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Abstract. In this note we consider various classes of monoids of transforma-

tions on a finite chain, in particular of transformations that preserve or re-
verse either the order or the orientation. Being finite monoids we are naturally

interested in computing both their cardinals and their idempotent numbers.

Fibonacci and Lucas numbers play an essential role in the last computations.
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1. Introduction

Let Xn be a finite chain with n elements, say Xn = {1 < · · · < n}. We denote by
PTn the monoid (under composition) of all partial transformations of Xn. The sub-
monoids of PTn of all full transformations and of all injective partial transformations
are denoted by Tn and In, respectively.

For general background on monoids, we refer the reader to Howie’s book [10].
Given s ∈ PTn, we denote its domain by Dom(s) and its image by Im(s).

A transformation s in PTn is said to be order-preserving (resp., order-reversing)
if x ≤ y implies xs ≤ ys (resp., xs ≥ ys), for all x, y ∈ Dom(s).

Denote by POn the submonoid of PTn of all order-preserving partial transforma-
tions. As usual, we denote by On the monoid POn ∩ Tn of all full transformations
that preserve the order. Howie [9] calculated the cardinal and the number of idem-
potents of On and later jointly with Gomes [8] determined the cardinal of POn.
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More recently, using a different approach, Laradji and Umar [11, 12] also obtained
these results as well as the number of idempotents of POn. The injective counter-
part of On is the inverse monoid POIn = POn ∩In of all injective order-preserving
partial transformations, whose cardinal was first calculated by Garba [7] (see also
[2]). Obviously POIn and In have exactly the same idempotents, which are the 2n

partial identities on Xn.
Wider classes of monoids are obtained when we take transformations that either

preserve or reverse the order. In this way, we get the submonoid PODn of PTn of all
partial transformations that preserve or reverse the order, as well as its submonoids
ODn = PODn ∩Tn and PODIn = PODn ∩In, whose cardinals were calculated by
the authors in [4, 5].

Before mentioning a different class of transformation monoids, we require to recall
some other definitions.

Let a = (a1, a2, . . . , at) be a sequence of t (t ≥ 0) elements from the chain Xn.
We say that a is cyclic (resp., anti-cyclic) if there exists no more than one index
i ∈ {1, . . . , t} such that ai > ai+1 (resp., ai < ai+1), where at+1 denotes a1. Let
s ∈ PTn and suppose that Dom(s) = {a1, . . . , at}, with t ≥ 0 and a1 < · · · < at.
We say that s is orientation-preserving (resp., orientation-reversing) if the sequence
of its images (a1s, . . . , ats) is cyclic (resp., anti-cyclic). These notions were first
introduced by McAlister [13]. Catarino and Higgins worked these concepts too in
[1].

We denote by POPn the submonoid of PTn of all orientation-preserving trans-
formations. Adding to POPn all orientation-reversing transformations we obtain
the submonoid PORn of PTn. Next, we look both at the “full” and the “injective”
parts of POPn and PORn. Denote by OPn the submonoid of POPn of all its full
transformations and, similarly, by ORn the submonoid of PORn of all its full ele-
ments; by POPIn the submonoid of POPn whose transformations are injective and,
finally, by PORIn the submonoid of PORn whose elements are injective too. The
cardinals of OPn and ORn were calculated by McAlister [13] and, independently,
by Catarino and Higgins [1] who also computed the number of their idempotents.
In [3] Fernandes calculated the cardinal of POPIn and the cardinal of PORIn was
determined by the authors in [4]. In this case, it is easy to show that the idempotents
of PODIn, POPIn and PORIn are also the 2n idempotents of In.

In what follows we denote by 1 the trivial monoid, by Sn the symmetric group
and by Cn the cyclic group of order n. With respect to the inclusion relation, the
diagram bellow presents the relationship between the various monoids introduced
above:
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The first section of this note is dedicated to calculating the cardinals of these
monoids and in the second section we compute the cardinals of their sets of idem-
potents. We recall the known results and complete the study by computing the
remaining cases.

2. Cardinals

Let PDn be the set of all order-reversing partial transformations of Xn and let
IDn and Dn be the subsets of all its injective transformations and of all its full
transformations, respectively. Clearly, PODn = POn ∪ PDn hence PODIn =
POIn ∪ IDn and ODn = On ∪ Dn. Furthermore, POn ∩ PDn = {s ∈ PTn :
| Im(s)| ≤ 1}, whence POIn ∩ IDn = {s ∈ In : | Im(s)| ≤ 1} and On ∩ Dn = {s ∈
Tn : | Im(s)| = 1}.

Now, consider the following particular order-reversing permutation of order two:

h =
(

1 2 · · · n− 1 n
n n− 1 · · · 2 1

)
.

To calculate the cardinals of PODn, PODIn and ODn, we will make use of the
mapping ϕ : POn −→ PDn defined by (s)ϕ = sh, for all s ∈ POn. Obviously, this
mapping is a bijection and so we have |PDn| = |POn|. On the other hand, ϕ maps
On onto Dn and POIn onto IDn, therefore |Dn| = |On| and |IDn| = |POIn|.

Now, recalling that Howie [9] computed

|On| =
(

2n− 1
n− 1

)
and since |On ∩ Dn| = n, the next result follows.

Theorem 2.1. [5] |ODn| = 2
(

2n− 1
n− 1

)
− n.

As |POIn ∩ IDn| = |{s ∈ In : | Im(s)| ≤ 1}| = n2 + 1 and Garba [7] (indepen-
dently, Fernandes [2]) proved, that

|POIn| =
(

2n
n

)
,

we deduced the cardinal of PODIn.
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Theorem 2.2. [4] |PODIn| = 2
(

2n
n

)
− n2 − 1.

Taking into account that Gomes and Howie [8] established that

|POn| =
n∑

i=1

(
n

i

)(
n+ i− 1

i

)
+ 1

and using the fact that |POn ∩ PDn| = n
∑n

i=1

(
n
i

)
+ 1, we may compute |PODn|.

Theorem 2.3. [5] |PODn| =
n∑

i=1

(
n

i

)(
2
(
n+ i− 1

i

)
− n

)
+ 1.

The cardinal of POPn was also calculated by the authors.

Theorem 2.4. [6] |POPn| = 1 + (2n − 1)n+
n∑

k=2

k

(
n

k

)2

2n−k.

Denote by PRn the set of all orientation-reversing partial transformations of Xn.
By definition, we have PORn = POPn ∪ PRn. To obtain the cardinal of PORn we
use the following result of Catarino and Higgins:

Lemma 2.1. [1] Let a be a cyclic (resp., anti-cyclic) sequence. Then a is also
anti-cyclic (resp., cyclic) if and only if a has no more than two distinct values.

This fact allows us to conclude that POPn ∩ PRn = {s ∈ POPn : | Im(s)| ≤ 2}.
As the mapping Ψ : POPn −→ PRn defined by (s)Ψ = sh, for all s ∈ POPn, is
a bijection, we get |POPn| = |PRn| and so |PORn| = 2|POPn| − |{s ∈ POPn :
| Im(s)| ≤ 2}|. Therefore we are able to obtain the cardinal of PORn.

Theorem 2.5. [6] |PORn| = 1 + (2n − 1)n+ 2
(
n

2

)2

2n−2 +
n∑

k=3

2k
(
n

k

)2

2n−k.

The cardinal of POPIn, computed by Fernandes [3], is given by the next formula

|POPIn| = 1 +
n

2

(
2n
n

)
.

As Ψ maps POPIn onto the set of all injective orientation-reversing transforma-
tions, we conclude that |PORIn| = 2|POPIn| − |{s ∈ POPIn : | Im(s)| ≤ 2}| and
may deduce the following.

Theorem 2.6. [4] |PORIn| = 1 + n

(
2n
n

)
− n2

2
(n2 − 2n+ 3).

The cardinals of OPn and ORn were calculated by McAlister [13] and, indepen-
dently, by Catarino and Higgins [1], who proved that

|OPn| = n

(
2n− 1
n− 1

)
− n(n− 1) and |ORn| = n

(
2n
n

)
− n2

2
(n2 − 2n+ 5) + n.

Just to complete the picture recall that

|Cn| = n, |Sn| = n!, |In| =
n∑

k=0

(
n

k

)2

k!, |Tn| = nn and |PTn| = (n+ 1)n.
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3. Number of idempotents

For a given monoid M , we denote by E(M) its set of idempotents.
First we will consider the “ordered case”. Let M ∈ {ODn,PODIn,PODn}. Let

e ∈ E(M). As the product of two order-preserving transformations or of two order-
reversing transformations is an order-preserving transformation, we conclude that e
must be order-preserving. Thus E(ODn) = E(On) and E(PODn) = E(POn).

In [9] Howie showed that
|E(On)| = F2n,

where Fn is the nth Fibonacci number.
Recall that the Fibonacci numbers are recursively defined by

F0 = 0, F1 = 1, Fk+1 = Fk + Fk−1, for k ≥ 1.

Another interesting set of numbers is the Lucas sequence, which is also recursively
defined as follows

L0 = 2, L1 = 1, Lk+1 = Lk + Lk−1, for k ≥ 1.

Fibonacci and Lucas numbers are intrinsically related. In fact, for any n ∈ N0,

Fn =
τn − θn

τ − θ
and Ln = τn + θn,

where τ is the golden number and θ is its rational conjugate, that is τ = 1+
√

5
2 and

θ = 1−
√

5
2 . Moreover, F2n = FnLn, for any n ∈ N0. For further details, see e.g. [14].

In view of the above observations, we conclude that

|E(ODn)| = |E(On)| = F2n =
τ2n − θ2n

τ − θ
.

Concerning the correspondent classes of partial transformations, the following
formula for the number of idempotents of POn was given by Laradji and Umar [11].

Theorem 3.1. |E(PODn)| = |E(POn)| = (
√

5)n−1(τn − (−θ)n) + 1.

The table below gives us an idea of the size of the monoids we are dealing with.
By En we denote the set E(POn) = E(PODn).

n |POn| |PODn| |En| n |POn| |PODn| |En|
1 2 2 2 6 5336 10293 1001
2 8 9 6 7 28814 56738 3626
3 38 54 21 8 157184 312327 13126
4 192 323 76 9 864146 1723692 47501
5 1002 1848 276 10 4780008 9549785 171876

Next, we look at the “oriented case”. Let M ∈ {ORn,PORIn,PORn} and,
again, let e ∈ E(M). Similarly to what happened in the “ordered case”, the product
of two orientation-preserving or of two orientation-reversing elements of M is an
orientation-preserving transformation, whence e must preserve the orientation. Thus
E(ORn) = E(OPn) and E(PORn) = E(POPn).

Catarino and Higgins [1] showed that

|E(ORn)| = |E(OPn)| = L2n − (n2 − n+ 2) = τ2n + θ2n − (n2 − n+ 2).
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We finish this note by computing the remaining cases, namely the number of
idempotents of POPn and of PORn.

Theorem 3.2.

|E(PORn)|= |E(POPn)|=
n∑

j=1

(
n

j

)
[L2j − (j2 − j + 2)] + 1

=
n∑

j=1

(
n

j

)
[τ2j + θ2j − (j2 − j + 2)] + 1.

Proof. For s ∈ PTn, we define Fix(s) = {x ∈ Dom(s) : (x)s = x}. An element
s ∈ PTn is idempotent if and only if Im(s) ⊆ Fix(s). Also, for each nonempty
subset A of Xn, the number of idempotents of POPn with domain A coincides with
|E(OP |A|)|. Therefore

|E(PORn)| = |E(POPn)| =
n∑

j=1

(
n

j

)
|E(OP j)|+ 1

=
n∑

j=1

(
n

j

)
[L2j − (j2 − j + 2)] + 1

=
n∑

j=1

(
n

j

)[
τ2j + θ2j − (j2 − j + 2)

]
+ 1,

as required.
Now, let En denote the set E(POPn) = E(PORn). We apply the last formula to

compute some examples.

n |POPn| |PORn| |En| n |POPn| |PORn| |En|
1 2 2 2 6 21145 34711 1643
2 9 9 6 7 136529 243944 6526
3 61 64 23 8 862209 1622025 25280
4 449 549 96 9 5369617 10402858 96011
5 3161 4566 402 10 33133481 65219931 359288

To conclude with a full picture recall that |E(Cn)| = |E(Sn)| = 1 and |E(POIn)| =
|E(PODIn)| = |E(PORIn)| = |E(In)| = 2n, also |E(Tn)| =

∑n
j=1

(
n
j

)
jn−j and

|E(PTn)| =
∑n

j=0

(
n
j

)
(j + 1)n−j .
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