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Abstract. In this paper we introduce and study a new class of random nonlin-

ear variational inclusions involving H(·, ·)-accretive operator for fuzzy mapping

in Banach space. By using the new resolvent operator technique for H(·, ·)-
accretive operators duo to Zou and Huang, we construct a new iterative algo-

rithm for solving such random nonlinear variational inclusion problem. Under

some suitable conditions, we prove the existence of random solution and the
convergence of random iterative sequences generated by the algorithm. The re-

sults presented in this paper improve and generalize some known corresponding

results in the literature.
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1. Introduction

Variational inclusions is an important and useful generalization of variational in-
equalities, which have wide application in mechanics, physics, optimization and
control, nonlinear programming, economics and transportation equilibrium, and en-
gineering sciences, etc, and which have been widely studied extensively by many
authors (see, for example, [1, 2, 4, 10, 17–19, 28, 31–35, 37–39] and the references
therein). Many efficient ways have been studied to find solutions for variational
inclusions, among them, the resolvent operator technique was of great concern.

In 2001, Huang and Fang [24] first introduced the concept of a generalized m-
accretive mapping, which is a generalization of an m-accretive mapping, and gave the
definition of the resolvent operator for the generalized m-accretive mapping in Ba-
nach spaces. After that, Fang and Huang [12–14,16], Fang, Cho and Kim [15], Huang
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and Fang [25], Huang, Fang and Deng [27], Huang [28], Lan [31], Lan and Verma
[32], Lan, Cho and Verma [33], Lan, Liu and Li [34], Verma [36] introduced and
studied many generalized operators such as H-monotone, H-accretive, η-monotone,
(H, η)-accretive, (A, η)-monotone, etc. Recently, Zou and Huang [38] and [39] intro-
duced and studied a new class of H(·, ·)-accretive operator in Banach spaces, which
provided unifying work for the H-accretive, (H, η)-accretive and (A, η)-accretive
mappings in Banach spaces.

Random variational inequality theories is an important part of random function
analysis. These topics have attracted many scholars and experts due to the ex-
tensive applications of the random problems. In 1997, Huang [20] first introduced
the concept of random fuzzy mapping and studied the random nonlinear quasi-
complementarity problem for random fuzzy mappings. Further, Huang [21] studied
the random generalized nonlinear variational inclusions for random fuzzy mappings.
Ahmad and Bazán [2] studied a class of random generalized nonlinear mixed varia-
tional inclusions for random fuzzy mappings and constructed an iterative algorithm
for solving such random problems. Some works concerned with random variational
inequalities and random variational inclusion problems. Very recently Lan, Cho and
Xie [30] study general nonlinear random equations with random multi-valued oper-
ator in Banach spaces. We refer to Ahmad and Farajzadeh [3], Chang and Huang
[5, 7], Cho and Huang [8], Cho and Lan [9, 11], Huang [21, 22, 23], Huang, Long
and Cho [26], Khan, Salahuddin and Verma [29] and the references therein.

Motivated and inspired by recent research works in this field, in this paper we
introduce and study a new kind of random nonlinear variational inclusions involv-
ing H(·, ·)-accretive operator for random fuzzy mappings in Banach spaces. We
construct an iterative algorithm for solving such random variational inclusion prob-
lems. Under some suitable conditions, we prove the existence of random solution for
the random variational inclusion problem in Banach space and the convergence of
iterative sequences generated by the algorithm.

2. Preliminaries and formulation

Throughout this paper, we suppose that (Ω,A) is a measurable space, where Ω is set
and A is a σ-algebra over Ω. E is a separable real Banach space, E∗ is dual space
of E, B(E) is a class of Borel σ-algebra in E, CB(E) is the family of all nonempty
closed and bounded subsets of E, 〈 ·, · 〉 is the dual pair between E and E∗, ‖ · ‖ is
the norm of E. J : E → 2E

∗
is the normalized duality mapping defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2, ‖f‖ = ‖x‖}, x ∈ E.

In this paper, we will use the following definitions and lemmas (see, for example,
[4–6,36]).

Definition 2.1.
(i) A mapping x : Ω→ E is said to be measurable if,

{t ∈ Ω: x(t) ∈ B} ∈ A

for any B ∈ B(E);
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(ii) A mapping T : Ω× E → E is called a random mapping if for any given
x ∈ E, T (t, x) = y(t) is measurable. A random mapping T is said to be
continuous if for any t ∈ Ω, the mapping T (t, ·) : E → E is continuous;

(iii) A set-valued mapping T : Ω→ 2E is said to be measurable if for any B ∈ B(E),

T−1(B) = {t ∈ Ω : T (t) ∩B 6= ∅} ∈ A;

It is well-known that the measurable mapping is necessary to a random map-
ping.

(iv) A set-valued mapping T : Ω× E → 2E is called random set-valued if for any
given x ∈ E, T (·, x) : Ω→ 2E is a measurable set-valued mapping;

(v) A mapping u : Ω→ E is called a measurable selection of a set-valued mea-
surable mapping V : Ω→ 2E , if u is measurable and u(t) ∈ V (t) for any
t ∈ Ω.

Definition 2.2.
(i) A random set-valued mapping T : Ω× E → CB(E) is said to be ξ-H-Lipschitz

continuous, if there exists a measurable function ξ : Ω→ (0,∞), such that

D(T (t, u1(t)), T (t, u2(t))) ≤ ξ(t)||u1(t)− u2(t)||,

∀ ui(t) ∈ E,∀ t ∈ Ω, i = 1, 2; where D(·, ·) is the Hausdorff metric on CB(E)
defined by

D(A,B) = max
{

sup
x∈A

d(x,B), sup
y∈B

d(A, y)
}
, ∀A,B ∈ CB(E).

(ii) Suppose that s : Ω×E → E is a random single-valued mapping, N : E×E×
E → E is a single-valued mapping. The mapping N is said to be β-Lipschitz
continuous with respect to the mapping s in the first argument, if there exists
measurable function β : Ω→ (0,∞), such that

‖N(s(t, x(t)), u(t), v(t))−N(s(t, y(t)), u(t), v(t))‖ ≤ β(t)‖x(t)− y(t)‖,

for all t ∈ Ω, x(t), y(t), u(t), v(t) ∈ E;
Similarly, we can define the β-Lipschitz continuity respect to the second

argument and the third argument of N(·, ·, ·);
(iii) Let f : Ω × E → E be a random single-valued mapping, f is said to be γ-

Lipschitz continuous, if there exists a measurable function γ : Ω → (0,∞),
such that

‖f(t, x(t))− f(t, y(t))‖ ≤ γ(t)‖x(t)− y(t)‖

for all t ∈ Ω, x(t), y(t) ∈ E.

Definition 2.3. Let f, g : Ω×E → E be two random single-valued mappings, H : E×
E → E be a single-valued mapping and j(x(t)− y(t)) ∈ J(x(t)− y(t)).

(i) f is said to be accretive if,

〈f(t, x(t))− f(t, y(t)), j(x(t)− y(t))〉 ≥ 0;

for all t ∈ Ω, x(t), y(t) ∈ E,
(ii) f is said to be strictly accretive if f is accretive and 〈f(t, x(t))−f(t, y(t)), j(x(t)−

y(t))〉 = 0 if and only if x(t) = y(t), for all t ∈ Ω;
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(iii) H(f, ·) is said to be α-strongly accretive with respect to f in the first argu-
ment, if there exists a measurable function α : Ω→ (0,∞), such that

〈H(f(t, x(t)), u(t))−H(f(t, y(t)), u(t))), j(x(t)− y(t))〉
≥ α(t)‖x(t)− y(t)‖2,

for all t ∈ Ω, x(t), y(t), u(t) ∈ E,
(iv) H(·, g) is said to be β-relaxed accretive with respect to g in the second argu-

ment, if there exists a measurable function β : Ω→ (0,∞), such that

〈H(u(t), g(t, x(t)))−H(u(t), g(t, y(t))), j(x(t)− y(t))〉
≥ −β(t)‖x(t)− y(t)‖2

for all t ∈ Ω, x(t), y(t), u(t) ∈ E;

Definition 2.4. Let η : E × E → E be a single-valued mapping, M : E → 2E be a
set-valued mapping and j(x(t)− y(t)) ∈ J(x(t)− y(t)).

(i) M is said to be accretive if

〈u(t)− v(t), j(x(t)− y(t))〉 ≥ 0,

for all t ∈ Ω, x(t), y(t) ∈ E, u(t) ∈M(x(t)), v(t) ∈M(y(t));
(ii) M is said to be η-accretive if,

〈u(t)− v(t), j(η(x(t), y(t)))〉 ≥ 0,

for t ∈ Ω, x(t), y(t) ∈ E, u(t) ∈M(x(t)), v(t) ∈M(y(t));
(iii) M is said to be strongly η-accretive, if M is η-accretive and the equality

〈u(t)− v(t), j(η(x(t), y(t)))〉 = 0

holds if and only if x(t) = y(t), for all t ∈ Ω;
(iv) M is said to be γ-strongly η-accretive if there exists a measurable functions

γ(t) > 0, such that

〈u(t)− v(t), j(η(x(t), y(t)))〉 ≥ γ(t)‖x(t)− y(t)‖2,
for t ∈ Ω, x(t), y(t) ∈ E, u(t) ∈M(x(t)), v(t) ∈M(y(t));

(v) M is said to be α-relaxed η-accretive if there exists a measurable functions
α(t) > 0, such that

〈u(t)− v(t), j(η(x(t), y(t)))〉 ≥ −α(t)‖x(t)− y(t)‖2,
for t ∈ Ω, x(t), y(t) ∈ E, u(t) ∈M(x(t)), v(t) ∈M(y(t)).

Definition 2.5. Let η : E × E → E be a single-valued mapping, H,A : E → E be
two single-valued mappings, M : E → 2E be a set-valued mapping.

(i) M is said to be m-accretive if M is accretive and (I + λM)(E) = E for all
λ > 0, where I is identity operator on E;

(ii) M is said to be generalized m-accretive if M is η-accretive and (I+λM)(E) =
E for all λ > 0;

(iii) M is said to be H-accretive if M is accretive and (H + λM)(E) = E for all
λ > 0;

(iv) ) M is said to be (H, η)-accretive if M is η-accretive and (H+λM)(E) = E
for all λ > 0;
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(v) M is said to be (A, η)-accretive if M is m-relaxed η-accretive and (A +
λM)(E) = E for all λ > 0.

Definition 2.6. Let f, g : Ω×E → E be two random single-valued mappings, H : E×
E → E be a single-valued mapping, M : E → 2E be a set-valued mapping. M is said
to be H(·, ·)-accretive with respect to operators f and g (or simply H(·, ·)-accretive
in the sequel), if M is accretive and (H(f, g) + λM)(E) = E, for every λ > 0.

Definition 2.7. Suppose E is a Banach space, E is said to be uniformly smooth if
for any ε > 0, there exists δ > 0, such that

‖x+ y‖+ ‖x− y‖ < 2 + ε‖y‖

for all x, y ∈ E, x ∈ Sx, ‖y‖ < δ, where Sx = {x ∈ E, ‖x‖ = 1}.

It is well-known that if E is uniformly smooth then the normalized duality map-
ping is single-valued mapping.

Let F(E) be the family of all fuzzy sets over E, A mapping F : E → F(E) is
called a fuzzy mapping over E.

If F is a fuzzy mapping over E, then F (x) (denoted by Fx) is a fuzzy set on E,
and Fx(y) is the membership degree of the point y in Fx. Let A ∈ F(E), α ∈ [0, 1].
Then the set

(A)α = {x ∈ E : A(x) ≥ α}
is called a α-cut set of fuzzy set A.

Definition 2.8.
(i) A fuzzy mapping F : Ω → F(E) is called measurable if, for any given α ∈

(0, 1], (F (·))α : Ω→ 2E is a measurable set-valued mapping.
(ii) A fuzzy mapping F : Ω× E → F(E) is called a random fuzzy mapping if, for

any x ∈ E, F (·, x) : Ω→ F(E) is a measurable fuzzy mapping.

Let F,G : Ω× E → F(E) be two random fuzzy mappings satisfying the following
condition (??) : There exist two mappings a, b : E → (0, 1], such that

(??) (Ft,x)a(x) ∈ CB(E), (Gt,x)b(x) ∈ CB(E), ∀ (t, x) ∈ Ω× E.

By using the random fuzzy mappings F and G, we can define the two set-valued
mappings F̃ and G̃ as follows, respectively.

F̃ : Ω× E → CB(E), (t, x)→ (Ft,x)a(x),∀ (t, x) ∈ Ω× E,

G̃ : Ω× E → CB(E), (t, x)→ (Gt,x)b(x),∀(t, x) ∈ Ω× E.
It means that

F̃ (t, x) = (Ft,x)a(x) = {z ∈ E, (Ft,x)(z) ≥ a(x)} ∈ CB(E),

G̃(t, x) = (Gt,x)b(x) = {z ∈ E, (Gt,x)(z) ≥ b(x)} ∈ CB(E).

It is easy to see that F̃ and G̃ are the random set-valued mappings. We call F̃ and G̃
are random set-valued mappings induced by fuzzy mappings F and G, respectively.
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Problem 2.1. Let f, g, s, p : Ω × E → E be four random single-valued mappings,
H : E × E → E and N : E × E × E → E be two single-valued mappings. Sup-
pose that M : E → 2E is an H(·, ·)-accretive operator with respect to f and g,
F,G : Ω× E → F(E) are two random fuzzy mappings satisfying the condition (??).
Given mappings a, b : E → (0, 1], we consider the following problem: Find measurable
mappings x, u, v, : Ω→ E, such that Ft,x(t)(u(t)) ≥ a(x(t)),

Gt,x(t)(v(t)) ≥ b(x(t)),
0 ∈ N(s(t, x(t)), u(t), v(t)) +M(p(t, x(t)))

(2.1)

for all t ∈ Ω.

The Problem (2.1) is called random nonlinear variational inclusions involving
H(·, ·)-accretive operator for random fuzzy mappings in Banach spaces. The set of
measurable mappings (x, u, v) is called a solution of the Problem (2.1).

Remark 2.1. In the paper of Zou and Huang [36], the author have gave a description
that if H(f, g) = g, the η(x, y) is Lipschitz continuous, and the set-valued mapping
M is η-accretive, then the H(·, ·)-accretive operator become the (A, η)-accretive
operator.

Remark 2.2. If the fuzzy mapping F and G are Classic single-valued mappings,
η(x, y) is Lipschitz continuous, and the set-valued mapping M is η-accretive, the
H(f, g) = g, N(s(t, x(t)), u(t), v(t)) = 1

γ(t) [s(t, x(t)) + (u(t) − c(t)) + 0 · v(t)], then
from Remark 2.1, we know that the Problem (2.1) is equivalent to the problem of
finding measurable mappings x, u : Ω→ E, such that

(2.2) c(t) ∈ s(t, x(t)) + u(t) + γ(t)M(p(t, x(t))),

for all t ∈ Ω and u(t) ∈ E, where c(t) : Ω → E is measurable function. The
determinate form of the Problem (2.2) was considered and studied by Cho and
Lan [9].

Remark 2.3. If the mappings F,G,M, η,H,N are the same as in the Remark 2.2
and c(t) = 0 for all t ∈ Ω, then the Problem 2.2 is equivalent to the problem of
finding x : Ω→ E, such that

(2.3) 0 ∈ s(t, x(t)) + u(t) + γ(t)M(p(t, x(t)),

for all t ∈ Ω and u(t) ∈ E. The determinate form of the problem (2.3) was considered
and studied by Lan [31].

Remark 2.4. If E = E∗ = H is Hilbert space, the mappings F,G, η,H are the same
as in the Remark 2.2 and N(s(t, x(t)), u(t), v(t)) = s(t, x(t))− (u(t)− v(t))), for all
t ∈ Ω, and M(·) = ∂φ(·), where ∂φ(·) denotes the subdifferential of a lower semi-
continuous and η-subdifferentiable function φ : H → R ∪ {+∞}, then the Problem
(2.1) is equivalent to the problem of finding measurable function x, u, v : Ω → E,
such that

(2.4) 〈s(t, x(t))− (u(t)− v(t))), z(t)− p(t, x(t))〉 ≥ φ(p(t, x(t)))− φ(z(t))
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for all t ∈ Ω and z(t) ∈ H. This problem is called the random generalized nonlinear
mixed variational inclusions for random fuzzy mappings, which was introduced and
studied by Ahmad and Bazán [2].

Remark 2.5. If E = E∗ = H is Hilbert space, the mappings η,H are the same
as in the Remark 2.2 and N(s(t, x(t)), u(t), v(t)) = u(t) − v(t), for all t ∈ Ω, and
M(·) = ∂φ(·), where ∂φ(·) denotes the subdifferential of a lower semi-continuous and
η-subdifferentiable function φ : H → R∪{+∞}, then the Problem (2.1) is equivalent
to the problem of finding measurable function x, u, v : Ω→ E, such that

(2.5)

 Ft,x(t)(u(t)) ≥ a(x(t)),
Gt,x(t)(v(t)) ≥ b(x(t)),
〈u(t)− v(t), z(t)− p(t, x(t))〉 ≥ φ(p(t, x(t)))− φ(z(t))

for all t ∈ Ω and z(t) ∈ H. This problem is called the random generalized nonlinear
variational inclusion for random fuzzy mappings, which was introduced and studied
by Huang [18].

3. Random iterative algorithms

Based on the formulation in Section 2, we now construct a new algorithm for solving
Problem (2.1).

Lemma 3.1. [6] Suppose T : Ω × E → E is a continuous random mapping, then
for any measurable mapping x : Ω→ E, T (t, x(t)) is a measurable mapping.

Lemma 3.2. [6] Let T : Ω × E → CB(E) be an H-continuous random set-valued
mapping, then for any measurable mapping u : Ω→ E, T (·, u(·)) : Ω→ CB(E) is
measurable.

Lemma 3.3. [6] Let U, V : Ω→ CB(E) be two measurable set-valued mappings and
u : Ω → E be a selection of U , then there exists a measurable selection of V such
that, for all t ∈ Ω and ε > 0,

(3.1) ‖u(t)− v(t)‖ ≤ (1 + ε)D
(
U(t), V (t)

)
.

Lemma 3.4. Let E be a real Banach space and J : E → 2E
∗

be the normalized
duality mapping. Then

(3.2) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉,
for any x, y ∈ E and for all j(x+ y) ∈ J(x+ y).

Lemma 3.5. [36] Let H(f, g) be α-strongly accretive with respect to f, β-relaxed
accretive with respect to g, and α > β. Suppose M is an H(·, ·)-accretive operator
with respect to f and g. Then the mapping (H(f, g) + λM)−1(·) is a single-valued
mapping.

Lemma 3.6. [36] Suppose that H, f, g,M, α, β are the same as in the Lemma 3.5,
then the resolvent operator RH(·,·)

M,λ is ( 1
α−β )-Lipschitz continuous. That is

‖RH(·,·)
M,λ (u)−RH(·,·)

M,λ (v)‖ ≤ 1
α− β

‖u− v‖,

for all u, v ∈ E, where RH(·,·)
M,λ (u) = (H(f, g) + λM)−1(u).
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Lemma 3.7. Measurable operator x, u, v : Ω→ E are solution of the Problem (2.1)
if and only if,

(3.3) x(t) = R
H(·,·)
M,λ

(
H(f(t, x(t)), g(t, x(t)))− λ(t)N(s(x(t)), u(t), v(t))

)
,

where λ : Ω→ (0,∞).

Proof. The proof directly follows from the definition of RH(·,·)
M,λ and so it is omitted.

Remark 3.1. Let z(t) = H(f(t, x(t)), g(t, x(t)))− λ(t)N(s(t, x(t)), u(t), v(t)), then
(x(t), u(t), v(t)) is the solution of the Problem (2.1) if and only if,

(3.4) x(t) = R
H(·,·)
M,λ z(t) ∀ t ∈ Ω.

Now we use the Lemma 3.7 to suggest the following algorithms for solving the
Problem (2.1).

For any given measurable mapping x0 : Ω → E, then the set-valued mappings
F̃ (·, x0(·)) and G̃(·, x0(·)) : Ω→ CB(E) are measurable by the condition (??), hence
there exist measurable selections u0 : Ω → E of F̃ (·, x0(·)) and v0 : Ω → E of
G̃(·, x0(·)). Let

(3.5) z1(t) = H(f(t, x0(t)), g(t, x0(t)))− λ(t)N(s(t, x0(t)), u0(t), v0(t)),

from (3.4), we take

x1(t) = R
H(·,·)
M,λ z1(t).

By the Lemma 3.3, there exist u1(t) ∈ F̃ (t, x1(t)) and v1(t) ∈ G̃(t, x1(t)), such
that

(3.6)

{
‖u0(t)− u1(t)‖ ≤ (1 + 1)D(F̃ (t, x0(t)), F̃ (t, x1(t))),
‖v0(t)− v1(t)‖ ≤ (1 + 1)D(G̃(t, x0(t)), G̃(t, x1(t))),

for all t ∈ Ω, where D(·, ·) is the Hausdorff metric on CB(E). Let

(3.7) z2(t) = H(f(t, x1(t)), g(t, x1(t)))− λ(t)N(s(t, x1(t)), u1(t)), v1(t)),

put

x2(t) = R
H(·,·)
M,λ z2(t),

by the Lemma 3.3, there exist u2(t) ∈ F̃ (t, x2(t)) and v2(t) ∈ G̃(t, x2(t)), such that

(3.8)

{
‖u1(t)− u2(t)‖ ≤ (1 + 1/2)D(F̃ (t, x1(t)), F̃ (t, x2(t))),
‖v1(t)− v2(t)‖ ≤ (1 + 1/2)D(G̃(t, x1(t)), G̃(t, x2(t))),

for any t ∈ Ω.
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Algorithm 3.1. By induction, we can define sequences xn(t), un(t), vn(t) and zn(t)
inductively satisfying

xn(t) = R
H(·,·)
M,λ zn(t),

zn(t) = H(f(t, xn−1(t)), g(t, xn−1(t)))
−λ(t)N(s(t, xn−1(t)), un−1(t), vn−1(t)),

un(t) ∈ F̃ (t, xn(t)),
‖un−1(t)− un(t)‖ ≤ (1 + 1/n)D(F̃ (t, xn−1(t)), F̃ (t, xn(t))),

vn(t) ∈ G̃(t, xn(t)),
‖vn−1(t)− vn(t)‖ ≤ (1 + 1/n)D(G̃(t, xn−1(t)), G̃(t, xn(t))),

(3.9)

for any t ∈ Ω.

4. Existence and convergence

In this section we will prove the existence of random solution of the Problem (2.1)
and the convergence of random iterative sequences generated by the Algorithm 3.1.

Theorem 4.1. Let E be a uniformly smooth and separable real Banach space. Sup-
pose that f, g, s, p : Ω×E → E and H : E ×E → E are five single-valued mappings.
Assume that

(i) M : E → 2E is an H(·, ·)-accretive with respect to operators f and g;
(ii) Range(p) ∩ domM 6= ∅;
(iii) N : E × E × E → E is the β1-Lipschitz continuous with respect to mapping

s in the first argument, β2-Lipschitz continuous with respect to the second
argument and β3-Lipschitz continuous with respect to the third argument.

(iv) Let F,G : Ω×E → F(E) be two random fuzzy mappings satisfying the condi-
tion (??), F̃ , G̃ be two random set-valued mappings induced by the mappings
F and G, respectively, F̃ and G̃ are ξ1-H-Lipschitz and ξ2-H-Lipschitz con-
tinuous, respectively.

(v) H(f, g) is ρ1-Lipschitz continuous with respect to f and ρ2-Lipschitz contin-
uous with respect to g;

(vi) H(f, g) is δ1-strongly accretive with respect to f and δ2-relaxed accretive with
respect to g, where δ1 > δ2.

If the following conditions are satisfied,

(4.1)


0 ≤ ρ1(t) + ρ2(t) < δ1(t)− δ2(t),
0 < ξ1(t), ξ2(t) < 1

2 ,

0 < λ(t) < min
{

1
β1(t)+β2(t)ξ1(t)+β3(t)ξ2(t)

,

(δ1(t)−δ2(t))2−(ρ1(t)+ρ2(t))
2

((δ1(t)−δ2(t))2+1)(β1(t)+β2(t)ξ1(t)+β3(t)ξ2(t))

}
,

for any t ∈ Ω, then there exist measurable mappings x∗, u∗, v∗ : Ω→ E is the solution
of the Problem (2.1) and

xn(t)→ x∗(t), un(t)→ u∗(t), vn(t)→ v∗(t),

as n→∞, where {xn(t)}, {un(t)} and {vn(t)} are iterative sequences generated by
the Algorithm 3.1.



398 W.-B. Zhang

Proof. Since F̃ and G̃ are ξ1-H-Lipschitz and ξ2-H-Lipschitz continuous, respec-
tively, hence there exist two measurable functions ξ1(t) and ξ2(t), such that

(4.2) D(F̃ (t, xn(t)), F̃ (t, xn−1(t))) ≤ ξ1(t)‖xn(t)− xn−1(t)‖, ∀ t ∈ Ω

(4.3) D(G̃(t, xn(t)), G̃(t, xn−1(t))) ≤ ξ2(t)‖xn(t)− xn−1(t)‖, ∀ t ∈ Ω.

Hence

‖un(t)− un−1(t)‖ ≤ (1 +
1
n

)D(F̃ (t, xn(t)), F̃ (t, xn−1(t)))

≤ (1 +
1
n

)ξ1(t)‖xn(t)− xn−1(t)‖(4.4)

‖vn(t)− vn−1(t)‖ ≤ (1 +
1
n

)D(G̃(t, xn(t)), G̃(t, xn−1(t)))

≤ (1 +
1
n

)ξ2(t)‖xn(t)− xn−1(t)‖(4.5)

Since N is the β1-Lipschitz continuous with respect to mapping s in the first
argument, β2-Lipschitz continuous with respect to the second argument and β3-
Lipschitz continuous with respect to the third argument, hence there exist three
measurable function β1(t), β2(t), β3(t), such that

‖N(s(t, xn(t)), un(t), vn(t))−N(s(t, xn−1(t)), un(t), vn(t))‖
≤ β1(t)‖xn(t)− xn−1(t)‖, ∀ t ∈ Ω

(4.6)

(4.7)
‖N(s(t, xn−1(t)), un(t)), vn(t)))−N(s(t, xn−1(t)), un−1(t), vn(t))‖
≤ β2(t)‖un(t)− un−1(t)‖, ∀ t ∈ Ω

(4.8)
‖N(s(t, xn−1(t)), un−1(t), vn(t))−N(s(t, xn−1(t)), un−1(t), vn−1(t))‖
≤ β3(t)‖vn(t)− vn−1(t)‖, ∀ t ∈ Ω

From (4.2)–(4.8), we have

(4.9)
‖N(s(t, xn(t)), un(t), vn(t))−N(s(t, xn−1(t)), un−1(t), vn−1(t))‖
≤ (β1(t) + β2(t)ξ1(t)(1 + 1

n ) + β3(t)ξ2(t)(1 + 1
n ))‖xn(t)− xn−1(t)‖

∀ t ∈ Ω,

(4.10)
‖H(f(t, xn(t)), g(t, xn(t))−H(f(t, xn−1(t)), g(t, xn−1(t))‖
≤ (ρ1(t) + ρ2(t))‖xn(t)− xn−1(t)‖, ∀ t ∈ Ω.

For the sake of brevity, let

ϕ(n) = H(f(t, xn(t)), g(t, xn(t))),

ϕ(n− 1) = H(f(t, xn−1(t)), g(t, xn−1(t)))

q(n) = N(s(t, xn(t)), un(t), vn(t))

q(n− 1) = N(s(t, xn−1(t)), un−1(t), vn−1(t)).(4.11)

Hence, from the Lemma 3.4 and (4.9)–(4.11), we have

‖zn+1(t)− zn(t)‖2 = ‖ϕ(n)− ϕ(n− 1)− λ(t)(q(n)− q(n− 1))‖
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≤ ‖ϕ(n)− ϕ(n− 1)‖2 − 2λ(t)〈q(n)− q(n− 1), j(zn+1(t)− zn(t))〉
≤ ‖ϕ(n)− ϕ(n− 1)‖2 + 2λ(t)‖q(n)− q(n− 1)‖‖zn+1(t)− zn(t)‖(4.12)

From (4.4)–(4.12), we have

‖zn+1(t)− zn(t)‖2 ≤ (ρ1(t) + ρ2(t))2‖xn(t)− xn−1(t)‖2

+ 2λ(t)αn(t)‖xn(t)− xn−1(t)‖‖zn+1(t)− zn(t)‖)
≤ (ρ1(t) + ρ2(t))2‖xn(t)− xn−1(t)‖2

+ λ(t)αn(t)(‖xn(t)− xn−1(t)‖2 + ‖zn+1(t)− zn(t)‖2)

which implies that

(4.13) ‖zn+1(t)− zn(t)‖2 ≤ (ρ1(t) + ρ2(t))2 + λ(t)αn(t)
1− λ(t)αn(t)

‖xn(t)− xn−1(t)‖2

where

αn(t) = β1(t) + β2(t)ξ1(t)
(

1 +
1
n

)
+ β3(t)ξ2(t)

(
1 +

1
n

)
.

Put

θn(t) =
(ρ1(t) + ρ2(t))2 + λ(t)αn(t)

1− λ(t)αn(t)
,

from (4.13), we have

(4.14) ‖zn+1(t)− zn(t)‖ ≤
√
θn(t)‖xn(t)− xn−1(t)‖.

On the other hand, from the Lemma 3.6, we have

‖xn(t)− xn−1(t)‖ = ‖RH(·,·)
M,λ (zn(t))−RH(·,·)

M,λ (zn−1(t))‖

≤ 1
δ1(t)− δ2(t)

‖zn(t)− zn−1(t)‖.(4.15)

From (4.14) and (4.15), we have

(4.16) ‖zn+1(t)− zn(t)‖ ≤
√
θn(t)

δ1(t)− δ2(t)
‖zn(t)− zn−1(t)‖.

Put

ζn(t) =

√
θn(t)

δ1(t)− δ2(t)
,

from (4.16), we have

(4.17) ‖zn+1(t)− zn(t)‖ ≤ ζn(t)‖zn(t)− zn−1(t)‖

and

lim
n→∞

ζn(t) =

√
θ(t)

δ1(t)− δ2(t)
where

θ(t) =
(ρ1(t) + ρ2(t))2 + λ(t)(β1(t) + β2(t)ξ1(t) + β3(t)ξ2(t))

1− λ(t)(β1(t) + β2(t)ξ1(t) + β3(t)ξ2(t))
,
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we now prove that 0 <
√
θ(t)

δ1(t)−δ2(t) < 1, for all t ∈ Ω. In fact, from the condition (4.1),
it follows that

(4.18) 0 < λ(t) <
1

β1(t) + β2(t)ξ1(t) + β3(t)ξ2(t)
,

(4.19) (δ1(t)− δ2(t))2 − (ρ1(t) + ρ2(t))2 > 0

and

(4.20) ((δ1(t)−δ2(t))2+1)λ(t)(β1(t)+β2(t)ξ1(t)+β3(t)ξ2(t))<(δ1(t)−δ2(t))2−(ρ1(t)+ρ2(t))2

which implies that

(4.21)
(ρ1(t) + ρ2(t))2 + λ(t)(β1(t) + β2(t)ξ1(t) + β3(t)ξ2(t))
< (δ1(t)− δ2(t))2(1− λ(t)(β1(t) + β2(t)ξ1(t) + β3(t)ξ2(t)))

for any t ∈ Ω.
This implies that

0 <
(ρ1(t) + ρ2(t))2 + λ(t)(β1(t) + β2(t)ξ1(t) + β3(t)ξ2(t))

(δ1(t)− δ2(t))2(1− λ(t)(β1(t) + β2(t)ξ1(t) + β3(t)ξ2(t)))
< 1

for any t ∈ Ω. That is

0 <

√
θ(t)

δ1(t)− δ2(t)
< 1.

Since 0 <

√
θ(t)

δ1(t)−δ2(t) < 1, there exists a measurable function l(t) : 0 < l(t) < 1
and N > 0, such that 0 < ζn(t) < l(t), as n > N, for all t ∈ Ω. Hence we have

(4.22) ‖zn+1(t)− zn(t)‖ ≤ l(t)‖zn(t)− zn−1(t)‖, ∀ t ∈ Ω, as n > N.

Therefore, {zn(t)} is a Cauchy sequence in E. Since E is a Banach space, there
exists z∗(t) ∈ E, such that zn(t)→ z∗(t), as n→∞.

From (4.15), we know that the sequence xn(t) is also a Cauchy sequence in E.
From (4.4) and (4.5), we know that the sequences un(t) and vn(t) both are Cauchy
sequence in E. Hence there exist u∗(t) and v∗(t) ∈ E, such that un(t) → u∗(t) and
vn(t)→ v∗(t) as n→∞, respectively.

From the continuity of RH(·,·)
M,λ , H(·, ·) and N(·, ·, ·), we have

(4.23) x∗(t) = R
H(·,·)
M,λ z∗(t) ∀ t ∈ Ω.

(4.24) z∗(t) = H(f(t, x∗(t)), g(t, x∗(t)))− λ(t)N(s(t, x∗(t)), u∗(t), v∗(t)),

Finally, we prove that u∗(t) ∈ F̃ (t, x∗(t)), and v∗(t) ∈ G̃(t, x∗(t)). In fact, since
un(t) ∈ F̃ (t, xn(t)), we have

d(u∗(t), F̃ (t, x∗(t))) ≤ ‖u∗(t)− un(t)‖+ d(un(t), F̃ (t, x∗(t)))

≤ ‖u∗(t)− un(t)‖+D(F̃ (t, xn(t)), F̃ (t, x∗(t)))

≤ ‖u∗(t)− un(t)‖+ ξ1(t)‖xn(t)− x∗(t)‖ → 0, (n→∞),(4.25)

which implies that d(u∗(t), F̃ (t, x∗(t))) = 0. Since F̃ (t, x∗(t)) ∈ CB(E), it follows
that u∗(t) ∈ F̃ (t, x∗(t)). Similarly, we can prove that v∗(t) ∈ G̃(t, x∗(t)). From
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Lemma 3.7 and (4.23), (4.24), we know that (x∗(t), u∗(t), v∗(t)) is solution of the
Problem (2.1). This completes the proof.
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