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Abstract. Let G be a simple graph with vertex set V (G) and edge set E(G). A
subset S of V (G) is called an independent set if no two vertices of S are adjacent

in G. The minimum number of independent sets which form a partition of V (G)

is called chromatic number of G, denoted by χ(G). A subset S of E(G) is called
an edge cover of G if the subgraph induced by S is a spanning subgraph of G.

The maximum number of edge covers which form a partition of E(G) is called

edge covering chromatic number of G, denoted by χ′
c(G). Given nonnegative

integers r, s, t and c, an [r, s, c, t]-coloring of G is a mapping f from V (G)
⋃
E(G)

to the color set {0, 1, . . . , k− 1} such that the vertices with the same color form

an independent set of G, the edges with the same color form an edge cover of
G, and |f(vi)−f(vj)| ≥ r if vi and vj are adjacent, |f(ei)−f(ej)| ≥ s for every

ei, ej from different edge covers, |f(vi) − f(ej)| ≥ t for all pairs of incident

vertices and edges, respectively, and the number of edge covers formed by the
coloring of edges is exactly c. The [r, s, c, t]-chromatic number χr,s,c,t(G) of G

is defined to be the minimum k such that G admits an [r, s, c, t]-coloring. In
this paper, we present the exact value of χr,s,c,t(G) when δ(G) = 1 or G is an

even cycle.
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1. Introduction

In this paper, all graphs are finite, simple and undirected. We use V (G), E(G),
δ(G) and ∆(G) to denote the vertex set, the edge set, the minimum degree and the
maximum degree of graph G, respectively. In a proper vertex coloring of a graph G,
vi and vj are colored differently if they are adjacent. In an edge covering coloring
of a graph G, E(G) is partitioned into edge covers and different edge covers has
different colors. The minimum number of colors such that G admits a proper vertex
coloring is the chromatic number χ(G). The maximum number of colors such that
G admits an edge covering coloring is the edge covering coloring chromatic number
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χ′
c(G). It is well known that χ(G) ≤ ∆ + 1. For χ′

c(G), R. P. Gupta first proved the
following theorem.

Theorem 1.1. [3] Let G be a graph. Then

δ − 1 ≤ χ′
c(G) ≤ δ.

Kemnitz and Marangio introduced the [r, s, t]-Colorings of graphs in [4]. Given
nonnegative integers r, s and t, an [r, s, t]-coloring of a graph G is a function c from
V (G)

⋃
E(G) to the color set {0, 1, . . . , k} such that |c(vi) − c(vj)| ≥ r for every

two adjacent vertices vi, vj ∈ V , |c(ei) − c(ej)| ≥ s for every two adjacent edges
ei, ej ∈ E, and |c(vi) − c(ej)| ≥ t for every vertex vi and its incident edges ej .
The [r, s, t]-chromatic number χr,s,t(G) of G is the minimum k such that G admits
an [r, s, t]-coloring. In [4], the authors also gave exact values and some bounds
of χr,s,t(G) when at least one among the three parameters is fixed, for example
if min{r, s, t} = 0 or if two of the three parameters are 1. Similarly, we give the
definition of [r, s, c, t]-colorings of graphs as follows. Given nonnegative integers r, s, t
and c, an [r, s, c, t]-coloring of G is a mapping f from V (G)

⋃
E(G) to the color set

{0, 1, . . . , k− 1} such that the vertices with the same color form an independent set
of G, the edges with the same color form an edge cover of G, and |f(vi)− f(vj)| ≥ r
if vi and vj are adjacent, |f(ei) − f(ej)| ≥ s for every ei, ej from different edge
covers, |f(vi) − f(ej)| ≥ t for all pairs of incident vertices and edges, respectively,
and the number of edge covers formed by the coloring of edges is exactly c. The
[r, s, c, t]-chromatic number χr,s,c,t(G) of G is defined to be the minimum k such
that G admits an [r, s, c, t]-coloring. It is obvious that we only consider the case
that 1 ≤ c ≤ χ′

c(G), for otherwise either the edges can be colored arbitrarily(if
c = 0) such that χr,s,c,t(G) = χr,0,t(G) which has been considered by Kemnitz and
Marangio [4] or there is no [r, s, c, t]-coloring of G (if c > χ′

c(G)).

2. The proofs of the main results

In this section, we give the [r, s, c, t]-chromatic number χr,s,c,t(G) if δ(G) = 1 or G is
an even cycle. Firstly, we give some basic properties of [r, s, c, t]-coloring of graphs.

Lemma 2.1. Let G be a graph. Given nonnegative integers r, r′, s, s′, t and t′. If
r′ ≤ r, s′ ≤ s, t′ ≤ t, then χr′,s′,c,t′(G) ≤ χr,s,c,t(G) holds for any fixed integer c with
1 ≤ c ≤ χ′

c(G).

Proof. An [r, s, c, t]-coloring of G is by definition also an [r′, s′, c, t′]-coloring of G if
r′ ≤ r, s′ ≤ s, t′ ≤ t.

Lemma 2.2. If a ≥ 0 is an integer, then χar,as,c,at(G) = a(χr,s,c,t(G)−1) + 1 holds
for any fixed integer c with 1 ≤ c ≤ χ′

c(G).

Proof. If a = 0 or 1, then the assertion is obvious. Let a ≥ 2 and f be an [r, s, c, t]-
coloring of a graph G with χr,s,c,t(G) colors. If we multiply all assigned labels by
a, then we obtain a coloring f ′ such that f ′(x) = a · f(x) for all elements x ∈
V (G)

⋃
E(G) and |f ′(vi) − f ′(vj)| = a|f(vi) − f(vj)| ≥ ar if vertices vi and vj

are adjacent, |f ′(ei) − f ′(ej)| = a|f(ei) − f(ej)| ≥ as if edges ei and ej belong
to different edge covers, and |f ′(vi) − f ′(ej)| = a|f(vi) − f(ej)| ≥ at if vi and ej

are incident, respectively. Furthermore, since f forms c edge covers of G, f ′ also
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forms c edge covers of G. Therefore, f ′ is an [ar, as, c, at]-coloring of G with colors
in {0, 1, . . . , a(χr,s,c,t(G)− 1)} which implies that a(χr,s,c,t(G)− 1) + 1 is an upper
bound of χas,as,c,at(G).

On the other hand, assume thatG has an [ar, as, c, at]-coloring f with a(χr,s,c,t(G)−
1) colors (a ≥ 2). Define a coloring f ′ by f ′(x) = bf(x)/ac. If, for example, xi and xj

are adjacent vertices, then |bf(xi)/ac−bf(xj)/a)c| ≥ r by assumption which implies
that |f ′(xi)−f ′(xj)| = |bf(xi)/ac−bf(xj)/ac| ≥ r. Similar proof can be used when
considering s and t. Furthermore, since f forms c edge covers of G, f ′ also forms
c edge covers of G. Therefore, f ′ is an [r, s, c, t]-coloring of G with χr,s,c,t(G) − 1
colors which contradicts the definition of the [r, s, c, t]-chromatic number of G.

Lemma 2.3. Let G be a graph. Then

max{r(χ(G)−1)+1, s(c−1)+1, t+1} ≤ χr,s,c,t(G) ≤ r(χ(G)−1)+s(c−1)+ t+1.

Proof. By Lemma 2.1 and Lemma 2.2, χr,s,c,t(G) ≥ χr,0,c,0(G) = r(χ(G)− 1) + 1 as
well as χr,s,c,t(G) ≥ χ0,s,c,0(G) = s(c− 1) + 1. Obviously, χr,s,c,t(G) ≥ t+ 1.

If we color the vertices of G with colors 0, r, . . . , r(χ(G)− 1) and the edges with
colors r(χ(G)− 1) + t, r(χ(G)− 1) + t+ s, . . . , r(χ(G)− 1) + t+ s(c− 1). (Note that
1 ≤ c ≤ χ′

c(G)), we obtain an [r, s, c, t]-coloring of G.
Next, we give the exact value of χr,s,c,t(G) where δ(G) = 1 or G is an even

cycle. Given a graph G with δ(G) = 1, it is obvious that χ′
c(G) = δ(G) = 1. Since

1 ≤ c ≤ χ′
c(G) = 1, we can only let c = 1. Thus in order to get a [r, s, c, t]-coloring

of G, we can only color all the edges of G with the same color. Then we have the
following theorem.

Theorem 2.1. Let c = 1 and G be a graph with δ(G) = 1. We have

χr,s,c,t(G) =

 r(χ(G)− 1) + 1 if r ≥ 2t, (a)
r(χ(G)− 2) + 2t+ 1 if t ≤ r < 2t, (b)
r(χ(G)− 1) + t+ 1 if r < t. (c)

Proof. (a) By Lemma 2.2, χr,s,c,t(G) ≥ r(χ(G)−1)+1. On the other hand, color the
vertices of G with colors 0, r, 2r, . . . , r(χ(G)− 1) to get a proper vertex coloring and
all the edges of G with color t. It is easy to see that it forms an [r, s, c, t]-coloring
of G. The color set used by the coloring is {0, . . . , r(χ(G) − 1)}. By definition,
χr,s,c,t(G) = r(χ(G)− 1) + 1.

(b) Firstly, we prove the lower bound. Given any [r, s, c, t]-coloring of G, suppose
that the vertices of G are colored with colors f1, f2, . . . , fm where m ≥ χ(G) and all
the edges are colored with color f0. If fi ≤ f0 ≤ fi+1 holds for some i ∈ {1, 2, . . . ,m−
1}, we have fm−f1 = fm−fi+1+fi+1−fi+fi−f1 ≥ (m−2)r+2t ≥ r(χ(G)−2)+2t.
Otherwise, f0 ≤ f1 or f0 ≥ fm holds. In this case, at least (m − 1)r + t colors are
needed which is greater than r(χ(G)−2)+2t. Secondly, we color G as follows. Color
all vertices in G with color 0, 2t, 2t+ r, . . . , 2t+ r(χ(G)− 2) and all edges of G with
color t. It is easy to see that it forms an [r, s, c, t]-coloring of G with the color set
{0, . . . , r(χ(G)− 2) + 2t}. By definition, χr,s,c,t(G) = r(χ(G)− 2) + 2t.

(c) The lower bound has already been proved in (b). On the other hand, we color
G as follows. Color the vertices of G with color 0, r, . . . , r(χ(G)−1) and all edges of G
with color r(χ(G)−1)+t. It is easy to see that it forms an [r, s, c, t]-coloring of G with
the color set {0, . . . , r(χ(G)−1)+t}. By definition, χr,s,c,t(G) = r(χ(G)−1)+t+1.
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Given an even cycle C2n, it is known that χ(C2n) = 2, χ′
c(C2n) = 2. So we must

discuss two cases, c = 1 and c = 2. We have the following theorem.

Theorem 2.2. Let c be an integer with 1 ≤ c ≤ 2 and C2n be a cycle with 2n
vertices. If c = 1, then

χr,s,c,t(C2n) =

 r + 1 if r ≥ 2t,
2t+ 1 if t ≤ r < 2t,
r + t+ 1 if r < t.

If c = 2, then

χr,sc,t(C2n) =



r + 1 if r ≥ 2t+ s, (a)
2t+ s+ 1 if r ≥ 2t, t+ s ≤ r < 2t+ s, (b)
r + t+ 1 if r ≥ 2t, s ≤ r < t+ s, (c)
s+ t+ 1 if r ≥ 2t, s− t ≤ r < s, (d)
2t+ r + 1 if r ≥ 2t, s− 2t ≤ r < s− t, (e)
s+ 1 if r ≤ s− 2t, (f)
2t+ r + 1 if t ≤ r < 2t, t+ r ≤ s < 2t+ r, (g)
s+ t+ 1 if t ≤ r < 2t, 2t ≤ s < t+ r, (h)
3t+ 1 if t ≤ r < 2t, t ≤ s < 2t, (i)
2t+ s+ 1 if t ≤ r < 2t, s < t, (j)
2t+ r + 1 if r < t, t ≤ s < 2t+ r, (k)
r + t+ s+ 1 if r < t, s < t. (l)

Proof. If c = 1, the proof is the same as Theorem 2.1.
If c = 2, the edges of C2n are colored by two colors alternately. Suppose that

C2n = x1e1y1e
′
1x2e2y2e

′
2 . . . xieiyie

′
ixi+1 . . . xnenyne

′
nx1 and f1 = f(ei) ≤ f(e′

i) =
f2, i = 1, 2, . . . , n. It is obvious that f2 − f1 ≥ s. Then we give the proof from (a)
to (l).

(a) By Lemma 2.3, χr,s,c,t(C2n) ≥ r(χ(C2n) − 1) + 1 = r + 1. On the other
hand, let f(xi) = 0, f(yi) = r, f1 = t, f2 = t+ s for i = 1, . . . , n. It is easy
to see that f forms an [r, s, c, t]-coloring of C2n. Thus χr,sc,t(C2n) ≤ r + 1.
Then χr,s,c,t(C2n) = r + 1.

(b) Firstly we prove that χr,s,c,t(C2n) ≥ 2t + s + 1. Let us pay attention to
xi, yi for some i ∈ {1, . . . , n}. We might as well suppose f(xi) ≤ f(yi). If
f(xi) ≤ f(yi) ≤ f1, then f2 − f(xi) = (f2 − f1) + (f1 − f(yi)) + (f(yi) −
f(xi)) ≥ r + t + s ≥ 2t + s. If f(xi) ≤ f1 ≤ f(yi) ≤ f2, then f2 − f(xi) =
(f2 − f(yi)) + (f(yi) − f(xi)) ≥ t + r ≥ 2t + s. If f(xi) ≤ f1 ≤ f2 ≤ f(yi),
then we have f(yi) − f(xi) = (f(yi) − f2) + (f2 − f1) + (f1 − f(xi)) ≥
t + s + t = 2t + s. If f1 ≤ f(xi) ≤ f(yi) ≤ f2, then we have f2 − f1 =
(f2 − f(yi)) + (f(yi)− f(xi)) + (f(xi)− f1) ≥ t+ r + t ≥ 2t+ s. The cases
that f1 ≤ f(xi) ≤ f2 ≤ f(yi) or f1 ≤ f2 ≤ f(xi) ≤ f(yi) can be proved
similarly.

From all the above we can see that χr,s,c,t(C2n) ≥ 2t+ s+ 1. On the other hand,
for i = 1, . . . , n, let f(xi) = 0, f(yi) = 2t+ s, f1 = t, f2 = t+ s. It is obvious that
f is an [r, s, c, t]-coloring of C2n. So χr,s,c,t(C2n) = 2t+ s+ 1.
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The same arguments can be used to prove the lower bounds from (c) to (l) except
(f), so we only need to prove the upper bounds. We shall create an [r, s, c, t]-coloring
of G using given number of colors.

(c) Let f(xi) = 0, f(yi) = r, f1 = t, f2 = r + t. So χr,s,c,t(C2n) ≤ r + t+ 1.
(d) Let f(xi) = 0, f(yi) = r, f1 = t, f2 = t+ s. So χr,s,c,t(C2n) ≤ s+ t+ 1.
(e) Let f(xi) = t, f(yi) = t+r, f1 = 0, f2 = 2t+r. So χr,s,c,t(C2n) ≤ 2t+r+1.
(f) By Lemma 2.3, χr,sc,t(C2n) ≥ s(c− 1) + 1 = s + 1. On the other hand, let

f(xi) = t, f(yi) = t + r, f1 = 0, f2 = s for i = 1, . . . , n. It is easy to see
that f forms an [r, s, c, t]-coloring of C2n. Thus χr,sc,t(C2n) ≤ s + 1. Then
χr,s,c,t(C2n) = s+ 1.

(g) Let f(xi) = t, f(yi) = t+r, f1 = 0, f2 = 2t+r. So χr,s,c,t(C2n) ≤ 2t+r+1.
(h) Let f(xi) = 0, f(yi) = 2t, f1 = t, f2 = s+ t. So χr,s,c,t(C2n) ≤ s+ t+ 1.
(i) Let f(xi) = 0, f(yi) = 2t, f1 = t, f2 = 3t. So χr,s,c,t(C2n) ≤ 3t+ 1.
(j) Let f(xi) = 0, f(yi) = 2t+s, f1 = t, f2 = t+s. So χr,s,c,t(C2n) ≤ 2t+s+1.
(k) Let f(xi) = t, f(yi) = t+r, f1 = 0, f2 = 2t+r. So χr,s,c,t(C2n) ≤ 2t+r+1.
(l) Let f(xi) = 0, f(yi) = r, f1 = r + t, f2 = r + t + s. So χr,s,c,t(C2n) ≤

r + t+ s+ 1.
Note that [r, s, c, t]-coloring of C2n is also an [r, s, t]-coloring of C2n when c = 2,

so it gives an upper bound of χr,s,t(C2n).
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