − u1(t∗) =
max (u2(t)− u1(t)) > 0. Let

α = inf{t1|0 ≤ t1 < t∗, u2(t) ≥ u1(t), t ∈ (t1, t∗]};

β = sup{t2|t∗ < t2 ≤ 1, u2(t) ≥ u1(t), t ∈ (t∗, t2};

z(t) = u2(t)− u1(t), t ∈ [0, 1].

Evidently,

t∗ ∈ (α, β), u2(t) ≥ u1(t), f(t, u2(t)) ≤ f(t, u1(t)), t ∈ [α, β].

Hence,
z′′(t) = f(t, u1(t))− f(t, u2(t)) ≥ 0, t ∈ [α, β].

By using (1.2), it is easy to check that there exist the following two possible cases:
(1) z(α) = z(β) = 0,
(2) z(α) > 0, z(β) = 0.

Case (1): From z′′(t) ≥ 0 and z(α) = z(β) = 0 we derive that z(t) ≤ 0, t ∈ [α, β],
which is in contradiction with u2(t∗) > u1(t∗).
Case (2): In this case we have α = 0, and z′(t∗) = 0. Since z′(t) is increasing
on [α, β], we have z′(t) ≥ 0, t ∈ [t∗, β], that is, z(t) is increasing on [t∗, β]. From
z(β) = 0, we see z(t∗) ≤ 0, which is in contradiction to u2(t∗) > u1(t∗). Then it
follows from u(t) ≥ H(t) ≥ KHt(1− t) that the inequality(1.3) holds.
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4. Further discussions and remarks

Corollary 4.1. Suppose that in Theorem 1.1 condition (H1) holds and condition
(H2) is strengthened and becomes

(4.1) f(t, λ) 6≡ 0,
∫ 1

0

f(t, λt(1− t))dt < +∞, λ > 0.

Then the problem (1.1), (1.2) has a unique C1[0, 1] positive solution ω for which
there exist constants M and m with M ≥ m ≥ 0 such that

(4.2) m(1− t) ≤ ω(t) ≤M(1− t), t ∈ [0, 1].

Proof. Since f(t, u) is decreasing with respect to u, we obviously have that f(t, ω(t)) ≤
f(t,mt(1 − t)). From (4.1) it follows that f(t, ω(t)) is integrable on (0, 1), that is,
ω′′(t) is integrable on (0, 1). Thus ω′(0+) and ω′(1−) exist, i.e., ω(t) is a C1[0, 1]
positive solution to (1.1) and (1.2).

Since ω is the unique C[0, 1] positive solution to (1.1) and (1.2), then ω′′(t) ≤
0, t ∈ (0, 1), and so ω is a concave function on [0,1]. From (2.7) we know that ω(t)
can be stated as

(4.3) ω(t) =
∫ 1

0

G(t, s)f(s, ω(s))ds+ (1− t)
∫ 1

0

ω(s)dφ(s).

Therefore,

(4.4) ω(t) ≥ (1− t)
∫ 1

0

ω(s)dφ(s), t ∈ [0, 1]

Since ω is the unique C1[0, 1] positive solution to (1.1) and (1.2), we have

(4.5) ω(t) =
∫ 1

t

(−ω′(s))ds ≤ max
t∈[0,1]

| ω′(t) | (1− t), t ∈ [0, 1].

From (4.5) and (4.6) it follows that (4.2) holds, which is the required property. This
completes the proof of Corollary 4.1.

If f(t, u) is nonsingular at u = 0, then for all u ≥ 0, f(t, u) ≤ f(t, 0), t ∈ (0, 1),
and then we have the following corollaries.

Corollary 4.2. Suppose that
(H3) f ∈ C((0, 1) × [0,+∞), [0,+∞)), and f(t, u) is decreasing with respect to

u. φ is an increasing nonconstant function defined on [0,1] with φ(0) = 0,∫ 1

0
(1− s)dφ(s) ∈ [0, 1).

(H4) f(t, λ) 6≡ 0 for all t ∈ (0, 1) and λ > 0 and
∫ 1

0
t(1− t)f(t, 0)dt < +∞ for all

λ > 0.
Then the conclusion of Theorem 1.1 holds.

Corollary 4.3. Suppose that in Corollary 4.2 the condition (H3) holds, the condition
(H4) is strengthened and then become

(H5) f(t, λ) 6≡ 0 for all t ∈ (0, 1) and λ > 0 and
∫ 1

0
f(t, 0)dt < +∞ for all λ > 0.

Then the conclusion of Corollary 4.1 holds.
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If f(t, u) is nonsingular at t, u, then
∫ 1

0
f(t, 0)dt < +∞ holds, therefore we have

the following corollary.

Corollary 4.4. If f ∈ C([0, 1] × [0,+∞), [0,+∞)) is decreasing with respect to u
and f(t, λ) 6≡ 0, for allt ∈ (0, 1) and λ ≥ 0, φ is a increasing nonconstant function
defined on [0,1] with φ(0) = 0, and

∫ 1

0
(1 − s)dφ(s) ∈ [0, 1), then the conclusion of

Corollary 4.1 holds.

Remark 4.1. Consider equation (1.1) and the following singular boundary condi-
tions

(4.6) u(0) = 0, u(1) =
∫ 1

0

u(t)dφ(t).

By analogous methods, we have the following.
Assume that u is a C[0, 1] positive solution to (1.1) and (4.6), then u(t) can be

stated

(4.7) u(t) =
∫ 1

0

H(t, s)f(s, u(s))ds, t ∈ [0, 1],

where

(4.8) H(t, s) = G(t, s) +
t

1− σ

∫ 1

0

G(s, τ)dφ(τ), σ =
∫ 1

0

sdφ(s),

and G(t, s) is defined in (2.4).

Theorem 4.1. Suppose that
(H6) f ∈ C((0, 1) × (0,+∞), [0,+∞)), f(t, u) is decreasing with respect to u and

φ is a increasing nonconstant function defined on [0,1] with φ(0) = 0 and∫ 1

0
(1− s)dφ(s) ∈ [0, 1).

(H7) f(t, λ) 6≡ 0 for all t ∈ (0, 1) and λ > 0 and
∫ 1

0
t(1− t)f(t, λt(1− t))dt < +∞

for all λ > 0.
Then the second order singular boundary value problem with integral boundary con-
ditions (1.1), (4.6) has a unique C[0, 1] positive solution ω for which there exists
constant m > 0 so that

(4.9) mt(1− t) ≤ ω(t), t ∈ [0, 1].

Theorem 4.2. Suppose that in Theorem 4.1 condition (H1) holds and condition
(H2) is strengthened and becomes

(4.10) f(t, λ) 6≡ 0,
∫ 1

0

f(t, λt(1− t))dt < +∞, ∀λ > 0.

Then the problem (1.1), (4.6) has a unique C1[0, 1] positive solution ω for which
there exist constants M and m with M ≥ m ≥ 0 such that

(4.11) m(1− t) ≤ ω(t) ≤M(1− t), t ∈ [0, 1].
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