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Abstract. Based on URV-decomposition in Stewart [An updating algorithm

for subspace tracking, IEEE Trans. Signal Processing, 40 (1992): 1535–1541]

and the result of Mehrmann [Divide and conquer methods for block tridiagonal
systems, Parallel Comput., 19 (1993): 257–279], inverses of block tridiagonal

matrices are presented. The computational complexity of the proposed algo-

rithm is less than that of the Block Gaussian-Jordan Elimination method when
the orders of the matrices are not less than 100. Expressions for the rounding

errors incurred during the process of the computation of the inverses of block
tridiagonal matrices are also considered. Moreover, from the experiment, it

shows that the norms of the errors generated from the Block Gaussian-Jordan

Elimination method are larger than those of the proposed algorithm.
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1. Introduction

Tridiagonal matrices are connected with different areas of science and engineering,
including telecommunication system analyses [7] and finite difference methods for
solving partial differential equations [2, 14, 10]. Large tridiagonal systems appear in
many applications, such as finite elements, difference schemes to differential equa-
tions, power distribution systems, etc.

In many of these areas, inverses of tridiagonal matrices are necessary. Efficient
algorithms [4], indirect formulae [1, 12, 16], and direct expressions in some special
cases [2, 10] for such inversions are known. However, the investigation on inverses
of block tridiagonal matrices is relatively few. The Block Gaussian-Jordan Elimina-
tion method is one of them. But the computational complexity is O( 1

3n
3). Having
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referred to the recent publications, Meurant [12] presented the results on inverses of
symmetric block tridiagonal matrices. Based on the twisted block decompositions of
block tridiagonal matrices, the explicit expressions of the block elements of matrices
inverses were presented in Ran and Huang [13]. In this paper, based on the divide-
and-conquer algorithm and the URV-decomposition and from the result of Volker
Mehrmann [11], inverses of block tridiagonal matrices are presented. The computa-
tional complexity is O( 1

4ln
3) which is less than that of the Block Gaussian-Jordan

Elimination method, where l is the timings of the divide-and-conquer algorithm
applied for the inverse and n is very large.

To most numerical analysts, matrix inversion is a sin. Not only is the inverse
approach three times more expensive, but also it is much less stable. However, there
are situations, such as statistics where the inverse can convey important statistical
information [8] and numerical integrations arising in superconductivity computations
[5], in which a matrix inverse must be computed. Moreover, methods for a matrix
inversion display a wide variety of stability properties. A rounding error analysis
was presented for a divide-and-conquer algorithm to solve linear systems with block
Hessenberg matrices in [9] and was stable for block diagonally dominant matrices
and for M -matrices. In this paper we also establish rounding errors incurred during
the computation of inverses of block tridiagonal matrices. Moreover, from the results
of the experiment, it shows that the norms of the errors generated from the proposed
algorithm are less than those of the Block Gaussian-Jordan Elimination method.

Unless otherwise stated, throughout our analysis we will use the 2-norm. Its main
advantage is that the norm of an orthogonal matrix is one. The computed matrices,
vectors and scalars will be identified by a hat over the symbol.

2. Inverses of block tridiagonal matrices

Consider a nonsingular block tridiagonal matrix

(2.1) A = tridiag(C,D,B)s×s ∈ Rn×n,

where s > 1,

C = [C2, · · · , Cs]T , D = [D1, · · · , Ds]T , B = [B1, · · · , Bs−1]T ,

Di ∈ Rki×ki (i = 1, 2, . . . , s) are arbitrary matrices, the off-diagonal blocks Ci ∈
Rki×ki−1(i = 2, 3, . . . , s) and Bi ∈ Rki×ki+1(i = 1, 2, . . . , s − 1) have rank r, and ki

satisfy 1 ≤ ki < n and
∑s

i=1 ki = n.
If s > 1 we can partition the matrix A as follows:

(2.2) A =
(
A11 A12

A21 A22

)
.

The submatrix A11 contains the first k diagonal blocks of A and A22 contains the last
s−k diagonal blocks of A, where the dimensions n1 =

∑k
i=1 ki and n2 =

∑s
i=k+1 ki.

Note that Bk and Ck+1 are the only nonzero blocks in A12 and A21, respectively.
Partitioning the matrix A in (2.1), we first obtain the following lemma.

Lemma 2.1. Let the matrix A partitioned in (2.1) be the same as that in (2.2).
Then

A1 =
(
A11 A12

0 A22

)
= A− EA21F

T
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and

A2 =
(
A11 0
0 A22

)
= A1 − FA12E

T ,

where E and F are the last n2 columns of the n-by-n identity matrix and the first
n1 columns of the n-by-n identity matrix, respectively.

Proof. Let E and F be the last n2 columns of the n-by-n identity matrix and the
first n1 columns of the n-by-n identity matrix, respectively, that is,

E =
(

0 In2

)T
, F =

(
In1 0

)T
.

Then

(2.3)

EA21F
T =

(
0
In2

)
n×n2

(
0 Ck+1

0 0

)
n2×n1

(
In1 0

)
n1×n

=


0 0 0 0
0 0 0 0
0 Ck+1 0 0
0 0 0 0


n×n

=
(

0 0
A21 0

)
n×n

.

From (2.2) and (2.3), we have

A1 = A− EA21F
T .

The following proof with respect to the relationship between A1 and A2 is analogous,
so we omit it. Hence

A2 = A1 − FA12E
T .

The proof is completed.
Now we recall the well-known Sherman-Morrison-Woodbury formula concerning

the inverse of A+XY T to obtain the inverse of A in (2.1).

Lemma 2.2. [3]. Let A ∈ Rn×n and I + Y TA−1X be nonsingular, and X, Y ∈
Rn×k. Then

(A+XY T )−1 = A−1 −A−1X(I + Y TA−1X)−1Y TA−1.

Many problems in certain signal processing applications require the computation
of an approximate null space of an n× p matrix whose rows represent samples of a
signal. The usual tool for doing it is the singular value decomposition. However, it
has the drawback that it requires O(p3) operations. Therefore, Stewart [15] shows
that a different decomposition, called the URV-decomposition, is equally effective in
exhibiting the null space and can be updated in O(p2) time. The following is the
URV-decomposition for the matrices A21 and A12.

Lemma 2.3. [15]. Let the matrix A21 in (2.2) be of rank r. Then there are orthog-
onal matrices U2 ∈ Rn2×r with kk+1 nonzero rows and V2 ∈ Rn1×r with kk nonzero
rows such that

(2.4) A21 = U2R2V
T
2 ,

where R2 is a square r × r matrix.
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For the matrix A12 in (2.2), there are also orthogonal matrices U1 ∈ Rn1×r with
kk nonzero rows and V1 ∈ Rn2×r with kk+1 nonzero rows such that

(2.5) A12 = U1R1V
T
1 ,

where R1 is a square r × r matrix.
From Lemma 2.1 and Lemma 2.2, we have the following lemma.

Lemma 2.4. [11]. Let the matrix A be in (2.1) and I+A21F
TA−1

1 E be nonsingular.
Then the inverse formula of the matrix A is as follows:

A−1 = A−1
1 −A

−1
1 E(I +A21F

TA−1
1 E)−1A21F

TA−1
1 ,

where
A−1

1 = A−1
2 −A

−1
2 FA12E

TA−1
2

and A−1
2 = diag(A−1

11 , A
−1
22 ).

From Sherman-Morrison-Woodbury formula and URV-decomposition, the inverse
of block tridiagonal matrix A in (2.1) is presented when the timings of the divide-
and-conquer algorithm applied is one. With the help of the URV-decomposition [15]
and Lemma 2.4, we have the following theorem.

Theorem 2.1. For the matrix A in (2.1), if I + R2V
T
2 F

TA−1
1 EU2 is nonsingular,

then the inverse formula of the matrix A is as follows:

(2.6) A−1 = A−1
1 −A

−1
1 EU2(I +R2V

T
2 F

TA−1
1 EU2)−1R2V

T
2 F

TA−1
1 ,

where

(2.7) A−1
1 = A−1

2 −A
−1
2 FU1R1V

T
1 E

TA−1
2

and A−1
2 = diag(A−1

11 , A
−1
22 ).

Proof. From (2.4) and (2.5), we have

A = A1 + EU2R2V
T
2 F

T = A1 + (EU2)(R2V
T
2 F

T ),

A1 = A2 + FU1R1V
T
1 E

T = A2 + (FU1)(R1V
T
1 E

T ).
Applying the Sherman-Morrison-Woodbury formula gives

A−1 = A−1
1 −A

−1
1 EU2(I +R2V

T
2 F

TA−1
1 EU2)−1R2V

T
2 F

TA−1
1 ,

A−1
1 = A−1

2 −A
−1
2 FU1(I +R1V

T
1 E

TA−1
2 FU1)−1R1V

T
1 E

TA−1
2 .

Using the multiplication of matrices, we have

R1V
T
1 E

TA−1
2 FU1 = (R1)r×r(V T

1 )r×n2

(
0 In2

)
n2×n

(
A−1

11 0
0 A−1

22

)
n×n(

In1

0

)
n×n1

(U1)n1×r

=
(

0 (R1V
T
1 )r×n2

)
r×n

(
(A−1

11 U)n1×r

0

)
n×r

= 0r×r.

Therefore,
A−1

1 = A−1
2 −A

−1
2 FU1R1V

T
1 E

TA−1
2 .

The proof is completed.
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In fact, the above proof can be simplified, that is, substituting the two formulas
in Lemma 2.3 into Lemma 2.4 and reorganizing them, the theorem follows.

As mentioned above, we obtain the following theorem when Bi and Cj are zero
matrices for all i 6= k and j 6= k + 1, respectively.

Theorem 2.2. Let Bi and Cj be zero matrices for all i 6= k and j 6= k + 1. Then

A−1 = A−1
1 −A

−1
1 EU2(I +R2V

T
2 F

TA−1
1 EU2)−1R2V

T
2 F

TA−1
1 ,

where

A−1
1 = diag(D−1

1 , . . . , D−1
s )− diag(D−1

1 , . . . , D−1
s )FU1R1V1E

T diag(D−1
1 , . . . , D−1

s ).

Proof. Since Bi and Cj be zero matrices for all i 6= k and j 6= k + 1, then A11 and
A22 are both block diagonal matrices, that is,

A−1
2 = diag(D−1

1 , . . . , D−1
s ).

Applying Theorem 2.1 gives

A−1 = A−1
1 −A

−1
1 EU2(I +R2V

T
2 F

TA−1
1 EU2)−1R2V

T
2 F

TA−1
1 .

Using the divide-and-conquer algorithm, we can obtain two smaller dimensions
matrices. Hence inverses of the smaller block tridiagonal matrices are simpler than
those of original matrices. This step requires the inverses with the matrices A11

and A22, which can be solved recursively by the same divide-and-conquer algorithm.
An added advantage of the presented algorithm is much more conspicuous when we
compute inverses of large block tridiagonal matrices. Furthermore, note that this
algorithm may be applied to parallel computation.

3. Rounding error analysis

Throughout, we use the “standard model” of floating-point arithmetic in which the
evaluation of an expression in floating-point arithmetic is denoted by fl(·), with

fl(a o b) = (a o b)(1 + δ), |δ| ≤ u, o = +,−, ∗, /
(see, for example, Higham [6]). Here u is the unit rounding off associated with the
particular machine being used.

In the case of the addition of two matrices, we have

fl(A+B) = A+B +W1,

where
‖W1‖ ≤ η1‖A+B‖.

The quantity η1 is on the order of the unit round-off u and slowly increases with the
size of the matrices A and B.

If we multiply two matrices in floating-point arithmetic, we obtain

fl(AB) = AB +W2,

where
‖W2‖ ≤ η2‖A‖‖B‖.

The quantity η2 is a small multiple of the unit round-off and slowly grows with the
size of the matrices A and B (see, for example, Wilkinson [17]).
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In this section we will give expressions for the rounding errors incurred during the
process of the computation of the inverse of A in (2.1). Consider firstly the rounding
error of the inverse of A1. Then we further consider that of the inverse of A.

3.1. Calculation of the inverse of A1

The computed approximation Ûi, R̂i and V̂i can be described by

(3.1) A12 = Û1R̂1V̂
T
1 + ∆A12, A21 = Û2R̂2V̂

T
2 + ∆A21,

where

(3.2) ‖∆A12‖ ≤ 4η3‖A12‖, ‖∆A21‖ ≤ 4η3‖A21‖.
The quantity η3 is on the order of the unit round-off and slowly grows with the size
of the matrices A12 and A21, respectively. The matrices Û1, Û2, V̂1 and V̂2 are nearly
orthogonal, then

(3.3) ‖Ûi‖ ≤ 1 + η3, ‖V̂i‖ ≤ 1 + η3, i = 1, 2.

The matrices G and H can be expressed as

(3.4) G = Â−1
2 FÛ1R̂1V̂

T
1 + ∆G,

(3.5) H = GET Â−1
2 + ∆H,

where

‖∆G‖ ≤ η2‖Â−1
2 F‖‖Û1R̂1V̂

T
1 ‖

≤ η2‖Â−1
2 ‖‖A12 −∆A12‖(3.6)

≤ η2(1 + 4η3)‖Â−1
2 ‖‖A12‖,

‖∆H‖ ≤ η2‖G‖‖ET Â−1
2 ‖

≤ η2‖G‖‖Â−1
2 ‖.(3.7)

From (3.1) and (3.4), we have

(3.8) G = Â−1
2 F (A12 −∆A12) + ∆G = Â−1

2 FA12 − Â−1
2 F∆A12 + ∆G.

Taking the norm of both sides gives

(3.9) ‖G‖ ≤ ‖Â−1
2 FA12‖+ ‖Â−1

2 F∆A12‖+ ‖∆G‖.
Using inequalities (3.2), (3.6) and (3.9), we get

‖G‖ ≤ (1 + 4η3)‖Â−1
2 ‖‖A12‖+ η2(1 + 4η3)‖Â−1

2 ‖‖A12‖

= (1 + 4η3)(1 + η2)‖Â−1
2 ‖‖A12‖.(3.10)

From (3.7) and (3.10), we have

(3.11) ‖∆H‖ ≤ η2(1 + 4η3)(1 + η2)‖Â−1
2 ‖2‖A12‖.

From (3.5), (3.10) and (3.11), it follows that

‖H‖ ≤ ‖G‖‖ET Â−1
2 ‖+ ‖∆H‖

≤ (1 + 4η3)(1 + η2)‖Â−1
2 ‖2‖A12‖+ η2(1 + 4η3)(1 + η2)‖Â−1

2 ‖2‖A12‖(3.12)
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= (1 + 4η3)(1 + η2)2‖Â−1
2 ‖2‖A12‖.

Using equations (2.7) and (3.5), we obtain

(3.13) Â−1
1 = Â−1

2 −H + ∆Â−1
1 ,

where

‖∆Â−1
1 ‖ ≤ η1‖Â

−1
2 −H‖

≤ η1(‖Â−1
2 ‖+ ‖H‖).(3.14)

From (3.12), (3.13) and (3.14), we obtain

‖Â−1
1 ‖ ≤ (1 + η1)(‖Â−1

2 ‖+ ‖H‖)

≤ (1 + η1)(1 + (1 + 4η3)(1 + η2)2‖Â−1
2 ‖‖A12‖)‖Â−1

2 ‖.(3.15)

Therefore,

‖∆Â−1
1 ‖ ≤ η1(1 + (1 + 4η3)(1 + η2)2‖Â−1

2 ‖‖A12‖)‖Â−1
2 ‖

= η1(1 + ‖Â−1
2 ‖‖A12‖)‖Â−1

2 ‖+O(u2).

From the above proof, we have the following proposition.

Proposition 3.1. Let A in (2.1) be nonsingular. Then the norm of the rounding
error incurred during the process of the computation of the inverse of the matrix A1

satisfies
‖∆Â−1

1 ‖ ≤ η1(1 + ‖Â−1
2 ‖‖A12‖)‖Â−1

2 ‖+O(u2),
where ηi for all 1 ≤ i ≤ 3 are on the order of the unit round-off u and slowly grow
with the size of matrices.

3.2. Calculation of the inverse of A

In this subsection, the norm of the rounding error incurred during the process of
the computation of the inverse of the matrix A is presented when the timings of the
divide-and-conquer algorithm applied is one.

Proposition 3.2. Let A in (2.1) be nonsingular. Then the rounding error of the
inverse of the matrix A

‖∆Â−1‖ ≤ η1(1 + ‖Â−1
2 ‖‖A12‖)(1 + 1.01‖Â−1EA21‖)‖Â−1

2 ‖+O(u2),

where ηi for all 1 ≤ i ≤ 3 are on the order of the unit round-off u and slowly grow
with the size of matrices.

Proof. In order to avoid the multiple evaluation of the same expressions, we intro-
duce the following intermediate quantities:

P := Â−1
1 EÛ2, Q := R̂2V̂

T
2 F

TP,

K := I +Q, L := K−1R̂2, S := PL.

The matrix S can be expressed as

(3.16) S = PL+ ∆S.

Matt and Stewart give the following results on the calculation of the matrix S in [9].

(3.17) ‖∆S‖ ≤ 1.012η2‖Â−1
1 ‖‖Â1 − Â1Â

−1Â1‖, ‖S‖ ≤ 1.01‖Â−1EA21‖,
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where 1.01 is a factor to simplify our bounds. The matrix T can also be expressed
as

(3.18) T = SV̂ T
2 F

T Â−1
1 + ∆T,

where

(3.19) ‖∆T‖ ≤ η2‖S‖‖V̂ T
2 F

T Â−1
1 ‖.

From (3.3), (3.15), (3.17) and (3.19), we have

‖∆T‖ ≤ 1.01η2(1 + η3)‖Â−1EA21‖‖Â−1
1 ‖

≤ 1.01η2(1 + η3)(1 + η1)

× (1 + (1 + 4η3)(1 + η2)2‖Â−1
2 ‖‖A12‖)‖Â−1

2 ‖‖Â−1EA21‖.(3.20)

Therefore,

‖T‖ ≤ 1.01(1 + η2)(1 + η3)(1 + η1)

× (1 + (1 + 4η3)(1 + η2)2‖Â−1
2 ‖‖A12‖)‖Â−1

2 ‖‖Â−1EA21‖.(3.21)

From equations (2.6) and (3.18), we have

(3.22) Â−1 = Â−1
1 − T + ∆Â−1.

By inequalities (3.15) and (3.21), we obtain

‖∆Â−1‖ ≤ η1‖Â−1
1 − T‖

≤ η1(‖Â−1
1 ‖+ ‖T‖)

≤ η1
[
(1 + η1)

(
1 + (1 + 4η3)(1 + η2)2‖Â−1

2 ‖‖A12‖
)
‖Â−1

2 ‖

+ 1.01(1 + η2)(1 + η3)(1 + η1)

×
(

1 + (1 + 4η3)(1 + η2)2‖Â−1
2 ‖‖A12‖

)
‖Â−1

2 ‖‖Â−1EA21‖
]

= η1(1 + η1)
(

1 + (1 + 4η3)(1 + η2)2‖Â−1
2 ‖‖A12‖

)
×
(

1 + 1.01(1 + η2)(1 + η3)‖Â−1EA21‖
)
‖Â−1

2 ‖

= η1(1 + ‖Â−1
2 ‖‖A12‖)(1 + 1.01‖Â−1EA21‖)‖Â−1

2 ‖+O(u2).(3.23)

From (3.22) and (3.23), it follows that

‖Â−1‖ ≤ (1 + η1)(‖Â−1
1 ‖+ ‖T‖)

≤ (1 + η1)2
(

1 + (1 + 4η3)(1 + η2)2‖Â−1
2 ‖‖A12‖

)
×
(

1 + 1.01(1 + η2)(1 + η3)‖Â−1EA21‖
)
‖Â−1

2 ‖

= (1 + ‖Â−1
2 ‖‖A12‖)(1 + 1.01‖Â−1EA21‖)‖Â−1

2 ‖

+ 2(1 + ‖Â−1
2 ‖‖A12‖)(1 + 1.01‖Â−1EA21‖)‖Â−1

2 ‖η1
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+
(

2‖Â−1
2 ‖‖A12‖(1 + 1.01‖Â−1EA21‖)

+ ‖Â−1EA21‖(1 + ‖Â−1
2 ‖‖A12‖)

)
‖Â−1

2 ‖η2

+
(

4‖Â−1
2 ‖‖A12‖(1 + 1.01‖Â−1EA21‖)

+ ‖Â−1EA21‖(1 + ‖Â−1
2 ‖‖A12‖)

)
‖Â−1

2 ‖η3 +O(u2).

For large block tridiagonal matrices, using recursively the same divide-and-conquer
algorithm for the inverses of the matrices A11 and A22, the errors incurred during
the process of the computation of the inverses can also be presented. Here we ignore
it.

4. Comparison on computational complexity and numerical experiment

Unless otherwise stated, in this section we denote ki = ki+1 = m and n1 = n2.
For the computational complexity, we only consider the multiplication and di-

vision. For a matrix of order n, we use the Block Gaussian-Jordan Elimination
method for inverting it. It is easy to know the computational complexity of the
Block Gaussian-Jordan Elimination method is ( 1

3s
3 + 3

2s
2 + 7

6s− 2)m3 (n = s×m).
On the other hand, applying the divide-and-conquer algorithm to inverses of

block tridiagonal matrices, the computational complexity of the proposed algorithm
is 1

4n
3+2n2r+(m2+3 r2

2 )n+r3+O(r2), where O(r2) is the computational complexity
of URV-decomposition. For large block tridiagonal matrices, using recursively the
same divide-and-conquer algorithm for the inverses of the matrices A11 and A22, the
computational complexity is as follows:

2l( n
2l )3 + 2n2r + (m2 + 3 r2

2 )n+ r3

+2(n
2 )22r + 2(m2 + 3 r2

2 )n
2 + r3

+2( n
22 )222r + 22(m2 + 3 r2

2 ) n
22 + r3

. . . . . .

+2( n
2l−1 )22l−1r + 2l−1(m2 + 3 r2

2 ) n
2l−1 + r3 +O(r2)

= n3

4l + (4− 1
2l−2 )n2r + (m2 + 3 r2

2 )ln+ lr3 +O(r2),

where l is the timings of the divide-and-conquer algorithm applied for the inverse.
Comparing the computational complexity of the Block Gaussian-Jordan Elimina-

tion method with that of the proposed algorithm, especially for large block tridiag-
onal matrices, it is conspicuous that the computational complexity of the proposed
algorithm is less than that of the Block Gaussian-Jordan Elimination method. See
Table 1.
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Table 1. Comparison of the computational complexity

Block Gaussian-Jordan Elimination ( 1
3s

3 + 3
2s

2 + 7
6s− 2)m3

Algorithm in this paper n3

4l +(4− 1
2l−2 )n2r+(m2+3 r2

2 )ln+lr3+
O(r2)

Now we use a numerical test to illustrate our results analyses. The test is per-
formed on a Lenovo PC, with 1Gb memory and a 3GHz Pentium(R) D CPU.

Example 4.1. We consider a block tridiagonal matrix A = tridiag(−I,D,−I)
generated from the discretization of partial differential equation −∆u = f , where
D = tridiag(−1, 4,−1)m×m. Then the norms ‖I−AÂ−1‖, ‖I−Â−1A‖, and the com-
putational complexity in this test are considered, where Â−1 and the computational
complexity are generated from the Block Gaussian-Jordan Elimination method and
the proposed algorithm, respectively. See Tables 2 and 3.

Table 2. Comparison of the errors

Block Gaussian-Jordan Elimination Algorithm in this paper
Size ‖I −AÂ−1‖ ‖I − Â−1A‖ ‖I −AÂ−1‖ ‖I − Â−1A‖

64× 64 5.6826e-015 2.8974e-015 3.5562e-015 2.1641e-015
256× 256 3.8003e-014 1.2996e-014 1.1563e-014 9.2903e-015
576× 576 1.1127e-013 3.1285e-014 2.9638e-014 2.6837e-014

1024× 1024 2.0945e-013 6.4845e-014 5.5750e-014 4.3897e-014
1600× 1600 4.1792e-013 1.0672e-013 9.1734e-014 7.8641e-014

Table 3. Comparison of the computational complexities

Size Block Gaussian-Jordan Elimination Algorithm in this paper
64× 64 140,290 156,672

100× 100 493,000 482,000
256× 256 7,233,536 4,792,320
576× 576 76,004,352 35,748,864

1024× 1024 409,403,392 146,866,176
1600× 1600 1,521,800,000 445,568,000

From Tables 2 and 3, we have the following conclusions. Firstly, it shows that
the computational complexity of the Block Gaussian-Jordan Elimination method is
less than that of the proposed algorithm when the orders of matrices are not more
than 81. However, as the orders of matrices gradually increase, the computational
complexity of the Block Gaussian-Jordan Elimination method is obviously more than
that of the proposed algorithm. Secondly, the norms of the errors generated from
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the Block Gaussian-Jordan Elimination method are also always larger than those of
the proposed algorithm.

From Tables 1 and 3, we find that the computational complexity in practice is
always less than that in theory because of the sparsity of the submatrices, where
the computational complexity in practice is presented by the accumulation of the
number of floating-point arithmetic during the process.

5. Conclusions

Applying the similar method to [9], the URV-decomposition and the result of
Mehrmann [11], we have established inverses of block tridiagonal matrices and ex-
pressions for the rounding errors incurred during the process of the computation of
the inverse of the matrix A in (2.1). When we use recursively the same divide-and-
conquer algorithm for the inverses of the matrices A11 and A22, the computational
complexity is O(n3

4l ), where l is the timings of the divide-and-conquer algorithm ap-
plied to the inverse. However, the computational complexity of the Block Gaussian-
Jordan Elimination method is O(n3

3 ). Therefore the computational complexity of
the proposed algorithm is less than that of the Block Gaussian-Jordan Elimination
method when the orders of the matrices are very large. Our conclusions have been
verified by numerical tests that we have conducted. This algorithm may be applied
to parallel computation and this will be addressed in a future study.
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