A Note on $[r, s, c, t]$-Colorings of Graphs

${ }^{1}$ Jian-Ting Sheng and ${ }^{2}$ Gui-Zhen Liu
School of Mathematics, Shandong University, Jinan, 250100, P. R. China
${ }^{1}$ sjtlzh@163.com, ${ }^{2}$ gzliu@sdu.edu.cn

Abstract

Let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$. A subset S of $V(G)$ is called an independent set if no two vertices of S are adjacent in G. The minimum number of independent sets which form a partition of $V(G)$ is called chromatic number of G, denoted by $\chi(G)$. A subset S of $E(G)$ is called an edge cover of G if the subgraph induced by S is a spanning subgraph of G. The maximum number of edge covers which form a partition of $E(G)$ is called edge covering chromatic number of G, denoted by $\chi_{c}^{\prime}(G)$. Given nonnegative integers r, s, t and c, an $[r, s, c, t]$-coloring of G is a mapping f from $V(G) \cup E(G)$ to the color set $\{0,1, \ldots, k-1\}$ such that the vertices with the same color form an independent set of G, the edges with the same color form an edge cover of G, and $\left|f\left(v_{i}\right)-f\left(v_{j}\right)\right| \geq r$ if v_{i} and v_{j} are adjacent, $\left|f\left(e_{i}\right)-f\left(e_{j}\right)\right| \geq s$ for every e_{i}, e_{j} from different edge covers, $\left|f\left(v_{i}\right)-f\left(e_{j}\right)\right| \geq t$ for all pairs of incident vertices and edges, respectively, and the number of edge covers formed by the coloring of edges is exactly c. The $[r, s, c, t]$-chromatic number $\chi_{r, s, c, t}(G)$ of G is defined to be the minimum k such that G admits an $[r, s, c, t]$-coloring. In this paper, we present the exact value of $\chi_{r, s, c, t}(G)$ when $\delta(G)=1$ or G is an even cycle.

2010 Mathematics Subject Classification: 05C15
Keywords and phrases: $[r, s, c, t]$-coloring, edge covering coloring, chromatic number, $[r, s, t]$-coloring.

1. Introduction

In this paper, all graphs are finite, simple and undirected. We use $V(G), E(G)$, $\delta(G)$ and $\Delta(G)$ to denote the vertex set, the edge set, the minimum degree and the maximum degree of graph G, respectively. In a proper vertex coloring of a graph G, v_{i} and v_{j} are colored differently if they are adjacent. In an edge covering coloring of a graph $G, E(G)$ is partitioned into edge covers and different edge covers has different colors. The minimum number of colors such that G admits a proper vertex coloring is the chromatic number $\chi(G)$. The maximum number of colors such that G admits an edge covering coloring is the edge covering coloring chromatic number

[^0]$\chi_{c}^{\prime}(G)$. It is well known that $\chi(G) \leq \Delta+1$. For $\chi_{c}^{\prime}(G)$, R. P. Gupta first proved the following theorem.

Theorem 1.1. [3] Let G be a graph. Then

$$
\delta-1 \leq \chi_{c}^{\prime}(G) \leq \delta
$$

Kemnitz and Marangio introduced the $[r, s, t]$-Colorings of graphs in [4]. Given nonnegative integers r, s and t, an $[r, s, t]$-coloring of a graph G is a function c from $V(G) \bigcup E(G)$ to the color set $\{0,1, \ldots, k\}$ such that $\left|c\left(v_{i}\right)-c\left(v_{j}\right)\right| \geq r$ for every two adjacent vertices $v_{i}, v_{j} \in V,\left|c\left(e_{i}\right)-c\left(e_{j}\right)\right| \geq s$ for every two adjacent edges $e_{i}, e_{j} \in E$, and $\left|c\left(v_{i}\right)-c\left(e_{j}\right)\right| \geq t$ for every vertex v_{i} and its incident edges e_{j}. The $[r, s, t]$-chromatic number $\chi_{r, s, t}(G)$ of G is the minimum k such that G admits an $[r, s, t]$-coloring. In [4], the authors also gave exact values and some bounds of $\chi_{r, s, t}(G)$ when at least one among the three parameters is fixed, for example if $\min \{r, s, t\}=0$ or if two of the three parameters are 1. Similarly, we give the definition of $[r, s, c, t]$-colorings of graphs as follows. Given nonnegative integers r, s, t and c, an $[r, s, c, t]$-coloring of G is a mapping f from $V(G) \bigcup E(G)$ to the color set $\{0,1, \ldots, k-1\}$ such that the vertices with the same color form an independent set of G, the edges with the same color form an edge cover of G, and $\left|f\left(v_{i}\right)-f\left(v_{j}\right)\right| \geq r$ if v_{i} and v_{j} are adjacent, $\left|f\left(e_{i}\right)-f\left(e_{j}\right)\right| \geq s$ for every e_{i}, e_{j} from different edge covers, $\left|f\left(v_{i}\right)-f\left(e_{j}\right)\right| \geq t$ for all pairs of incident vertices and edges, respectively, and the number of edge covers formed by the coloring of edges is exactly c. The [$r, s, c, t]$-chromatic number $\chi_{r, s, c, t}(G)$ of G is defined to be the minimum k such that G admits an $[r, s, c, t]$-coloring. It is obvious that we only consider the case that $1 \leq c \leq \chi_{c}^{\prime}(G)$, for otherwise either the edges can be colored arbitrarily(if $c=0$) such that $\chi_{r, s, c, t}(G)=\chi_{r, 0, t}(G)$ which has been considered by Kemnitz and Marangio [4] or there is no $[r, s, c, t]$-coloring of G (if $c>\chi_{c}^{\prime}(G)$).

2. The proofs of the main results

In this section, we give the $[r, s, c, t]$-chromatic number $\chi_{r, s, c, t}(G)$ if $\delta(G)=1$ or G is an even cycle. Firstly, we give some basic properties of $[r, s, c, t]$-coloring of graphs.

Lemma 2.1. Let G be a graph. Given nonnegative integers $r, r^{\prime}, s, s^{\prime}, t$ and t^{\prime}. If $r^{\prime} \leq r, s^{\prime} \leq s, t^{\prime} \leq t$, then $\chi_{r^{\prime}, s^{\prime}, c, t^{\prime}}(G) \leq \chi_{r, s, c, t}(G)$ holds for any fixed integer c with $1 \leq c \leq \chi_{c}^{\prime}(G)$.
Proof. An $[r, s, c, t]$-coloring of G is by definition also an $\left[r^{\prime}, s^{\prime}, c, t^{\prime}\right]$-coloring of G if $r^{\prime} \leq r, s^{\prime} \leq s, t^{\prime} \leq t$.

Lemma 2.2. If $a \geq 0$ is an integer, then $\chi_{a r, a s, c, a t}(G)=a\left(\chi_{r, s, c, t}(G)-1\right)+1$ holds for any fixed integer c with $1 \leq c \leq \chi_{c}^{\prime}(G)$.
Proof. If $a=0$ or 1 , then the assertion is obvious. Let $a \geq 2$ and f be an $[r, s, c, t]-$ coloring of a graph G with $\chi_{r, s, c, t}(G)$ colors. If we multiply all assigned labels by a, then we obtain a coloring f^{\prime} such that $f^{\prime}(x)=a \cdot f(x)$ for all elements $x \in$ $V(G) \bigcup E(G)$ and $\left|f^{\prime}\left(v_{i}\right)-f^{\prime}\left(v_{j}\right)\right|=a\left|f\left(v_{i}\right)-f\left(v_{j}\right)\right| \geq a r$ if vertices v_{i} and v_{j} are adjacent, $\left|f^{\prime}\left(e_{i}\right)-f^{\prime}\left(e_{j}\right)\right|=a\left|f\left(e_{i}\right)-f\left(e_{j}\right)\right| \geq a s$ if edges e_{i} and e_{j} belong to different edge covers, and $\left|f^{\prime}\left(v_{i}\right)-f^{\prime}\left(e_{j}\right)\right|=a\left|f\left(v_{i}\right)-f\left(e_{j}\right)\right| \geq a t$ if v_{i} and e_{j} are incident, respectively. Furthermore, since f forms c edge covers of G, f^{\prime} also
forms c edge covers of G. Therefore, f^{\prime} is an [ar, as, $\left.c, a t\right]$-coloring of G with colors in $\left\{0,1, \ldots, a\left(\chi_{r, s, c, t}(G)-1\right)\right\}$ which implies that $a\left(\chi_{r, s, c, t}(G)-1\right)+1$ is an upper bound of $\chi_{a s, a s, c, a t}(G)$.

On the other hand, assume that G has an $[a r, a s, c, a t]$-coloring f with $a\left(\chi_{r, s, c, t}(G)-\right.$ 1) colors ($a \geq 2$). Define a coloring f^{\prime} by $f^{\prime}(x)=\lfloor f(x) / a\rfloor$. If, for example, x_{i} and x_{j} are adjacent vertices, then $\left.\mid\left\lfloor f\left(x_{i}\right) / a\right\rfloor-\left\lfloor f\left(x_{j}\right) / a\right)\right\rfloor \mid \geq r$ by assumption which implies that $\left|f^{\prime}\left(x_{i}\right)-f^{\prime}\left(x_{j}\right)\right|=\left|\left\lfloor f\left(x_{i}\right) / a\right\rfloor-\left\lfloor f\left(x_{j}\right) / a\right\rfloor\right| \geq r$. Similar proof can be used when considering s and t. Furthermore, since f forms c edge covers of G, f^{\prime} also forms c edge covers of G. Therefore, f^{\prime} is an $[r, s, c, t]$-coloring of G with $\chi_{r, s, c, t}(G)-1$ colors which contradicts the definition of the $[r, s, c, t]$-chromatic number of G.
Lemma 2.3. Let G be a graph. Then
$\max \{r(\chi(G)-1)+1, s(c-1)+1, t+1\} \leq \chi_{r, s, c, t}(G) \leq r(\chi(G)-1)+s(c-1)+t+1$.
Proof. By Lemma 2.1 and Lemma 2.2, $\chi_{r, s, c, t}(G) \geq \chi_{r, 0, c, 0}(G)=r(\chi(G)-1)+1$ as well as $\chi_{r, s, c, t}(G) \geq \chi_{0, s, c, 0}(G)=s(c-1)+1$. Obviously, $\chi_{r, s, c, t}(G) \geq t+1$.

If we color the vertices of G with colors $0, r, \ldots, r(\chi(G)-1)$ and the edges with colors $r(\chi(G)-1)+t, r(\chi(G)-1)+t+s, \ldots, r(\chi(G)-1)+t+s(c-1)$. (Note that $\left.1 \leq c \leq \chi_{c}^{\prime}(G)\right)$, we obtain an $[r, s, c, t]$-coloring of G.

Next, we give the exact value of $\chi_{r, s, c, t}(G)$ where $\delta(G)=1$ or G is an even cycle. Given a graph G with $\delta(G)=1$, it is obvious that $\chi_{c}^{\prime}(G)=\delta(G)=1$. Since $1 \leq c \leq \chi_{c}^{\prime}(G)=1$, we can only let $c=1$. Thus in order to get a $[r, s, c, t]$-coloring of G, we can only color all the edges of G with the same color. Then we have the following theorem.
Theorem 2.1. Let $c=1$ and G be a graph with $\delta(G)=1$. We have
$\chi_{r, s, c, t}(G)=\left\{\begin{array}{lll}r(\chi(G)-1)+1 & \text { if } & r \geq 2 t, \\ r(\chi(G)-2)+2 t+1 & \text { if } & t \leq r<2 t, \\ r(\chi(G)-1)+t+1 & \text { if } & r<t .\end{array}\right.$
Proof. (a) By Lemma 2.2, $\chi_{r, s, c, t}(G) \geq r(\chi(G)-1)+1$. On the other hand, color the vertices of G with colors $0, r, 2 r, \ldots, r(\chi(G)-1)$ to get a proper vertex coloring and all the edges of G with color t. It is easy to see that it forms an $[r, s, c, t]$-coloring of G. The color set used by the coloring is $\{0, \ldots, r(\chi(G)-1)\}$. By definition, $\chi_{r, s, c, t}(G)=r(\chi(G)-1)+1$.
(b) Firstly, we prove the lower bound. Given any $[r, s, c, t]$-coloring of G, suppose that the vertices of G are colored with colors $f_{1}, f_{2}, \ldots, f_{m}$ where $m \geq \chi(G)$ and all the edges are colored with color f_{0}. If $f_{i} \leq f_{0} \leq f_{i+1}$ holds for some $i \in\{1,2, \ldots, m-$ $1\}$, we have $f_{m}-f_{1}=f_{m}-f_{i+1}+f_{i+1}-f_{i}+f_{i}-f_{1} \geq(m-2) r+2 t \geq r(\chi(G)-2)+2 t$. Otherwise, $f_{0} \leq f_{1}$ or $f_{0} \geq f_{m}$ holds. In this case, at least $(m-1) r+t$ colors are needed which is greater than $r(\chi(G)-2)+2 t$. Secondly, we color G as follows. Color all vertices in G with color $0,2 t, 2 t+r, \ldots, 2 t+r(\chi(G)-2)$ and all edges of G with color t. It is easy to see that it forms an $[r, s, c, t]$-coloring of G with the color set $\{0, \ldots, r(\chi(G)-2)+2 t\}$. By definition, $\chi_{r, s, c, t}(G)=r(\chi(G)-2)+2 t$.
(c) The lower bound has already been proved in (b). On the other hand, we color G as follows. Color the vertices of G with color $0, r, \ldots, r(\chi(G)-1)$ and all edges of G with color $r(\chi(G)-1)+t$. It is easy to see that it forms an $[r, s, c, t]$-coloring of G with the color set $\{0, \ldots, r(\chi(G)-1)+t\}$. By definition, $\chi_{r, s, c, t}(G)=r(\chi(G)-1)+t+1$.

Given an even cycle $C_{2 n}$, it is known that $\chi\left(C_{2 n}\right)=2, \chi_{c}^{\prime}\left(C_{2 n}\right)=2$. So we must discuss two cases, $c=1$ and $c=2$. We have the following theorem.

Theorem 2.2. Let c be an integer with $1 \leq c \leq 2$ and $C_{2 n}$ be a cycle with $2 n$ vertices. If $c=1$, then

$$
\chi_{r, s, c, t}\left(C_{2 n}\right)=\left\{\begin{array}{lll}
r+1 & \text { if } & r \geq 2 t \\
2 t+1 & \text { if } & t \leq r<2 t \\
r+t+1 & \text { if } & r<t .
\end{array}\right.
$$

If $c=2$, then

$$
\chi_{r, s_{c}, t}\left(C_{2 n}\right)=\left\{\begin{array}{lll}
r+1 & \text { if } & r \geq 2 t+s, \tag{a}\\
2 t+s+1 & \text { if } & r \geq 2 t, t+s \leq r<2 t+s, \\
r+t+1 & \text { if } & r \geq 2 t, s \leq r<t+s \\
s+t+1 & \text { if } & r \geq 2 t, s-t \leq r<s, \\
2 t+r+1 & \text { if } & r \geq 2 t, s-2 t \leq r<s-t \\
s+1 & \text { if } & r \leq s-2 t, \\
2 t+r+1 & \text { if } & t \leq r<2 t, t+r \leq s<2 t+r, \\
s+t+1 & \text { if } & t \leq r<2 t, 2 t \leq s<t+r, \\
3 t+1 & \text { if } & t \leq r<2 t, t \leq s<2 t \\
2 t+s+1 & \text { if } & t \leq r<2 t, s<t \\
2 t+r+1 & \text { if } & r<t, t \leq s<2 t+r \\
r+t+s+1 & \text { if } & r<t, s<t .
\end{array}\right.
$$

Proof. If $c=1$, the proof is the same as Theorem 2.1.
If $c=2$, the edges of $C_{2 n}$ are colored by two colors alternately. Suppose that $C_{2 n}=x_{1} e_{1} y_{1} e_{1}^{\prime} x_{2} e_{2} y_{2} e_{2}^{\prime} \ldots x_{i} e_{i} y_{i} e_{i}^{\prime} x_{i+1} \ldots x_{n} e_{n} y_{n} e_{n}^{\prime} x_{1}$ and $f_{1}=f\left(e_{i}\right) \leq f\left(e_{i}^{\prime}\right)=$ $f_{2}, i=1,2, \ldots, n$. It is obvious that $f_{2}-f_{1} \geq s$. Then we give the proof from (a) to (1).
(a) By Lemma 2.3, $\chi_{r, s, c, t}\left(C_{2 n}\right) \geq r\left(\chi\left(C_{2 n}\right)-1\right)+1=r+1$. On the other hand, let $f\left(x_{i}\right)=0, f\left(y_{i}\right)=r, f_{1}=t, f_{2}=t+s$ for $i=1, \ldots, n$. It is easy to see that f forms an $[r, s, c, t]$-coloring of $C_{2 n}$. Thus $\chi_{r, s_{c}, t}\left(C_{2 n}\right) \leq r+1$. Then $\chi_{r, s, c, t}\left(C_{2 n}\right)=r+1$.
(b) Firstly we prove that $\chi_{r, s, c, t}\left(C_{2 n}\right) \geq 2 t+s+1$. Let us pay attention to x_{i}, y_{i} for some $i \in\{1, \ldots, n\}$. We might as well suppose $f\left(x_{i}\right) \leq f\left(y_{i}\right)$. If $f\left(x_{i}\right) \leq f\left(y_{i}\right) \leq f_{1}$, then $f_{2}-f\left(x_{i}\right)=\left(f_{2}-f_{1}\right)+\left(f_{1}-f\left(y_{i}\right)\right)+\left(f\left(y_{i}\right)-\right.$ $\left.f\left(x_{i}\right)\right) \geq r+t+s \geq 2 t+s$. If $f\left(x_{i}\right) \leq f_{1} \leq f\left(y_{i}\right) \leq f_{2}$, then $f_{2}-f\left(x_{i}\right)=$ $\left(f_{2}-f\left(y_{i}\right)\right)+\left(f\left(y_{i}\right)-f\left(x_{i}\right)\right) \geq t+r \geq 2 t+s$. If $f\left(x_{i}\right) \leq f_{1} \leq f_{2} \leq f\left(y_{i}\right)$, then we have $f\left(y_{i}\right)-f\left(x_{i}\right)=\left(f\left(y_{i}\right)-f_{2}\right)+\left(f_{2}-f_{1}\right)+\left(f_{1}-f\left(x_{i}\right)\right) \geq$ $t+s+t=2 t+s$. If $f_{1} \leq f\left(x_{i}\right) \leq f\left(y_{i}\right) \leq f_{2}$, then we have $f_{2}-f_{1}=$ $\left(f_{2}-f\left(y_{i}\right)\right)+\left(f\left(y_{i}\right)-f\left(x_{i}\right)\right)+\left(f\left(x_{i}\right)-f_{1}\right) \geq t+r+t \geq 2 t+s$. The cases that $f_{1} \leq f\left(x_{i}\right) \leq f_{2} \leq f\left(y_{i}\right)$ or $f_{1} \leq f_{2} \leq f\left(x_{i}\right) \leq f\left(y_{i}\right)$ can be proved similarly.
From all the above we can see that $\chi_{r, s, c, t}\left(C_{2 n}\right) \geq 2 t+s+1$. On the other hand, for $i=1, \ldots, n$, let $f\left(x_{i}\right)=0, f\left(y_{i}\right)=2 t+s, f_{1}=t, f_{2}=t+s$. It is obvious that f is an $[r, s, c, t]$-coloring of $C_{2 n}$. So $\chi_{r, s, c, t}\left(C_{2 n}\right)=2 t+s+1$.

The same arguments can be used to prove the lower bounds from (c) to (l) except (f), so we only need to prove the upper bounds. We shall create an $[r, s, c, t]$-coloring of G using given number of colors.
(c) Let $f\left(x_{i}\right)=0, f\left(y_{i}\right)=r, f_{1}=t, f_{2}=r+t$. So $\chi_{r, s, c, t}\left(C_{2 n}\right) \leq r+t+1$.
(d) Let $f\left(x_{i}\right)=0, f\left(y_{i}\right)=r, f_{1}=t$, $f_{2}=t+s$. So $\chi_{r, s, c, t}\left(C_{2 n}\right) \leq s+t+1$.
(e) Let $f\left(x_{i}\right)=t, f\left(y_{i}\right)=t+r, f_{1}=0, f_{2}=2 t+r$. So $\chi_{r, s, c, t}\left(C_{2 n}\right) \leq 2 t+r+1$.
(f) By Lemma 2.3, $\chi_{r, s_{c}, t}\left(C_{2 n}\right) \geq s(c-1)+1=s+1$. On the other hand, let $f\left(x_{i}\right)=t, f\left(y_{i}\right)=t+r, f_{1}=0, f_{2}=s$ for $i=1, \ldots, n$. It is easy to see that f forms an $[r, s, c, t]$-coloring of $C_{2 n}$. Thus $\chi_{r, s_{c}, t}\left(C_{2 n}\right) \leq s+1$. Then $\chi_{r, s, c, t}\left(C_{2 n}\right)=s+1$.
(g) Let $f\left(x_{i}\right)=t, f\left(y_{i}\right)=t+r, f_{1}=0, f_{2}=2 t+r$. So $\chi_{r, s, c, t}\left(C_{2 n}\right) \leq 2 t+r+1$.
(h) Let $f\left(x_{i}\right)=0, f\left(y_{i}\right)=2 t, f_{1}=t, f_{2}=s+t$. So $\chi_{r, s, c, t}\left(C_{2 n}\right) \leq s+t+1$.
(i) Let $f\left(x_{i}\right)=0, f\left(y_{i}\right)=2 t, f_{1}=t, f_{2}=3 t$. So $\chi_{r, s, c, t}\left(C_{2 n}\right) \leq 3 t+1$.
(j) Let $f\left(x_{i}\right)=0, f\left(y_{i}\right)=2 t+s, f_{1}=t, f_{2}=t+s$. So $\chi_{r, s, c, t}\left(C_{2 n}\right) \leq 2 t+s+1$.
(k) Let $f\left(x_{i}\right)=t, f\left(y_{i}\right)=t+r, f_{1}=0, f_{2}=2 t+r$. So $\chi_{r, s, c, t}\left(C_{2 n}\right) \leq 2 t+r+1$.
(l) Let $f\left(x_{i}\right)=0, f\left(y_{i}\right)=r, f_{1}=r+t, f_{2}=r+t+s$. So $\chi_{r, s, c, t}\left(C_{2 n}\right) \leq$ $r+t+s+1$.
Note that $[r, s, c, t]$-coloring of $C_{2 n}$ is also an $[r, s, t]$-coloring of $C_{2 n}$ when $c=2$, so it gives an upper bound of $\chi_{r, s, t}\left(C_{2 n}\right)$.

Acknowledgement. The authors are indebted to the anonymous referees for their valuable comments and suggestions. This work was supported by NNSF (10871119, 61070230) and RSDP (20080422001) of China.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
[2] L. Dekar, B. Effantin and H. Kheddouci, $[r, s, t]$-coloring of trees and bipartite graphs, Discrete Math. 310 (2010), no. 2, 260-269.
[3] R. P. Gupta, On decompositions of a multi-graph into spanning subgraphs, Bull. Amer. Math. Soc. 80 (1974), 500-502.
[4] A. Kemnitz and M. Marangio, [r,s,t]-colorings of graphs, Discrete Math. 307 (2007), no. 2, 199-207.
[5] H. M. Song and G. Z. Liu, f-edge covering coloring of graphs, Acta Math. Sinica (Chin. Ser.) 48 (2005), no. 5, 919-928.
[6] C. Xu and G. Liu, A note on the edge cover chromatic index of multigraphs, Discrete Math. 308 (2008), no. 24, 6564-6568.
[7] C. Xu and G. Liu, Edge covered critical multigraphs, Discrete Math. 308 (2008), no. 24, 6348-6354.

[^0]: Communicated by Rosihan M. Ali, Dato'.
 Received: April 22, 2009; Revised: October 8, 2009.

