Prime Ideals in Semirings

¹VISHNU GUPTA AND ²J. N. CHAUDHARI

¹Department of Mathematics, University of Delhi, Delhi 110 007, India ²Department of Mathematics, M. J. College, Jalgaon 425 002, India ¹vishnu_gupta2k3@yahoo.co.in, ²jnchaudhari@rediffmail.com

Abstract. In this paper, we prove the following theorems:

- (1) A nonzero ideal I of $(\mathbb{Z}^+, +, \cdot)$ is prime if and only if $I = \langle p \rangle$ for some prime number p or $I = \langle 2, 3 \rangle$.
- (2) Let R be a reduced semiring. Then a prime ideal P of R is minimal if and only if $P = A_P$ where $A_P = \{r \in R : \exists a \notin P \text{ such that } ra = 0\}$.

2010 Mathematics Subject Classification: 16Y60

Keywords and phrases: Semiring, reduced semiring, Bourne factor semiring, subtractive ideal, prime ideal, completely prime ideal, minimal prime ideal.

1. Introduction

There are many characterizations of prime ideals in semirings in the literature (e.g. cf. [2]). In this paper, we give a characterization of prime ideals to be minimal in reduced semirings.

Definition 1.1. A nonempty set R with two binary operations + and \cdot is called a semiring if

- (1) (R, +) is a commutative monoid with identity element 0.
- (2) (R, \cdot) is a monoid with identity element $1 \neq 0$.
- (3) Both the distributive laws hold in R.
- (4) $a \cdot 0 = 0 \cdot a = 0$ for all $a \in R$.

We assume that all ideals are proper. \mathbb{Z}^+ will denote the set of all nonnegative integers. Let I be an ideal of a semiring R and let $a, b \in R$. Define $a \sim b$ if and only if there exist $x, y \in I$ such that a + x = b + y. Then \sim is an equivalence relation on R. Let $[a]_I^R$ or [a] be the equivalence class of $a \in R$. Then $R/I = \{[a]_I^R : a \in R\}$ is a semiring under the binary operations defined as follows: [a] + [b] = [a + b],[a][b] = [ab] for all $a, b \in R$. This semiring is called the Bourne factor semiring of Rby I. We assume that $[0] \neq R$. An ideal I of a semiring R is called subtractive if whenever $a, a + b \in I, b \in R$, we have $b \in I$. An ideal I of a semiring R is called

Communicated by Rosihan M. Ali, Dato'.

Received: July 23, 2009; Revised: December 3, 2009.

prime (completely prime) if whenever $aRb \subseteq I$ ($ab \in I$) where $a, b \in R$ implies $a \in I$ or $b \in I$. A semiring R is called reduced if it has no nonzero nilpotent elements.

Let R be a semiring and let $x \in R$. Then $r(x) = \{a \in R : xa = 0\}$ is called the right annihilator of x. Similarly we can define $\ell(x)$, the left anihilator of x. We write $RxR = \langle x \rangle$. Let X(R) be the set of all prime ideals of a semiring R. Let I be an ideal of R. Define support of I as follows: supp $I = \{P \in X(R) : I \not\subseteq P\}$. Let $\tau = \{\text{supp } I : I \text{ is an ideal of } R\}$. Then $(X(R), \tau)$ is a topological space.

2. Prime Ideals in \mathbb{Z}^+

Now we give a short and elementary proof of the following lemma which will be used in the subsequent theorem.

Lemma 2.1. [1, Lemma 7] Let $a, b \in \mathbb{Z}^+$, b > a > 1 and let (a, b) = 1. Then there exists $n \in \mathbb{Z}^+$ such that $t \in \langle a, b \rangle$ for all $t \ge n$.

Proof. Since (a, b) = 1, there exist $p, q \in \mathbb{Z}^+$ such that qa = pb + 1. Clearly $p, q \neq 0$. Let us write $n = paqb \in \langle a, b \rangle$. Let t = n + r where $r \geq 0$. If r = 0 then $t = n \in \langle a, b \rangle$. If 0 < r < a then $t = n + r = (pa - r)pb + pa + rqa \in \langle a, b \rangle$. If $r \geq a$ then by the division algorithm, $r = au + v, 0 \leq v < a$. Now $t = n + v + au \in \langle a, b \rangle$.

Theorem 2.1. A nonzero ideal I of $(\mathbb{Z}^+, +, \cdot)$ is prime if and only if $I = \langle p \rangle$ for some prime number p or $I = \langle 2, 3 \rangle$.

Proof. Let I be a nonzero prime ideal of $(\mathbb{Z}^+, +, \cdot)$. If $I = \langle p \rangle$ then p is a prime number. Suppose I is not a principal ideal. Let a be the nonzero smallest element of I. Then a is a prime number. Also there exists the smallest $b \in I$ such that b > a and (a, b) = 1. By Lemma 2.1, there exists $n \in \mathbb{Z}^+$ such that $t \in I$ for all $t \geq n$. If a > 2 then choose the smallest $j \in \mathbb{Z}^+$, j > 1 such that $2^j \in I$. So $2^{j-1} \in I$ or $2 \in I$, a contradiction. Hence a = 2. If b > 3 then choose the smallest $k \in \mathbb{Z}^+$, k > 1 such that $3^k \in I$. So $3^{k-1} \in I$ or $3 \in I$, a contradiction. Hence b = 3. Now $I = \langle 2, 3 \rangle = \mathbb{Z}^+ - \{1\}$. The converse is obvious.

The following result follows directly from Theorem 2.1.

Corollary 2.1. A nonzero ideal I of $(\mathbb{Z}^+, +, \cdot)$ is subtractive prime if and only if $I = \langle p \rangle$ for some prime number p.

3. Prime ideals in semirings

We give the following lemmas and proposition which will be used in the subsequent study.

Lemma 3.1. Let R be reduced semiring and let $0 \neq x \in R$. Then

- (1) $r(x) = \ell(x)$ and it is an ideal of R
- (2) $x \notin r(x)$
- (3) r(x) is subtractive
- (4) R/r(x) is reduced
- (5) If $xa \in r(x)$ or $ax \in r(x)$ then $a \in r(x)$

Proof. (1), (2), (3) and (5) are obvious. For (4), let $[a] \in R/r(x)$ such that $[a]^n = 0$ for some n. Then $a^n + u = v$ for some $u, v \in r(x)$. Since r(x) is subtractive, $a^n \in r(x)$. Since R is reduced, we have xa = 0. Now $a \in r(x)$. Hence [a] = [0].

Let P be a prime ideal of semiring R. Denote $A_P = \{s \in R : \exists a \notin P \text{ such that } sa = 0\}.$

We give the following examples of a subset A_P in a semiring.

Example 3.1. Let $\mathbb{Z}^+ = (\mathbb{Z}^+, +,)$. Then the prime ideal P of \mathbb{Z}^+ is 0 or $\langle p \rangle$ for some prime p or $\langle 2, 3 \rangle$ by Theorem 2.1. We have $A_P = 0$.

Example 3.2. Let \mathbb{Z}_2^+ be the full matrix semiring of order 2 over the semiring \mathbb{Z}^+ . Then P = 0 is a prime ideal of \mathbb{Z}_2^+ (the proof is similar as for an arbitrary prime ring with identity element). From this we have $A_P = \left\{ \begin{bmatrix} \mathbb{Z}^+ & 0 \\ \mathbb{Z}^+ & 0 \end{bmatrix}, \begin{bmatrix} 0 & \mathbb{Z}^+ \\ 0 & \mathbb{Z}^+ \end{bmatrix} \right\}.$

Now we have the following:

Lemma 3.2. Let R be a reduced semiring and let P be a prime ideal of R. Then

- (1) A_P is a subtractive (proper) ideal of R
- (2) $A_P \subseteq P$
- (3) R/A_P is reduced

Proof. (1) Let $r_1, r_2 \in A_P$. Then $\exists a_1, a_2 \notin P$ such that $r_1a_1 = r_2a_2 = 0$. Hence $(r_1 + r_2)a_1ya_2 = 0$ where $y \in R$. Since $a_1ya_2 \notin P$ for some $y \in R$, we have $(r_1 + r_2) \in A_P$. Also $rt, tr \in A_P$ for all $r \in A_P$ and $t \in R$. Let $r, r + s \in A_P$, $s \in R$. Then (r + s)a = rb = 0 for some $a, b \notin P$. Since 0 = (r + s)ayb = sayb and $ayb \notin P$ for some $y \in R$, we get $s \in A_P$.

(2) It is obvious.

(3) Suppose $[s]^n = [0]$ for some n. Then $s^n \in A_P$. So $s^n a = 0$ for some $a \notin P$. Since R is reduced, we get sa = 0. Now $s \in A_P$. Hence [s] = [0].

Lemma 3.3. Let $I \subseteq H$ be ideals of a semiring R and let H be subtractive. Then $R/H \cong (R/I)/(H/I)$.

Proof. Since H is subtractive, we have $H = [0]_{H}^{R}$. Now it follows by [2, Proposition 10.20].

Proposition 3.1. Let R be a reduced semiring and let $0 \neq x \in R$. Then $G(x) = \{I : I \text{ is a subtractive ideal of } R, x \notin I, rx \in I \text{ implies that } r \in I, R/I \text{ is reduced} \}$ has a maximal element. Moreover every maximal member of G(x) is a completely prime ideal of R.

Proof. Since $r(x) \in G(x)$, so it is a nonempty partially ordered set under \subseteq , in which every totally ordered subset has an upper bound. By Zorn's Lemma, G(x) has a maximal element K.

Let $ab \in K$. Suppose $a \notin K$. Let us write $N = \{y \in R : ay \in K\}$. Then $K \subseteq N$. Since K is subtractive and R/K is reduced, we see that N is a subtractive ideal of R and $x \notin N$. If $rx \in N$ then $r \in N$. Easily, $N/K = r([a]_K^R)$. By Lemmas 3.3 and 3.1, $R/N \cong (R/K)/(N/K)$ is reduced. Thus $N \in G(x)$ and so K = N. Now $b \in K$.

Theorem 3.1. Let R be a reduced semiring. Then prime ideal P of R is minimal if and only if $P = A_P$. Moreover if $P = A_P$ then P is a completely prime ideal of R.

Proof. Let P be a minimal prime ideal of R. We have $A_P \subseteq P$. Suppose $A_P \neq P$. Then there exists a nonzero element $a \in P$ such that $a \notin A_P$. Let M = R - P. Then M is an m-system. Let $S = \{a, a^2, a^3, \ldots\}$ and let $T = \{r \in R : r \neq 0, r = a^{i_0}x_0a^{i_1}x_1 \ldots a^{i_n}x_na^{i_{n+1}}, \text{ where } i_0, i_{n+1}, n \geq 0; i_1, i_2, \ldots, i_n \geq 1, x_j \in M \text{ for all } j, 1 \leq j \leq n\}.$

Then $\delta = M \cup S \cup T$ is an *m*-system: Clearly $0 \notin \delta$. Let $x, y \in \delta$.

(i) Let $x \in M$. If $y \in M$ then there exists $r \in R$ such that $xry \in M \subseteq \delta$. If $y \in S$ then $y = a^n$ for some $n \ge 1$. Let r = a. Suppose xry = 0. Hence ax = 0. Since $x \notin P$, $a \in A_P$, a contradiction. Hence $xry \neq 0$. Now $xry \in T \subseteq \delta$. If $y \in T$ then $y = a^{i_0}x_0a^{i_1}x_1 \dots a^{i_n}x_na^{i_{n+1}}$. Let r = a. Suppose $xry = xaa^{i_0}x_0a^{i_1}x_1a^{i_2}\dots a^{i_n}xa^{i_{n+1}} = 0$. Since R is reduced, we get

$$axx_0x_1\dots x_n = 0$$

Now $x, x_0, x_1, \ldots, x_n \in M$ and M is a *m*-system. Hence there exist $r_0, r_1, \ldots, r_n \in R$ such $w = xr_0x_0r_1x_1\ldots x_{n-1}r_nx_n \in M$. Inserting $r_0, r_1, \ldots r_n$ in (3.1), we get $aw = axr_0x_0r_1x_1\ldots x_{n-1}r_nx_n = 0$ where $w \notin P$. Hence $a \in A_P$, a contradiction. So $xry \neq 0$. Now $xry \in T \subseteq \delta$.

(ii) Let $x \in S$. Then $x = a^n$ for some $n \ge 1$. If $y \in S$ then $y = a^m$ for some $m \ge 1$. Let r = a. Then $xry = a^{n+m+1} \in S \subseteq \delta$. If $y \in T$ then $y = a^{i_0}x_0a^{i_1}x_1\ldots a^{i_n}x_na^{i_{n+1}}$. Let r = a. Suppose $xry = a^{n+1+i_0}x_0a^{i_1}x_1\ldots a^{i_n}x_na^{i_n+1} = 0$. Since R is reduced, we have

$$ax_0x_1\dots x_n=0.$$

Now $x_0, x_1, \ldots, x_n \in M$ and M is an m-system. Hence there exist $r_0, r_1, \ldots, r_n \in R$ such that $w = xr_0x_0r_1x_1\ldots r_{n-1}x_{n-1}r_nx_n \in M$. Inserting r_0, r_1, \ldots, r_n in (3.2), we get aw = 0 where $w \notin P$. Hence $a \in A_P$, a contradiction. So $xry \neq 0$. Now $xry \in T \subseteq \delta$.

(iii) Let $x, y \in T$. Then $x = a^{i_0} x_0 a^{i_1} x_1 \dots a^{i_n} x_n a^{i_{n+1}}$ and $y = a^{j_0} y_0 a^{j_1} y_1 \dots a^{j_m} y_m a^{j_{m+1}}$. Let r = a. Suppose $xry = a^{i_0} x_0 a^{i_1} x_1 \dots a^{i_n} x_n a^{i_{n+1}} a a^{j_0} y_0 a^{j_1} y_1 \dots a^{j_m} y_m a^{j_{m+1}} = 0$. Since R is reduced, we get

$$ax_0x_1\ldots x_ny_0y_1\ldots y_m=0.$$

Now $x_0, x_1, \ldots, x_n, y_0, y_1, \ldots, y_m \in M$ and M is an m-system. Hence there exist $r_0, r_1, \ldots, r_{n-1}, t, s_0, \ldots, s_{m-1} \in R$ such that

$$w = x_0 r_0 x_1 r_1 x_2 \dots x_{n-1} r_{n-1} x_n t y_0 s_0 y_1 s_1 y_2 \dots y_{m-1} s_{m-1} y_m \in M.$$

Inserting $r_0, r_1, \ldots, r_{n-1}, t, s_0, s_1, \ldots, s_{m-1}$ in (3.3), we get aw = 0 where $w \notin P$. Hence $a \in A_P$, a contradiction. So $xry \neq 0$. Now $xry \in T$.

Let Q be an ideal of R maximal with respect to the property that $\delta \cap Q = \emptyset$. Then Q is a prime ideal of R and $Q \subsetneq P$, a contradiction to the minimality of P. Hence $A_P = P$. Conversely, let $A_P = P$. Let P' be a prime ideal of R such that $P' \subseteq P$. Let $x \in P = A_P$. Then xb = 0 for some $b \notin P$. Hence $xRb = 0 \subseteq P'$ implies that $x \in P'$. So P = P'. Now P is a minimal prime ideal of R. Easily, if $A_P = P$ then by Lemma 3.2, P is a completely prime ideal of R.

Motivated by the above theorem, as a consequence, we obtain the following result.

Proposition 3.2. Let R be a reduced semiring and let α be a subspace of X(R) which consists of all minimal prime ideals of R. Then α is a Hausdorff space having a base of open and closed sets.

Proof. Let $P_1, P_2 \in \alpha$ such that $P_1 \neq P_2$. By Theorem 3.1, $P_1 = A_{P_1}$ and $P_2 = A_{P_2}$. Hence $A_{P_1} \nsubseteq P_2$. Then there exists $x \in A_{P_1}$ such that $x \notin P_2$. Hence $\exists s \notin P_1$ such that xs = 0. Since R is reduced, we get $\langle x \rangle \langle s \rangle = 0$. Suppose $\operatorname{supp} \langle x \rangle \cap \operatorname{supp} \langle s \rangle \neq \phi$. Let $P \in \operatorname{supp} \langle x \rangle \cap \operatorname{supp} \langle s \rangle$. Then $\langle x \rangle \nsubseteq P$ and $\langle s \rangle \nsubseteq P$, a contradiction. Hence $\operatorname{supp} \langle x \rangle \cap \operatorname{supp} \langle s \rangle = \phi$. Since $\langle s \rangle \nsubseteq P_1$ and $\langle x \rangle \nsubseteq P_2$, we have $P_1 \in \operatorname{supp} \langle s \rangle$ and $P_2 \in \operatorname{supp} \langle x \rangle$. For any nonzero element $a \in R$, we have $\operatorname{supp} \langle a \rangle = \alpha - \operatorname{supp}(r(a))$:

Let $P \in \operatorname{supp}\langle a \rangle$. Then $\langle a \rangle \not\subseteq P$. Hence $a \notin P$. Thus $r(a) \subseteq P$. Hence $P \notin \operatorname{supp}(r(a))$. Otherway, let $P \in \alpha - \operatorname{supp}(r(a))$. Then $P \notin \operatorname{supp}(r(a))$. Hence $r(a) \subseteq P$. Since P is a minimal prime ideal, we have $P = A_P$. Suppose $a \in P$. Then $a \in A_P$. Hence $\exists b \notin P$ such that ab = 0. Then $b \in r(a) \subseteq P$, a contradiction. Hence $a \notin P$. Now $\langle a \rangle \not\subseteq P$. So $P \in \operatorname{supp}\langle a \rangle$.

Acknowledgement. The authors express their sincere thanks to the referees for the helpful suggestions.

References

- P. J. Allen and L. Dale, Ideal theory in the semiring Z⁺, Publ. Math. Debrecen 22 (1975), no. 3-4, 219–224.
- [2] J. S. Golan, Semirings and Their Applications, Kluwer Acad. Publ., Dordrecht, 1999.
- [3] S. Kar, Ideal theory in the ternary semiring Z₀⁻, Bull. Malays. Math. Sci. Soc. (2) 34 (2011), no. 1, 69–77.