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Abstract. In this paper, we prove the following theorems:

(1) A nonzero ideal I of (Z+, +, ·) is prime if and only if I = 〈p〉 for some

prime number p or I = 〈2, 3〉.
(2) Let R be a reduced semiring. Then a prime ideal P of R is minimal if and

only if P = AP where AP = {r ∈ R : ∃ a /∈ P such that ra = 0}.
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1. Introduction

There are many characterizations of prime ideals in semirings in the literature (e.g.
cf. [2]). In this paper, we give a characterization of prime ideals to be minimal in
reduced semirings.

Definition 1.1. A nonempty set R with two binary operations + and · is called a
semiring if

(1) (R,+) is a commutative monoid with identity element 0.
(2) (R, ·) is a monoid with identity element 1 6= 0.
(3) Both the distributive laws hold in R.
(4) a · 0 = 0 · a = 0 for all a ∈ R.

We assume that all ideals are proper. Z+ will denote the set of all nonnegative
integers. Let I be an ideal of a semiring R and let a, b ∈ R. Define a ∼ b if and only
if there exist x, y ∈ I such that a+ x = b+ y. Then ∼ is an equivalence relation on
R. Let [a]RI or [a] be the equivalence class of a ∈ R. Then R/I = {[a]RI : a ∈ R}
is a semiring under the binary operations defined as follows: [a] + [b] = [a + b],
[a][b] = [ab] for all a, b ∈ R. This semiring is called the Bourne factor semiring of R
by I. We assume that [0] 6= R. An ideal I of a semiring R is called subtractive if
whenever a, a + b ∈ I, b ∈ R, we have b ∈ I. An ideal I of a semiring R is called
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prime (completely prime) if whenever aRb ⊆ I (ab ∈ I) where a, b ∈ R implies a ∈ I
or b ∈ I. A semiring R is called reduced if it has no nonzero nilpotent elements.

Let R be a semiring and let x ∈ R. Then r(x) = {a ∈ R : xa = 0} is called
the right annihilator of x. Similarly we can define `(x), the left anihilator of x. We
write RxR = 〈x〉. Let X(R) be the set of all prime ideals of a semiring R. Let I be
an ideal of R. Define support of I as follows: supp I = {P ∈ X(R) : I 6⊆ P}. Let
τ = {supp I : I is an ideal of R}. Then (X(R), τ) is a topological space.

2. Prime Ideals in Z+

Now we give a short and elementary proof of the following lemma which will be used
in the subsequent theorem.

Lemma 2.1. [1, Lemma 7] Let a, b ∈ Z+, b > a > 1 and let (a, b) = 1. Then there
exists n ∈ Z+ such that t ∈ 〈a, b〉 for all t ≥ n.

Proof. Since (a, b) = 1, there exist p, q ∈ Z+ such that qa = pb+ 1. Clearly p, q 6= 0.
Let us write n = paqb ∈ 〈a, b〉. Let t = n+r where r ≥ 0. If r = 0 then t = n ∈ 〈a, b〉.
If 0 < r < a then t = n + r = (pa − r)pb + pa + rqa ∈ 〈a, b〉. If r ≥ a then by the
division algorithm, r = au+ v, 0 ≤ v < a. Now t = n+ v + au ∈ 〈a, b〉.
Theorem 2.1. A nonzero ideal I of (Z+,+, ·) is prime if and only if I = 〈p〉 for
some prime number p or I = 〈2, 3〉.
Proof. Let I be a nonzero prime ideal of (Z+,+, ·). If I = 〈p〉 then p is a prime
number. Suppose I is not a principal ideal. Let a be the nonzero smallest element
of I. Then a is a prime number. Also there exists the smallest b ∈ I such that b > a
and (a, b) = 1. By Lemma 2.1, there exists n ∈ Z+ such that t ∈ I for all t ≥ n.
If a > 2 then choose the smallest j ∈ Z+, j > 1 such that 2j ∈ I. So 2j−1 ∈ I or
2 ∈ I, a contradiction. Hence a = 2. If b > 3 then choose the smallest k ∈ Z+,
k > 1 such that 3k ∈ I. So 3k−1 ∈ I or 3 ∈ I, a contradiction. Hence b = 3. Now
I = 〈2, 3〉 = Z+ − {1}. The converse is obvious.

The following result follows directly from Theorem 2.1.

Corollary 2.1. A nonzero ideal I of (Z+,+, ·) is subtractive prime if and only if
I = 〈p〉 for some prime number p.

3. Prime ideals in semirings

We give the following lemmas and proposition which will be used in the subsequent
study.

Lemma 3.1. Let R be reduced semiring and let 0 6= x ∈ R. Then
(1) r(x) = `(x) and it is an ideal of R
(2) x /∈ r(x)
(3) r(x) is subtractive
(4) R/r(x) is reduced
(5) If xa ∈ r(x) or ax ∈ r(x) then a ∈ r(x)

Proof. (1), (2), (3) and (5) are obvious. For (4), let [a] ∈ R/r(x) such that [a]n = 0
for some n. Then an + u = v for some u, v ∈ r(x). Since r(x) is subtractive,
an ∈ r(x). Since R is reduced, we have xa = 0. Now a ∈ r(x). Hence [a] = [0].
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Let P be a prime ideal of semiring R. Denote AP = {s ∈ R : ∃ a /∈ P such that
sa = 0}.

We give the following examples of a subset AP in a semiring.

Example 3.1. Let Z+ = (Z+,+, )̇. Then the prime ideal P of Z+ is 0 or 〈p〉 for
some prime p or 〈2, 3〉 by Theorem 2.1. We have AP = 0.

Example 3.2. Let Z+
2 be the full matrix semiring of order 2 over the semiring Z+.

Then P = 0 is a prime ideal of Z+
2 (the proof is similar as for an arbitrary prime

ring with identity element). From this we have AP =
{[

Z+ 0
Z+ 0

]
,

[
0 Z+

0 Z+

]}
.

Now we have the following:

Lemma 3.2. Let R be a reduced semiring and let P be a prime ideal of R. Then
(1) AP is a subtractive (proper) ideal of R
(2) AP ⊆ P
(3) R/AP is reduced

Proof. (1) Let r1, r2 ∈ AP . Then ∃ a1, a2 /∈ P such that r1a1 = r2a2 = 0. Hence
(r1 + r2)a1ya2 = 0 where y ∈ R. Since a1ya2 /∈ P for some y ∈ R, we have
(r1 + r2) ∈ AP . Also rt, tr ∈ AP for all r ∈ AP and t ∈ R. Let r, r+ s ∈ AP , s ∈ R.
Then (r+ s)a = rb = 0 for some a, b /∈ P . Since 0 = (r+ s)ayb = sayb and ayb /∈ P
for some y ∈ R, we get s ∈ AP .

(2) It is obvious.
(3) Suppose [s]n = [0] for some n. Then sn ∈ AP . So sna = 0 for some a /∈ P .

Since R is reduced, we get sa = 0. Now s ∈ AP . Hence [s] = [0].

Lemma 3.3. Let I ⊆ H be ideals of a semiring R and let H be subtractive. Then
R/H ∼= (R/I)/(H/I).

Proof. Since H is subtractive, we have H = [0]RH . Now it follows by [2, Proposition
10.20].

Proposition 3.1. Let R be a reduced semiring and let 0 6= x ∈ R. Then G(x) =
{I : I is a subtractive ideal of R, x /∈ I, rx ∈ I implies that r ∈ I, R/I is reduced}
has a maximal element. Moreover every maximal member of G(x) is a completely
prime ideal of R.

Proof. Since r(x) ∈ G(x), so it is a nonempty partially ordered set under ⊆, in which
every totally ordered subset has an upper bound. By Zorn’s Lemma, G(x) has a
maximal element K.

Let ab ∈ K. Suppose a /∈ K. Let us write N = {y ∈ R : ay ∈ K}. Then K ⊆ N .
Since K is subtractive and R/K is reduced, we see that N is a subtractive ideal of R
and x /∈ N . If rx ∈ N then r ∈ N . Easily, N/K = r([a]RK). By Lemmas 3.3 and 3.1,
R/N ∼= (R/K)/(N/K) is reduced. Thus N ∈ G(x) and so K = N . Now b ∈ K.

Theorem 3.1. Let R be a reduced semiring. Then prime ideal P of R is minimal
if and only if P = AP . Moreover if P = AP then P is a completely prime ideal of
R.
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Proof. Let P be a minimal prime ideal of R. We have AP ⊆ P . Suppose AP 6= P .
Then there exists a nonzero element a ∈ P such that a /∈ AP . Let M = R − P .
Then M is an m-system. Let S = {a, a2, a3, . . .} and let T = {r ∈ R : r 6= 0, r =
ai0x0a

i1x1 . . . a
inxna

in+1 , where i0, in+1, n ≥ 0; i1, i2, . . . , in ≥ 1, xj ∈ M for all
j, 1 ≤ j ≤ n}.

Then δ = M ∪ S ∪ T is an m-system: Clearly 0 /∈ δ. Let x, y ∈ δ.
(i) Let x ∈ M . If y ∈ M then there exists r ∈ R such that xry ∈ M ⊆ δ. If

y ∈ S then y = an for some n ≥ 1. Let r = a. Suppose xry = 0. Hence
ax = 0. Since x /∈ P , a ∈ AP , a contradiction. Hence xry 6= 0. Now
xry ∈ T ⊆ δ. If y ∈ T then y = ai0x0a

i1x1 . . . a
inxna

in+1 . Let r = a.
Suppose xry = xaai0x0a

i1x1a
i2 . . . ainxain+1 = 0. Since R is reduced, we

get

(3.1) axx0x1 . . . xn = 0

Now x, x0, x1, . . . , xn ∈M andM is am-system. Hence there exist r0, r1, . . . ,
rn ∈ R such w = xr0x0r1x1 . . . xn−1rnxn ∈ M . Inserting r0, r1, . . . rn in
(3.1), we get aw = axr0x0r1x1 . . . xn−1rnxn = 0 where w /∈ P . Hence
a ∈ AP , a contradiction. So xry 6= 0. Now xry ∈ T ⊆ δ.

(ii) Let x ∈ S. Then x = an for some n ≥ 1. If y ∈ S then y = am for
some m ≥ 1. Let r = a. Then xry = an+m+1 ∈ S ⊆ δ. If y ∈ T then y =
ai0x0a

i1x1 . . . a
inxna

in+1 . Let r = a. Suppose xry = an+1+i0x0a
i1x1 . . . a

inxn

ain+1 = 0. Since R is reduced, we have

(3.2) ax0x1 . . . xn = 0.

Now x0, x1, . . . , xn ∈ M and M is an m-system. Hence there exist
r0, r1, . . . , rn ∈ R such that w = xr0x0r1x1 . . . rn−1xn−1rnxn ∈ M . In-
serting r0, r1, . . . , rn in (3.2), we get aw = 0 where w /∈ P . Hence a ∈ AP , a
contradiction. So xry 6= 0. Now xry ∈ T ⊆ δ.

(iii) Let x, y ∈ T . Then

x = ai0x0a
i1x1 . . . a

inxna
in+1 and y = aj0y0a

j1y1 . . . a
jmyma

jm+1 .

Let r = a. Suppose

xry = ai0x0a
i1x1 . . . a

inxna
in+1aaj0y0a

j1y1 . . . a
jmyma

jm+1 = 0.

Since R is reduced, we get

(3.3) ax0x1 . . . xny0y1 . . . ym = 0.

Now x0, x1, . . . , xn, y0, y1, . . . ym ∈M and M is an m-system. Hence there
exist r0, r1, . . . , rn−1, t, s0, . . . , sm−1 ∈ R such that

w = x0r0x1r1x2 . . . xn−1rn−1xnty0s0y1s1y2 . . . ym−1sm−1ym ∈M.

Inserting r0, r1, . . . , rn−1, t, s0, s1, . . . sm−1 in (3.3), we get aw = 0 where
w /∈ P . Hence a ∈ AP , a contradiction. So xry 6= 0. Now xry ∈ T .

Let Q be an ideal of R maximal with respect to the property that δ ∩ Q = ∅.
Then Q is a prime ideal of R and Q ( P , a contradiction to the minimality of P .
Hence AP = P . Conversely, let AP = P . Let P ′ be a prime ideal of R such that
P ′ ⊆ P . Let x ∈ P = AP . Thenxb = 0 for some b /∈ P . Hence xRb = 0 ⊆ P ′ implies
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that x ∈ P ′. So P = P ′. Now P is a minimal prime ideal of R. Easily, if AP = P
then by Lemma 3.2, P is a completely prime ideal of R.

Motivated by the above theorem, as a consequence, we obtain the following result.

Proposition 3.2. Let R be a reduced semiring and let α be a subspace of X(R)
which consists of all minimal prime ideals of R. Then α is a Hausdorff space having
a base of open and closed sets.

Proof. Let P1, P2 ∈ α such that P1 6= P2. By Theorem 3.1, P1 = AP1 and P2 = AP2 .
Hence AP1 * P2. Then there exists x ∈ AP1 such that x /∈ P2. Hence ∃ s /∈ P1 such
that xs = 0. Since R is reduced, we get 〈x〉〈s〉 = 0. Suppose supp〈x〉 ∩ supp〈s〉 6= φ.
Let P ∈ supp〈x〉 ∩ supp〈s〉. Then 〈x〉 * P and 〈s〉 * P , a contradiction. Hence
supp〈x〉 ∩ supp〈s〉 = φ. Since 〈s〉 * P1 and 〈x〉 * P2, we have P1 ∈ supp〈s〉 and
P2 ∈ supp〈x〉. For any nonzero element a ∈ R, we have supp〈a〉 = α− supp(r(a)):

Let P ∈ supp〈a〉. Then 〈a〉 * P . Hence a /∈ P . Thus r(a) ⊆ P . Hence
P /∈ supp(r(a)). Otherway, let P ∈ α − supp(r(a)). Then P /∈ supp(r(a)). Hence
r(a) ⊆ P . Since P is a minimal prime ideal, we have P = AP . Suppose a ∈ P .
Then a ∈ AP . Hence ∃ b /∈ P such that ab = 0. Then b ∈ r(a) ⊆ P , a contradiction.
Hence a /∈ P . Now 〈a〉 * P . So P ∈ supp〈a〉.
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