Prime Ideals in Semirings

${ }^{1}$ Vishnu Gupta and ${ }^{2}$ J. N. Chaudhari
${ }^{1}$ Department of Mathematics, University of Delhi, Delhi 110 007, India
${ }^{2}$ Department of Mathematics, M. J. College, Jalgaon 425 002, India
1^{1} vishnu_gupta2k3@yahoo.co.in, ${ }^{2}$ jnchaudhari@rediffmail.com

Abstract

In this paper, we prove the following theorems: (1) A nonzero ideal I of $\left(\mathbb{Z}^{+},+, \cdot\right)$ is prime if and only if $I=\langle p\rangle$ for some prime number p or $I=\langle 2,3\rangle$. (2) Let R be a reduced semiring. Then a prime ideal P of R is minimal if and only if $P=A_{P}$ where $A_{P}=\{r \in R: \exists a \notin P$ such that $r a=0\}$.

2010 Mathematics Subject Classification: 16Y60
Keywords and phrases: Semiring, reduced semiring, Bourne factor semiring, subtractive ideal, prime ideal, completely prime ideal, minimal prime ideal.

1. Introduction

There are many characterizations of prime ideals in semirings in the literature (e.g. cf. [2]). In this paper, we give a characterization of prime ideals to be minimal in reduced semirings.

Definition 1.1. A nonempty set R with two binary operations + and \cdot is called a semiring if
(1) $(R,+)$ is a commutative monoid with identity element 0 .
(2) (R, \cdot) is a monoid with identity element $1 \neq 0$.
(3) Both the distributive laws hold in R.
(4) $a \cdot 0=0 \cdot a=0$ for all $a \in R$.

We assume that all ideals are proper. \mathbb{Z}^{+}will denote the set of all nonnegative integers. Let I be an ideal of a semiring R and let $a, b \in R$. Define $a \sim b$ if and only if there exist $x, y \in I$ such that $a+x=b+y$. Then \sim is an equivalence relation on R. Let $[a]_{I}^{R}$ or $[a]$ be the equivalence class of $a \in R$. Then $R / I=\left\{[a]_{I}^{R}: a \in R\right\}$ is a semiring under the binary operations defined as follows: $[a]+[b]=[a+b]$, $[a][b]=[a b]$ for all $a, b \in R$. This semiring is called the Bourne factor semiring of R by I. We assume that $[0] \neq R$. An ideal I of a semiring R is called subtractive if whenever $a, a+b \in I, b \in R$, we have $b \in I$. An ideal I of a semiring R is called

[^0]prime (completely prime) if whenever $a R b \subseteq I(a b \in I)$ where $a, b \in R$ implies $a \in I$ or $b \in I$. A semiring R is called reduced if it has no nonzero nilpotent elements.

Let R be a semiring and let $x \in R$. Then $r(x)=\{a \in R: x a=0\}$ is called the right annihilator of x. Similarly we can define $\ell(x)$, the left anihilator of x. We write $R x R=\langle x\rangle$. Let $X(R)$ be the set of all prime ideals of a semiring R. Let I be an ideal of R. Define support of I as follows: $\operatorname{supp} I=\{P \in X(R): I \nsubseteq P\}$. Let $\tau=\{\operatorname{supp} I: I$ is an ideal of $R\}$. Then $(X(R), \tau)$ is a topological space.

2. Prime Ideals in \mathbb{Z}^{+}

Now we give a short and elementary proof of the following lemma which will be used in the subsequent theorem.

Lemma 2.1. [1, Lemma 7] Let $a, b \in \mathbb{Z}^{+}, b>a>1$ and let $(a, b)=1$. Then there exists $n \in \mathbb{Z}^{+}$such that $t \in\langle a, b\rangle$ for all $t \geq n$.
Proof. Since $(a, b)=1$, there exist $p, q \in \mathbb{Z}^{+}$such that $q a=p b+1$. Clearly $p, q \neq 0$. Let us write $n=p a q b \in\langle a, b\rangle$. Let $t=n+r$ where $r \geq 0$. If $r=0$ then $t=n \in\langle a, b\rangle$. If $0<r<a$ then $t=n+r=(p a-r) p b+p a+r q a \in\langle a, b\rangle$. If $r \geq a$ then by the division algorithm, $r=a u+v, 0 \leq v<a$. Now $t=n+v+a u \in\langle a, b\rangle$.
Theorem 2.1. A nonzero ideal I of $\left(\mathbb{Z}^{+},+, \cdot\right)$ is prime if and only if $I=\langle p\rangle$ for some prime number p or $I=\langle 2,3\rangle$.
Proof. Let I be a nonzero prime ideal of $\left(\mathbb{Z}^{+},+, \cdot\right)$. If $I=\langle p\rangle$ then p is a prime number. Suppose I is not a principal ideal. Let a be the nonzero smallest element of I. Then a is a prime number. Also there exists the smallest $b \in I$ such that $b>a$ and $(a, b)=1$. By Lemma 2.1, there exists $n \in \mathbb{Z}^{+}$such that $t \in I$ for all $t \geq n$. If $a>2$ then choose the smallest $j \in \mathbb{Z}^{+}, j>1$ such that $2^{j} \in I$. So $2^{j-1} \in I$ or $2 \in I$, a contradiction. Hence $a=2$. If $b>3$ then choose the smallest $k \in \mathbb{Z}^{+}$, $k>1$ such that $3^{k} \in I$. So $3^{k-1} \in I$ or $3 \in I$, a contradiction. Hence $b=3$. Now $I=\langle 2,3\rangle=\mathbb{Z}^{+}-\{1\}$. The converse is obvious.

The following result follows directly from Theorem 2.1.
Corollary 2.1. A nonzero ideal I of $\left(\mathbb{Z}^{+},+, \cdot\right)$ is subtractive prime if and only if $I=\langle p\rangle$ for some prime number p.

3. Prime ideals in semirings

We give the following lemmas and proposition which will be used in the subsequent study.

Lemma 3.1. Let R be reduced semiring and let $0 \neq x \in R$. Then
(1) $r(x)=\ell(x)$ and it is an ideal of R
(2) $x \notin r(x)$
(3) $r(x)$ is subtractive
(4) $R / r(x)$ is reduced
(5) If $x a \in r(x)$ or $a x \in r(x)$ then $a \in r(x)$

Proof. (1), (2), (3) and (5) are obvious. For (4), let $[a] \in R / r(x)$ such that $[a]^{n}=0$ for some n. Then $a^{n}+u=v$ for some $u, v \in r(x)$. Since $r(x)$ is subtractive, $a^{n} \in r(x)$. Since R is reduced, we have $x a=0$. Now $a \in r(x)$. Hence $[a]=[0]$.

Let P be a prime ideal of semiring R. Denote $A_{P}=\{s \in R: \exists a \notin P$ such that $s a=0\}$.

We give the following examples of a subset A_{P} in a semiring.
Example 3.1. Let $\mathbb{Z}^{+}=\left(\mathbb{Z}^{+},+,\right)$. Then the prime ideal P of \mathbb{Z}^{+}is 0 or $\langle p\rangle$ for some prime p or $\langle 2,3\rangle$ by Theorem 2.1. We have $A_{P}=0$.

Example 3.2. Let \mathbb{Z}_{2}^{+}be the full matrix semiring of order 2 over the semiring \mathbb{Z}^{+}. Then $P=0$ is a prime ideal of \mathbb{Z}_{2}^{+}(the proof is similar as for an arbitrary prime ring with identity element). From this we have $A_{P}=\left\{\left[\begin{array}{ll}\mathbb{Z}^{+} & 0 \\ \mathbb{Z}^{+} & 0\end{array}\right],\left[\begin{array}{ll}0 & \mathbb{Z}^{+} \\ 0 & \mathbb{Z}^{+}\end{array}\right]\right\}$.

Now we have the following:
Lemma 3.2. Let R be a reduced semiring and let P be a prime ideal of R. Then
(1) A_{P} is a subtractive (proper) ideal of R
(2) $A_{P} \subseteq P$
(3) R / A_{P} is reduced

Proof. (1) Let $r_{1}, r_{2} \in A_{P}$. Then $\exists a_{1}, a_{2} \notin P$ such that $r_{1} a_{1}=r_{2} a_{2}=0$. Hence $\left(r_{1}+r_{2}\right) a_{1} y a_{2}=0$ where $y \in R$. Since $a_{1} y a_{2} \notin P$ for some $y \in R$, we have $\left(r_{1}+r_{2}\right) \in A_{P}$. Also $r t, t r \in A_{P}$ for all $r \in A_{P}$ and $t \in R$. Let $r, r+s \in A_{P}, s \in R$. Then $(r+s) a=r b=0$ for some $a, b \notin P$. Since $0=(r+s) a y b=s a y b$ and $a y b \notin P$ for some $y \in R$, we get $s \in A_{P}$.
(2) It is obvious.
(3) Suppose $[s]^{n}=[0]$ for some n. Then $s^{n} \in A_{P}$. So $s^{n} a=0$ for some $a \notin P$. Since R is reduced, we get $s a=0$. Now $s \in A_{P}$. Hence $[s]=[0]$.

Lemma 3.3. Let $I \subseteq H$ be ideals of a semiring R and let H be subtractive. Then $R / H \cong(R / I) /(H / I)$.

Proof. Since H is subtractive, we have $H=[0]_{H}^{R}$. Now it follows by [2, Proposition 10.20].

Proposition 3.1. Let R be a reduced semiring and let $0 \neq x \in R$. Then $G(x)=$ $\{I: I$ is a subtractive ideal of $R, x \notin I, r x \in I$ implies that $r \in I, R / I$ is reduced $\}$ has a maximal element. Moreover every maximal member of $G(x)$ is a completely prime ideal of R.

Proof. Since $r(x) \in G(x)$, so it is a nonempty partially ordered set under \subseteq, in which every totally ordered subset has an upper bound. By Zorn's Lemma, $G(x)$ has a maximal element K.

Let $a b \in K$. Suppose $a \notin K$. Let us write $N=\{y \in R: a y \in K\}$. Then $K \subseteq N$. Since K is subtractive and R / K is reduced, we see that N is a subtractive ideal of R and $x \notin N$. If $r x \in N$ then $r \in N$. Easily, $N / K=r\left([a]_{K}^{R}\right)$. By Lemmas 3.3 and 3.1, $R / N \cong(R / K) /(N / K)$ is reduced. Thus $N \in G(x)$ and so $K=N$. Now $b \in K$.

Theorem 3.1. Let R be a reduced semiring. Then prime ideal P of R is minimal if and only if $P=A_{P}$. Moreover if $P=A_{P}$ then P is a completely prime ideal of R.

Proof. Let P be a minimal prime ideal of R. We have $A_{P} \subseteq P$. Suppose $A_{P} \neq P$. Then there exists a nonzero element $a \in P$ such that $a \notin A_{P}$. Let $M=R-P$. Then M is an m-system. Let $S=\left\{a, a^{2}, a^{3}, \ldots\right\}$ and let $T=\{r \in R: r \neq 0, r=$ $a^{i_{0}} x_{0} a^{i_{1}} x_{1} \ldots a^{i_{n}} x_{n} a^{i_{n+1}}$, where $i_{0}, i_{n+1}, n \geq 0 ; i_{1}, i_{2}, \ldots, i_{n} \geq 1, x_{j} \in M$ for all $j, 1 \leq j \leq n\}$.

Then $\delta=M \cup S \cup T$ is an m-system: Clearly $0 \notin \delta$. Let $x, y \in \delta$.
(i) Let $x \in M$. If $y \in M$ then there exists $r \in R$ such that $x r y \in M \subseteq \delta$. If $y \in S$ then $y=a^{n}$ for some $n \geq 1$. Let $r=a$. Suppose xry $=0$. Hence $a x=0$. Since $x \notin P, a \in A_{P}$, a contradiction. Hence $x r y \neq 0$. Now $x r y \in T \subseteq \delta$. If $y \in T$ then $y=a^{i_{0}} x_{0} a^{i_{1}} x_{1} \ldots a^{i_{n}} x_{n} a^{i_{n+1}}$. Let $r=a$. Suppose xry $=x a a^{i_{0}} x_{0} a^{i_{1}} x_{1} a^{i_{2}} \ldots a^{i_{n}} x a^{i_{n+1}}=0$. Since R is reduced, we get

$$
a x x_{0} x_{1} \ldots x_{n}=0
$$

Now $x, x_{0}, x_{1}, \ldots, x_{n} \in M$ and M is a m-system. Hence there exist r_{0}, r_{1}, \ldots, $r_{n} \in R$ such $w=x r_{0} x_{0} r_{1} x_{1} \ldots x_{n-1} r_{n} x_{n} \in M$. Inserting $r_{0}, r_{1}, \ldots r_{n}$ in (3.1), we get $a w=a x r_{0} x_{0} r_{1} x_{1} \ldots x_{n-1} r_{n} x_{n}=0$ where $w \notin P$. Hence $a \in A_{P}$, a contradiction. So $x r y \neq 0$. Now $x r y \in T \subseteq \delta$.
(ii) Let $x \in S$. Then $x=a^{n}$ for some $n \geq 1$. If $y \in S$ then $y=a^{m}$ for some $m \geq 1$. Let $r=a$. Then $x r y=a^{n+m+1} \in S \subseteq \delta$. If $y \in T$ then $y=$ $a^{i_{0}} x_{0} a^{i_{1}} x_{1} \ldots a^{i_{n}} x_{n} a^{i_{n+1}}$. Let $r=a$. Suppose $x r y=a^{n+1+i_{0}} x_{0} a^{i_{1}} x_{1} \ldots a^{i_{n}} x_{n}$ $a^{i_{n+1}}=0$. Since R is reduced, we have

$$
a x_{0} x_{1} \ldots x_{n}=0
$$

Now $x_{0}, x_{1}, \ldots, x_{n} \in M$ and M is an m-system. Hence there exist $r_{0}, r_{1}, \ldots, r_{n} \in R$ such that $w=x r_{0} x_{0} r_{1} x_{1} \ldots r_{n-1} x_{n-1} r_{n} x_{n} \in M$. Inserting $r_{0}, r_{1}, \ldots, r_{n}$ in (3.2), we get $a w=0$ where $w \notin P$. Hence $a \in A_{P}$, a contradiction. So $x r y \neq 0$. Now $x r y \in T \subseteq \delta$.
(iii) Let $x, y \in T$. Then
$x=a^{i_{0}} x_{0} a^{i_{1}} x_{1} \ldots a^{i_{n}} x_{n} a^{i_{n+1}} \quad$ and $\quad y=a^{j_{0}} y_{0} a^{j_{1}} y_{1} \ldots a^{j_{m}} y_{m} a^{j_{m+1}}$.
Let $r=a$. Suppose

$$
x r y=a^{i_{0}} x_{0} a^{i_{1}} x_{1} \ldots a^{i_{n}} x_{n} a^{i_{n+1}} a a^{j_{0}} y_{0} a^{j_{1}} y_{1} \ldots a^{j_{m}} y_{m} a^{j_{m+1}}=0 .
$$

Since R is reduced, we get

$$
\begin{equation*}
a x_{0} x_{1} \ldots x_{n} y_{0} y_{1} \ldots y_{m}=0 \tag{3.3}
\end{equation*}
$$

Now $x_{0}, x_{1}, \ldots, x_{n}, y_{0}, y_{1}, \ldots y_{m} \in M$ and M is an m-system. Hence there exist $r_{0}, r_{1}, \ldots, r_{n-1}, t, s_{0}, \ldots, s_{m-1} \in R$ such that

$$
w=x_{0} r_{0} x_{1} r_{1} x_{2} \ldots x_{n-1} r_{n-1} x_{n} t y_{0} s_{0} y_{1} s_{1} y_{2} \ldots y_{m-1} s_{m-1} y_{m} \in M
$$

Inserting $r_{0}, r_{1}, \ldots, r_{n-1}, t, s_{0}, s_{1}, \ldots s_{m-1}$ in (3.3), we get $a w=0$ where $w \notin P$. Hence $a \in A_{P}$, a contradiction. So $x r y \neq 0$. Now $x r y \in T$.
Let Q be an ideal of R maximal with respect to the property that $\delta \cap Q=\emptyset$. Then Q is a prime ideal of R and $Q \subsetneq P$, a contradiction to the minimality of P. Hence $A_{P}=P$. Conversely, let $A_{P}=P$. Let P^{\prime} be a prime ideal of R such that $P^{\prime} \subseteq P$. Let $x \in P=A_{P}$. Then $x b=0$ for some $b \notin P$. Hence $x R b=0 \subseteq P^{\prime}$ implies
that $x \in P^{\prime}$. So $P=P^{\prime}$. Now P is a minimal prime ideal of R. Easily, if $A_{P}=P$ then by Lemma 3.2, P is a completely prime ideal of R.

Motivated by the above theorem, as a consequence, we obtain the following result.
Proposition 3.2. Let R be a reduced semiring and let α be a subspace of $X(R)$ which consists of all minimal prime ideals of R. Then α is a Hausdorff space having a base of open and closed sets.
Proof. Let $P_{1}, P_{2} \in \alpha$ such that $P_{1} \neq P_{2}$. By Theorem 3.1, $P_{1}=A_{P_{1}}$ and $P_{2}=A_{P_{2}}$. Hence $A_{P_{1}} \nsubseteq P_{2}$. Then there exists $x \in A_{P_{1}}$ such that $x \notin P_{2}$. Hence $\exists s \notin P_{1}$ such that $x s=0$. Since R is reduced, we get $\langle x\rangle\langle s\rangle=0$. Suppose $\operatorname{supp}\langle x\rangle \cap \operatorname{supp}\langle s\rangle \neq \phi$. Let $P \in \operatorname{supp}\langle x\rangle \cap \operatorname{supp}\langle s\rangle$. Then $\langle x\rangle \nsubseteq P$ and $\langle s\rangle \nsubseteq P$, a contradiction. Hence $\operatorname{supp}\langle x\rangle \cap \operatorname{supp}\langle s\rangle=\phi$. Since $\langle s\rangle \nsubseteq P_{1}$ and $\langle x\rangle \nsubseteq P_{2}$, we have $P_{1} \in \operatorname{supp}\langle s\rangle$ and $P_{2} \in \operatorname{supp}\langle x\rangle$. For any nonzero element $a \in R$, we have $\operatorname{supp}\langle a\rangle=\alpha-\operatorname{supp}(r(a))$:

Let $P \in \operatorname{supp}\langle a\rangle$. Then $\langle a\rangle \nsubseteq P$. Hence $a \notin P$. Thus $r(a) \subseteq P$. Hence $P \notin \operatorname{supp}(r(a))$. Otherway, let $P \in \alpha-\operatorname{supp}(r(a))$. Then $P \notin \operatorname{supp}(r(a))$. Hence $r(a) \subseteq P$. Since P is a minimal prime ideal, we have $P=A_{P}$. Suppose $a \in P$. Then $a \in A_{P}$. Hence $\exists b \notin P$ such that $a b=0$. Then $b \in r(a) \subseteq P$, a contradiction. Hence $a \notin P$. Now $\langle a\rangle \nsubseteq P$. So $P \in \operatorname{supp}\langle a\rangle$.

Acknowledgement. The authors express their sincere thanks to the referees for the helpful suggestions.

References

[1] P. J. Allen and L. Dale, Ideal theory in the semiring Z^{+}, Publ. Math. Debrecen 22 (1975), no. 3-4, 219-224.
[2] J. S. Golan, Semirings and Their Applications, Kluwer Acad. Publ., Dordrecht, 1999.
[3] S. Kar, Ideal theory in the ternary semiring \mathbb{Z}_{0}^{-}, Bull. Malays. Math. Sci. Soc. (2) 34 (2011), no. 1, 69-77.

[^0]: Communicated by Rosihan M. Ali, Dato'.
 Received: July 23, 2009; Revised: December 3, 2009.

