BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

Volterra Composition Operators from F(p,q,s) Spaces to Bloch-type Spaces

Weifeng Yang

Department of Mathematics and Physics, Hunan Institute of Engineering, 411104, Xiangtan, Hunan, China vangweifeng09@163.com

Abstract. Let H(B) denote the space of all holomorphic functions on the unit ball $B \subset \mathbb{C}^n$. Let φ be a holomorphic self-map of B and $g \in H(B)$. In this paper, we investigate the boundedness and compactness of the Volterra composition operator

$$(V_{\varphi}^g f)(z) = \int_0^1 f(\varphi(tz)) \Re g(tz) \frac{dt}{t},$$

which map from general function space F(p,q,s) to Bloch-type space \mathcal{B}^{α} in the unit ball.

2010 Mathematics Subject Classification: Primary: 47B35; Secondary: 30H05

Keywords and phrases: Volterra composition operator, F(p, q, s) space, Blochtype space.

1. Introduction

Let $z = (z_1, \ldots, z_n)$ and $w = (w_1, \ldots, w_n)$ be points in the complex vector space \mathbb{C}^n and

$$\langle z, w \rangle = z_1 \bar{w}_1 + \dots + z_n \bar{w}_n$$

Let dv stand for the normalized Lebesgue measure on \mathbb{C}^n . For a holomorphic function f we denote

$$\nabla f = \left(\frac{\partial f}{\partial z_1}, \dots, \frac{\partial f}{\partial z_n}\right).$$

Let H(B) denote the class of all holomorphic functions on the unit ball. Let $\Re f(z) = \sum_{j=1}^{n} z_j \frac{\partial f}{\partial z_j}(z)$ stand for the radial derivative of $f \in H(B)$ (see [31]). It is easy to see that, if $f \in H(B)$, $f(z) = \sum_{\alpha} a_{\alpha} z^{\alpha}$, where α is a multi-index, then

$$\Re f(z) = \sum_{\alpha} |\alpha| a_{\alpha} z^{\alpha}.$$

Communicated by Mohammad Sal Moslehian.

Received: November 8, 2009; Revised: March 31, 2010.

For $\alpha > 0$, the Bloch-type space (or α -Bloch space) $\mathcal{B}^{\alpha} = \mathcal{B}^{\alpha}(B)$, is the space of all $f \in H(B)$ such that

$$b_{\alpha}(f) = \sup_{z \in B} (1 - |z|^2)^{\alpha} |\Re f(z)| < \infty.$$

On \mathcal{B}^{α} the norm is introduced by

$$||f||_{\mathcal{B}^{\alpha}} = |f(0)| + b_{\alpha}(f).$$

With this norm \mathcal{B}^{α} is a Banach space. Let \mathcal{B}_{0}^{α} denote the subspace of \mathcal{B}^{α} consisting of those $f \in \mathcal{B}^{\alpha}$ such that

$$\lim_{|z| \to 1} (1 - |z|^2)^{\alpha} |\Re f(z)| = 0.$$

This function space is called little Bloch-type space. If $\alpha = 1$, we denote \mathcal{B}^{α} simply by \mathcal{B} , which is the well-known classical Bloch space.

Let $0 < p, s < \infty, -n-1 < q < \infty$. A function $f \in H(B)$ is said to belong to general function space F(p,q,s) = F(p,q,s)(B) (see, e.g. [7,29,30]) if

$$\|f\|_{F(p,q,s)}^{p} = |f(0)|^{p} + \sup_{a \in B} \int_{B} |\nabla f(z)|^{p} (1 - |z|^{2})^{q} g^{s}(z,a) dv(z) < \infty,$$

where $g(z, a) = \log |\varphi_a(z)|^{-1}$ is the Green's function for B with logarithmic singularity at a.

We call F(p, q, s) general function space because we can get many function spaces, such as BMOA space, Q_p space (see [20]), Bergman space, Hardy space, Bloch space, if we take special parameters of p, q, s (see, e.g. [30]). If $q + s \leq -1$, then F(p, q, s)is the space of constant functions.

Suppose that $g: B \to \mathbb{C}^1$ is a holomorphic map of the unit ball, for a $f \in H(B)$, define

(1.1)
$$T_g f(z) = \int_0^1 f(tz) \frac{dg(tz)}{dt} = \int_0^1 f(tz) \Re g(tz) \frac{dt}{t}, \quad z \in B.$$

This operator is called Riemann-Stieltjes operator (or Extended-Cesàro operator). It was introduced in [4], and studied in [1,2,4–7,9–15,21,26,27,32,36].

A product of Riemann-Stieltjes operator T_g and composition operator C_{φ} is defined as follows:

(1.2)
$$V_{\varphi}^{g}f(z) = \int_{0}^{1} f(\varphi(tz)) \frac{dg(tz)}{dt} = \int_{0}^{1} f(\varphi(tz)) \Re g(tz) \frac{dt}{t}, \ f \in H(B),$$

which is called Volterra composition operator and studied in [19, 33-35, 37]. See [22-25, 28] for the boundedness and compactness of a related operator on some holomorphic function spaces in the unit ball. In the case of n = 1, this operator has form

(1.3)
$$V_{\varphi}^{g}f(z) = \int_{0}^{1} f(\varphi(tz))g'(tz)\frac{dt}{t}, \quad f \in H(D), \ z \in D,$$

which was introduced in [8]. See [3, 16–18] for the study of composition operators on Bloch spaces.

The purpose of this paper is to study the boundedness and compactness of the Volterra composition operators V^g_{α} from F(p,q,s) to the Bloch-type space.

In this paper, constants are denoted by C, they are positive and may differ from one occurrence to the other. $a \leq b$ means that there is a positive constant C such that $a \leq Cb$. Moreover, if both $a \leq b$ and $b \leq a$ hold, then one says that $a \approx b$.

2. Auxiliary results

In order to prove our results, we need some auxiliary results which are incorporated in the following lemmas.

Lemma 2.1. Let φ be a holomorphic self-map of B. For every $f, q \in H(B)$, it holds $\Re[V_{\varphi}^{g}(f)](z) = f(\varphi(z))\Re g(z)$ (2.1)

Proof. We use the method of [4]. Assume that the holomorphic function $f \circ \varphi \Re g$ has the expansion $\sum_{\alpha} a_{\alpha} z^{\alpha}$. Then

$$\Re[V_{\varphi}^{g}(f)](z) = \Re[T_{g}(f \circ \varphi)](z) = \Re \int_{0}^{1} \sum_{\alpha} a_{\alpha}(tz)^{\alpha} \frac{dt}{t} = \Re \sum_{\alpha} \frac{a_{\alpha}}{|\alpha|} z^{\alpha} = \sum_{\alpha} a_{\alpha} z^{\alpha},$$

which is what we wanted

which is what we wanted.

Lemma 2.2. [29] For $0 < p, s < \infty, -n-1 < q < \infty, q+s > -1$, if $f \in F(p,q,s)$, then $f \in \mathcal{B}^{\frac{n+1+q}{p}}$ and

(2.2)
$$||f||_{\mathcal{B}^{\frac{n+1+q}{p}}} \le C ||f||_{F(p,q,s)}$$

The following lemma can be found in [21].

Lemma 2.3. If $f \in \mathcal{B}^{\alpha}$, then

$$|f(z)| \le C \begin{cases} |f(0)| + ||f||_{\mathcal{B}^{\alpha}} &: 0 < \alpha < 1; \\ |f(0)| + ||f||_{\mathcal{B}^{\alpha}} \ln \frac{e}{1 - |z|^2} &: \alpha = 1, \\ |f(0)| + \frac{||f||_{\mathcal{B}^{\alpha}}}{(1 - |z|^2)^{\alpha - 1}} &: \alpha > 1, \end{cases}$$

for some C independent of f.

The following criterion for compactness follows from standard arguments similar to those outlined in Proposition 3.11 of [3] or in Lemma 3 of [10]. We omit the details.

Lemma 2.4. Let $q \in H(B)$ and φ be a holomorphic self-map of $B, 0 < \alpha, p, s < \infty$, $-n-1 < q < \infty, q+s > -1$. Then $V_{\varphi}^g : F(p,q,s) \to \mathcal{B}^{\alpha}$ is compact if and only if $V^g_{\omega}: F(p,q,s) \to \mathcal{B}^{\alpha}$ is bounded and for any bounded sequence $(f_k)_{k \in \mathbb{N}}$ in F(p,q,s)which converges to zero uniformly on compact subsets of B as $k \to \infty$, we have $\|V_{\varphi}^{g}f_{k}\|_{\mathcal{B}^{\alpha}} \to 0 \text{ as } k \to \infty.$

The next lemma was proved in [16] in the case of $\alpha = 1$ in the unit disk. For the general case the proof is similar, thus we omit the details (see, e.g. [7]).

Lemma 2.5. A closed set K in $\mathcal{B}_0^{\alpha}(B)$ is compact if and only if it is bounded and satisfies

$$\lim_{|z| \to 1} \sup_{f \in K} (1 - |z|^2)^{\alpha} |\Re f(z)| = 0.$$

3. Main results and proofs

Theorem 3.1. Let $g \in H(B)$ and φ be a holomorphic self-map of B, $0 < \alpha, p, s < \infty, -n-1 < q < \infty, q+s > -1$, p < n+1+q. Then $V_{\varphi}^g : F(p,q,s) \to \mathcal{B}^{\alpha}$ is bounded if and only if

(3.1)
$$\sup_{z \in B} \frac{(1-|z|^2)^{\alpha} |\Re g(z)|}{(1-|\varphi(z)|^2)^{\frac{n+1+q-p}{p}}} < \infty.$$

Moreover, the following relationship holds

(3.2)
$$\|V_{\varphi}^{g}\|_{F(p,q,s)\to\mathcal{B}^{\alpha}} \asymp \sup_{z\in B} \frac{(1-|z|^{2})^{\alpha}|\Re g(z)|}{(1-|\varphi(z)|^{2})^{\frac{n+1+q-p}{p}}}.$$

Proof. For $f \in H(B)$, note that $V^g_{\varphi}f(0) = 0$. By Lemmas 2.1, 2.2 and 2.3,

$$\begin{split} \|V_{\varphi}^{g}f\|_{\mathcal{B}^{\alpha}} &= \sup_{z \in B} (1 - |z|^{2})^{\alpha} |\Re(V_{\varphi}^{g}f)(z)| \\ &= \sup_{z \in B} (1 - |z|^{2})^{\alpha} |f(\varphi(z))| |\Re g(z)| \\ &\leq C \|f\|_{\mathcal{B}^{\frac{n+1+q}{p}}} \sup_{z \in B} \frac{(1 - |z|^{2})^{\alpha} |\Re g(z)|}{(1 - |\varphi(z)|^{2})^{\frac{n+1+q-p}{p}}} \\ &\leq C \|f\|_{F(p,q,s)} \sup_{z \in B} \frac{(1 - |z|^{2})^{\alpha} |\Re g(z)|}{(1 - |\varphi(z)|^{2})^{\frac{n+1+q-p}{p}}} \end{split}$$

Therefore (3.1) implies that $V_{\varphi}^{g}: F(p,q,s) \to \mathcal{B}^{\alpha}$ is bounded.

Conversely, suppose $V^{g}_{\varphi}: F(p,q,s) \to \mathcal{B}^{\alpha}$ is bounded. For $w \in B$, let

(3.3)
$$f_w(z) = \frac{1 - |\varphi(w)|^2}{(1 - \langle z, \varphi(w) \rangle)^{\frac{n+1+q}{p}}}.$$

It is easy to see that

(3.4)
$$f_w(\varphi(w)) = \frac{1}{(1 - |\varphi(w)|^2)^{\frac{n+1+q-p}{p}}}, \quad |\Re f_w(\varphi(w))| \asymp \frac{|\varphi(w)|^2}{(1 - |\varphi(w)|^2)^{\frac{n+1+q}{p}}}.$$

If $\varphi(w) = 0$ then $f_w \equiv 1$ obviously belongs to F(p, q, s). From [29] we know that $f_w \in F(p, q, s)$, moreover there is a positive constant K such that $\sup_{w \in B} ||f_w||_{F(p,q,s)} \leq K$. Therefore, for every $z \in B$,

(3.5)
$$(1-|z|^2)^{\alpha}|f_w(\varphi(z))\Re g(z)| = (1-|z|^2)^{\alpha}|\Re(V_{\varphi}^g f_w)(z)|$$
$$\leq \|V_{\varphi}^g f_w\|_{\mathcal{B}^{\alpha}} \leq K\|V_{\varphi}^g\|_{F(p,q,s)\to\mathcal{B}^{\alpha}}.$$

From this and (3.3), we get

$$\frac{(1-|w|^2)^{\alpha}|\Re g(w)|}{(1-|\varphi(w)|^2)^{\frac{n+1+q-p}{p}}} = (1-|w|^2)^{\alpha} |f_w(\varphi(w))\Re g(w) \le K \|V_{\varphi}^g\|_{F(p,q,s)\to\mathcal{B}^{\alpha}}.$$

from which (3.1) follows. From the above proof, we see that (3.2) holds. The proof is completed.

Theorem 3.2. Let $g \in H(B)$ and φ be a holomorphic self-map of B, $0 < \alpha, p, s < \infty$, $-n-1 < q < \infty$, q+s > -1, p < n+1+q. Then $V_{\varphi}^{g} : F(p,q,s) \to \mathcal{B}^{\alpha}$ is compact if and only if $g \in \mathcal{B}^{\alpha}$ and

(3.6)
$$\lim_{|\varphi(z)| \to 1} \frac{(1-|z|^2)^{\alpha} |\Re g(z)|}{(1-|\varphi(z)|^2)^{\frac{n+1+q-p}{p}}} = 0.$$

Proof. Assume $V_{\varphi}^{g} : F(p,q,s) \to \mathcal{B}^{\alpha}$ is compact. Then V_{φ}^{g} is bounded. Taking $f \equiv 1$, we get $g \in \mathcal{B}^{\alpha}$.

Let $\{\varphi(z_k)\}_{k\in\mathbb{N}}$ be a sequence in B such that $\lim_{k\to\infty} |\varphi(z_k)| = 1$. Define

$$f_k(z) = \frac{1 - |\varphi(z_k)|^2}{\left(1 - \langle z, \varphi(z_k) \rangle\right)^{\frac{n+1+q}{p}}}.$$

Then $f_k \in F(p, q, s)$, and f_k uniformly converges to zero on any compact subset of B. By Lemma 2.4, we have $\lim_{k\to\infty} \|V_{\varphi}^g(f_k)\|_{\mathcal{B}^{\alpha}} = 0.$

On the other hand, we have

$$\begin{split} \|V_{\varphi}^{g}f_{k}\|_{\mathcal{B}^{\alpha}} &= \sup_{z \in B} (1 - |z|^{2})^{\alpha} |\Re(V_{\varphi}^{g}f_{k})(z)| \\ &= \sup_{z \in B} (1 - |z|^{2})^{\alpha} |f_{k}(\varphi(z))| |\Re g(z)| \\ &\geq (1 - |z_{k}|^{2})^{\alpha} |f_{k}(\varphi(z_{k}))| |\Re g(z_{k})| \\ &= \frac{(1 - |z_{k}|^{2})^{\alpha}}{(1 - |\varphi(z_{k})|^{2})^{\frac{n+1+q}{p}}} |\Re g(z_{k})|. \end{split}$$

Therefore,

$$\lim_{k \to \infty} \frac{(1 - |z_k|^2)^{\alpha}}{(1 - |\varphi(z_k)|^2)^{\frac{n+1+q}{p}}} |\Re g(z_k)| = 0,$$

which implies that (3.6) holds.

Conversely, if $g \in \mathcal{B}^{\alpha}$ and (3.6) holds. From $g \in \mathcal{B}^{\alpha}$ and (3.6), we see that (3.1) holds. Hence $V_{\varphi}^{g} : F(p,q,s) \to \mathcal{B}^{\alpha}$ is bounded.

Let $\{f_k\}_{k\in\mathbb{N}}$ be a bounded sequence in F(p,q,s) with

$$\|f_k\|_{\mathcal{B}^{\frac{n+1+q}{p}}} \le \|f_k\|_{F(p,q,s)} \le M, \ k \in \mathbb{N}$$

and $f_k \to 0$ uniformly on any compact subset of B as $k \to \infty$. By Lemma 2.4, to show that the operator V_{φ}^g is compact, we only need to show

$$\lim_{k \to \infty} \|V_{\varphi}^g f_k\|_{\mathcal{B}^{\alpha}} = 0.$$

In fact, for any positive number ε , (3.6) implies that there is positive number $\delta < 1$, such that when $\delta < |\varphi(z)| < 1$, we have

(3.7)
$$\frac{(1-|z|^2)^{\alpha}|\Re g(z)|}{(1-|\varphi(z)|^2)^{\frac{n+1+q-p}{p}}} < \varepsilon$$

Let $B_{\delta} = \{ w \in B : |w| \leq \delta \}$. (3.7) together with the fact that $g \in \mathcal{B}^{\alpha}$ show that $\|V_{\varphi}^{g}f_{k}\|_{\mathcal{B}^{\alpha}} = \sup_{z \in B} (1 - |z|^{2})^{\alpha} |\Re(V_{\varphi}^{g}f_{k})(z)|$ $= \sup_{z \in B} (1 - |z|^{2})^{\alpha} |f_{k}(\varphi(z))| |\Re g(z)|$

$$\leq \left(\sup_{\{z\in B: |\varphi(z)|\leq\delta\}} + \sup_{\{z\in B:\delta<|\varphi(z)|<1\}}\right) (1-|z|^2)^{\alpha} |f_k(\varphi(z))| |\Re g(z)|$$

$$\leq \|g\|_{\mathcal{B}^{\alpha}} \sup_{w\in B_{\delta}} |f_k(w)| + \sup_{\{z\in B:\delta<|\varphi(z)|<1\}} (1-|z|^2)^{\alpha} |f_k(\varphi(z))| |\Re g(z)|$$

$$\leq \|g\|_{\mathcal{B}^{\alpha}} \sup_{w\in B_{\delta}} |f_k(w)| + C \|f_k\|_{\mathcal{B}^{\frac{n+1+q}{p}}} \sup_{\{z\in B:\delta<|\varphi(z)|<1\}} \frac{(1-|z|^2)^{\alpha} |\Re g(z)|}{(1-|\varphi(z)|^2)^{\frac{n+1+q-p}{p}}}$$

$$\leq \|g\|_{\mathcal{B}^{\alpha}} \sup_{w\in B_{\delta}} |f_k(w)| + CM\varepsilon.$$

Note the compactness of the B_{δ} , we have

$$\lim_{k \to \infty} \sup_{w \in B_{\delta}} |f_k(w)| = 0.$$

Hence $\lim_{k\to\infty} \|V_{\varphi}^g f_k\|_{\mathcal{B}^{\alpha}} \leq CM\varepsilon$, i.e. we obtain

$$\lim_{k \to \infty} \|V_{\varphi}^g f_k\|_{\mathcal{B}^{\alpha}} = 0.$$

Therefore $V_{\varphi}^g: F(p,q,s) \to \mathcal{B}^{\alpha}$ is compact. The proof is completed.

Theorem 3.3. Let $g \in H(B)$ and φ be a holomorphic self-map of B, $0 < \alpha, p, s < \infty, -n-1 < q < \infty, q+s > -1$, p < n+1+q. Then the following statements are equivalent:

 $\begin{array}{ll} \text{(i)} & V^g_\varphi: F(p,q,s) \to \mathcal{B}^\alpha_0 \ is \ compact.\\ \text{(ii)} & g \in \mathcal{B}^\alpha_0 \ and \end{array}$

(3.8)
$$\lim_{|\varphi(z)| \to 1} \frac{(1-|z|^2)^{\alpha} |\Re g(z)|}{(1-|\varphi(z)|^2)^{\frac{n+1+q-p}{p}}} = 0.$$

(iii)

(3.9)
$$\lim_{|z|\to 1} \frac{(1-|z|^2)^{\alpha} |\Re g(z)|}{(1-|\varphi(z)|^2)^{\frac{n+1+q-p}{p}}} = 0.$$

Proof. (i) \Rightarrow (ii). Assume $V_{\varphi}^g : F(p,q,s) \to \mathcal{B}_0^{\alpha}$ is compact. Taking $f \equiv 1$, we get $g \in \mathcal{B}_0^{\alpha}$. By the compactness of $V_{\varphi}^g : F(p,q,s) \to \mathcal{B}_0^{\alpha}$, we see that $V_{\varphi}^g : F(p,q,s) \to \mathcal{B}^{\alpha}$ is compact and hence is bounded. Theorem 3.2 implies that (3.8) holds.

(ii) \Rightarrow (iii). Assume that $g \in \mathcal{B}_0^{\alpha}$ and (3.8) holds. For every $\varepsilon > 0$, there exists a $t \in (0, 1)$ such that

$$\frac{(1-|z|^2)^{\alpha}|\Re g(z)|}{(1-|\varphi(z)|^2)^{\frac{n+1+q-p}{p}}} < \varepsilon$$

when $t < |\varphi(z)| < 1$. Moreover there exists a $r \in (0, 1)$ such that when r < |z| < 1,

$$(1-|z|^2)^{\alpha}|\Re g(z)| < \frac{\varepsilon}{(1-t^2)^{\frac{n+1+q-p}{p}}}$$

Therefore, when r < |z| < 1 and $t < |\varphi(z)| < 1$, we have

$$\frac{(1-|z|^2)^{\alpha}|\Re g(z)|}{(1-|\varphi(z)|^2)^{\frac{n+1+q-p}{p}}} < \varepsilon.$$

When r < |z| < 1 and $|\varphi(z)| \le t$, we obtain

$$\frac{(1-|z|^2)^{\alpha}|\Re g(z)|}{(1-|\varphi(z)|^2)^{\frac{n+1+q-p}{p}}} < \frac{\varepsilon}{(1-t^2)^{\frac{n+1+q-p}{p}}} (1-t^2)^{\frac{n+1+q-p}{p}} = \varepsilon.$$

In a word, for every $\varepsilon > 0$, there exists a $r \in (0, 1)$, when r < |z| < 1 we have

$$\frac{(1-|z|^2)^{\alpha}|\Re g(z)|}{(1-|\varphi(z)|^2)^{\frac{n+1+q-p}{p}}} < \varepsilon_{1}$$

which implies that (3.9) holds.

(iii) \Rightarrow (i). If (3.9) holds. From Lemma 2.5, we know that $V_{\varphi}^{g}: F(p,q,s) \to \mathcal{B}_{0}^{\alpha}$ is compact if and only if

(3.10)
$$\lim_{|z|\to 1} \sup_{\|f\|_{F(p,q,s)} \le 1} (1-|z|^2)^{\alpha} |\Re(V_{\varphi}^g f)(z)| = 0.$$

On the other hand, by Lemmas 2.1, 2.2 and 2.3, we have that

(3.11)
$$(1 - |z|^2)^{\alpha} |\Re(V_{\varphi}^g f)(z)| \leq \frac{C(1 - |z|^2)^{\alpha} |\Re(z)| ||f||_{F(p,q,s)}}{(1 - |\varphi(z)|^2)^{\frac{q+n+1-p}{p}}}$$

Taking the supremum (sup) in (3.11) over the unit ball in the space F(p, q, s), and letting $|z| \to 1$, by (3.9) we see that (3.10) holds and hence $V_{\varphi}^{g}: F(p, q, s) \to \mathcal{B}_{0}^{\alpha}$ is compact. The proof is completed.

Theorem 3.4. Let $g \in H(B)$ and φ be a holomorphic self-map of B, $0 < \alpha, p, s < \infty, -n-1 < q < \infty, q+s > -1, p > n+1+q$. Then $V_{\varphi}^{g} : F(p,q,s) \to \mathcal{B}^{\alpha}$ is bounded if and only if $g \in \mathcal{B}^{\alpha}$.

Moreover, the following relationship holds

(3.12)
$$\|V_{\varphi}^{g}\|_{F(p,q,s)\to\mathcal{B}^{\alpha}} \asymp \|g\|_{\mathcal{B}^{\alpha}}.$$

Proof. For $f \in H(B)$, note that $V^g_{\varphi}f(0) = 0$. By Lemmas 2.1, 2.2 and 2.3, we have

$$\begin{split} \|V_{\varphi}^{g}f\|_{\mathcal{B}^{\alpha}} &= \sup_{z \in B} (1 - |z|^{2})^{\alpha} |\Re(V_{\varphi}^{g}f)(z)| \\ &= \sup_{z \in B} (1 - |z|^{2})^{\alpha} |f(\varphi(z))| |\Re g(z)| \\ &\leq C \|f\|_{\mathcal{B}^{\frac{n+1+q}{p}}} \sup_{z \in B} (1 - |z|^{2})^{\alpha} |\Re g(z)| \\ &\leq C \|f\|_{F(p,q,s)} \sup_{z \in B} (1 - |z|^{2})^{\alpha} |\Re g(z)|, \end{split}$$

By $g \in \mathcal{B}^{\alpha}$, we have that $V_{\varphi}^{g}: F(p,q,s) \to \mathcal{B}^{\alpha}$ is bounded.

Conversely, suppose $V_{\varphi}^{g}: F(p,q,s) \to \mathcal{B}^{\alpha}$ is bounded. Taking f(z) = 1, then

$$(1-|z|^2)^{\alpha}|f_w(\varphi(z))\Re g(z)| = (1-|z|^2)^{\alpha}|\Re(V_{\varphi}^g f_w)(z)|$$

$$\leq \|V_{\varphi}^g f_w\|_{\mathcal{B}^{\alpha}} \leq K \|V_{\varphi}^g\|_{F(p,q,s)\to\mathcal{B}^{\alpha}},$$

which implies $g \in \mathcal{B}^{\alpha}$. From the above proof, we see that (3.12) holds. The proof is completed.

Theorem 3.5. Let $g \in H(B)$ and φ be a holomorphic self-map of B, $0 < \alpha, p, s < \infty$, $-n-1 < q < \infty$, q+s > -1, p > n+1+q. Then $V_{\varphi}^{g} : F(p,q,s) \to \mathcal{B}^{\alpha}$ is compact if and only if $g \in \mathcal{B}^{\alpha}$.

Proof. Assume $V_{\varphi}^{g} : F(p,q,s) \to \mathcal{B}^{\alpha}$ is compact, and then V_{φ}^{g} is bounded. By Theorem 3.4, we get $g \in \mathcal{B}^{\alpha}$.

Conversely, assume that $g \in \mathcal{B}^{\alpha}$. By Theorem 3.4 we see that $V_{\varphi}^{g} : F(p,q,s) \to \mathcal{B}^{\alpha}$ is bounded. Let $(f_{k})_{k \in \mathbb{N}}$ be any bounded sequence in F(p,q,s) and $f_{k} \to 0$ uniformly on B as $k \to \infty$. Similarly to the proof of Lemma 4 and Theorem 12 of [35], we have

$$\|V_{\varphi}^g f_k\|_{\mathcal{B}^{\alpha}} = \sup_{z \in B} (1 - |z|^2)^{\alpha} |f_k(\varphi(z)) \Re g(z)| \le \|g\|_{\mathcal{B}^{\alpha}} \sup_{z \in B} |f_k(\varphi(z))| \to 0,$$

as $k \to \infty$, which implies the desired result.

Theorem 3.6. Let $g \in H(B)$ and φ be a holomorphic self-map of B, $0 < \alpha, p, s < \infty, -n-1 < q < \infty, q+s > -1, p > n+1+q$. Then the following statements are equivalent:

(i) $V_{\varphi}^{g}: F(p,q,s) \to \mathcal{B}_{0}^{\alpha}$ is compact. (ii) $V_{\varphi}^{g}: F(p,q,s) \to \mathcal{B}_{0}^{\alpha}$ is bounded. (iii) $g \in \mathcal{B}_{0}^{\alpha}$.

Proof. (i) \Rightarrow (ii) is obvious.

(ii) \Rightarrow (iii). If $V_{\omega}^g: F(p,q,s) \to \mathcal{B}_0^{\alpha}$ is bounded. Taking $f \equiv 1$, we get $g \in \mathcal{B}_0^{\alpha}$.

 $(iii) \Rightarrow (i)$. With little modifying the proof of $(iii) \Rightarrow (i)$ in Theorem 3.3, we can get the desired result. The proof is completed.

Theorem 3.7. Let $g \in H(B)$ and φ be a holomorphic self-map of B, $0 < \alpha, p, s < \infty, -n-1 < q < \infty, q+s > -1, p = n+1+q$. Then $V_{\varphi}^g : F(p,q,s) \to \mathcal{B}^{\alpha}$ is bounded if and only if

(3.13)
$$\sup_{z \in B} (1 - |z|^2)^{\alpha} |\Re g(z)| \ln \frac{e}{1 - |\varphi(z)|^2} < \infty.$$

Moreover, the following relationship holds

(3.14)
$$\|V_{\varphi}^{g}\|_{F(p,q,s)\to\mathcal{B}^{\alpha}} \asymp \sup_{z\in B} (1-|z|^{2})^{\alpha} |\Re g(z)| \ln \frac{e}{1-|\varphi(z)|^{2}}.$$

Proof. For $f \in H(B)$, by Lemmas 2.1, 2.2 and 2.3, we have

$$\begin{split} \|V_{\varphi}^{g}f\|_{\mathcal{B}^{\alpha}} &= \sup_{z \in B} (1 - |z|^{2})^{\alpha} |f(\varphi(z))| |\Re g(z)| \\ &\leq C \|f\|_{\mathcal{B}^{\frac{n+1+q}{p}}} \sup_{z \in B} (1 - |z|^{2})^{\alpha} |\Re g(z)| \ln \frac{e}{1 - |\varphi(z)|^{2}} \\ &\leq C \|f\|_{F(p,q,s)} \sup_{z \in B} (1 - |z|^{2})^{\alpha} |\Re g(z)| \ln \frac{e}{1 - |\varphi(z)|^{2}} \end{split}$$

By (3.13) we see that $V_{\varphi}^{g}: F(p,q,s) \to \mathcal{B}^{\alpha}$ is bounded.

Conversely, suppose $V_{\varphi}^{g}: F(p,q,s) \to \mathcal{B}^{\alpha}$ is bounded. For $w \in B$, let

(3.15)
$$f_w(z) = \ln \frac{e}{1 - \langle z, \varphi(w) \rangle}$$

From [29] we know that $f_w \in F(p,q,s)$, moreover there is a positive constant K such that $\sup_{w \in B} ||f_w||_{F(p,q,s)} \leq K$. Therefore, for every $z \in B$

(3.16)
$$(1-|z|^2)^{\alpha}|f_w(\varphi(z))\Re g(z)| = (1-|z|^2)^{\alpha}|\Re(V_{\varphi}^g f_w)(z)|$$
$$\leq \|V_{\varphi}^g f_w\|_{\mathcal{B}^{\alpha}} \leq K\|V_{\varphi}^g\|_{F(p,q,s)\to\mathcal{B}^{\alpha}}.$$

Therefore

(3.17)
$$(1 - |w|^2)^{\alpha} |\Re g(w)| \ln \frac{e}{1 - |\varphi(w)|^2} = (1 - |w|^2)^{\alpha} |f_w(\varphi(w)) \Re g(w)|$$

$$\leq K \|V_{\varphi}^g\|_{F(p,q,s) \to \mathcal{B}^{\alpha}},$$

which implies (3.13). From the above proof, we see that (3.14) holds. The proof is completed.

Theorem 3.8. Let $g \in H(B)$ and φ be a holomorphic self-map of B, $0 < \alpha, p, s < \infty, -n-1 < q < \infty, q+s > -1, p = n+1+q$. Then $V_{\varphi}^g : F(p,q,s) \to \mathcal{B}^{\alpha}$ is compact if and only if $g \in \mathcal{B}^{\alpha}$ and

(3.18)
$$\lim_{|\varphi(z)| \to 1} (1 - |z|^2)^{\alpha} |\Re g(z)| \ln \frac{e}{1 - |\varphi(z)|^2} = 0.$$

Proof. Since the sufficiency part is similar to the proof of Theorem 3.2, we omit the details.

Now we prove the necessity part. Assume that $V_{\varphi}^g : F(p,q,s) \to \mathcal{B}^{\alpha}$ is compact. Then V_{φ}^g is bounded. Taking $f \equiv 1$, by the boundedness of V_{φ}^g , we get that $g \in \mathcal{B}^{\alpha}$.

Let $\{\varphi(z_k)\}_{k\in N}$ be a sequence in B such that $\lim_{k\to\infty} |\varphi(z_k)| = 1$. Define

$$f_k(z) = \left(\ln \frac{e}{1 - \langle z, \varphi(z_k) \rangle}\right)^2 \left(\ln \frac{e}{1 - |\varphi(z_k)|^2}\right)^{-1}$$

Then $f_k \in F(p,q,s)$ and f_k uniformly converges to zero on any compact subset of B. By Lemma 2.4, we have $\lim_{k\to\infty} \|V^g_{\varphi}(f_k)\|_{\mathcal{B}^{\alpha}} = 0.$

On the other hand, we have

$$\begin{split} \|V_{\varphi}^{g}f_{k}\|_{\mathcal{B}^{\alpha}} &= \sup_{z \in B} (1 - |z|^{2})^{\alpha} |\Re(V_{\varphi}^{g}f_{k})(z)| \\ &= \sup_{z \in B} (1 - |z|^{2})^{\alpha} |f_{k}(\varphi(z))| |\Re g(z)| \\ &\geq (1 - |z_{k}|^{2})^{\alpha} |f_{k}(\varphi(z_{k}))| |\Re g(z_{k})| \\ &= (1 - |z_{k}|^{2})^{\alpha} |\Re g(z_{k})| \ln \frac{e}{1 - |\varphi(z_{k})|^{2}}. \end{split}$$

Therefore,

$$\lim_{k \to \infty} (1 - |z_k|^2)^{\alpha} |\Re g(z_k)| \ln \frac{e}{1 - |\varphi(z_k)|^2} = 0$$

which implies that (3.18) holds. The proof is completed.

Theorem 3.9. Let $g \in H(B)$ and φ be a holomorphic self-map of B, $0 < \alpha, p, s < \infty, -n-1 < q < \infty, q+s > -1, p = n+1+q$. Then the following statements are equivalent:

(i) $V_{\varphi}^{g}: F(p,q,s) \to \mathcal{B}_{0}^{\alpha}$ is compact. (ii) $g \in \mathcal{B}_{0}^{\alpha}$ and

(3.19)
$$\lim_{|\varphi(z)| \to 1} (1 - |z|^2)^{\alpha} |\Re g(z)| \ln \frac{e}{1 - |\varphi(z)|^2} = 0.$$

(3.20)
$$\lim_{|z| \to 1} (1 - |z|^2)^{\alpha} |\Re g(z)| \ln \frac{e}{1 - |\varphi(z)|^2} = 0.$$

Proof. The proof is similar to the proof of Theorem 3.3. We omit the details.

References

- K. Avetisyan and S. Stević, Extended Cesàro operators between different Hardy spaces, Appl. Math. Comput. 207 (2009), no. 2, 346–350.
- [2] D.-C. Chang, S. Li and S. Stević, On some integral operators on the unit polydisk and the unit ball, *Taiwanese J. Math.* **11** (2007), no. 5, 1251–1285.
- [3] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC, Boca Raton, FL, 1995.
- [4] Z. Hu, Extended Cesàro operators on mixed norm spaces, Proc. Amer. Math. Soc. 131 (2003), no. 7, 2171–2179 (electronic).
- [5] Z. Hu, Extended Cesáro operators on the Bloch space in the unit ball of Cⁿ, Acta Math. Sci. Ser. B Engl. Ed. 23 (2003), no. 4, 561–566.
- [6] Z. Hu, Extended Cesàro operators on Bergman spaces, J. Math. Anal. Appl. 296 (2004), no. 2, 435–454.
- [7] S. Li, Riemann-Stieltjes operators from F(p,q,s) spaces to α-Bloch spaces on the unit ball, J. Inequal. Appl. 2006, Art. ID 27874, 14 pp.
- [8] S. Li, Volterra composition operators between weighted Bergman spaces and Bloch type spaces, J. Korean Math. Soc. 45 (2008), no. 1, 229–248.
- [9] S. Li and S. Stević, Integral type operators from mixed-norm spaces to α-Bloch spaces, Integral Transforms Spec. Funct. 18 (2007), no. 7-8, 485–493.
- [10] S. Li and S. Stević, Riemann-Stieltjes-type integral operators on the unit ball in Cⁿ, Complex Var. Elliptic Equ. 52 (2007), no. 6, 495–517.
- [11] S. Li and S. Stević, Riemann-Stieltjes operators on Hardy spaces in the unit ball of Cⁿ, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 4, 621–628.
- [12] S. Li and S. Stević, Riemann-Stieltjes operators between different weighted Bergman spaces, Bull. Belg. Math. Soc. Simon Stevin 15 (2008), no. 4, 677–686.
- [13] S. Li and S. Stević, Riemann-Stieltjes operators between mixed norm spaces, *Indian J. Math.* 50 (2008), no. 1, 177–188.
- [14] S. Li and S. Stević, Compactness of Riemann-Stieltjes operators between F(p,q,s) spaces and α -Bloch spaces, *Publ. Math. Debrecen* **72** (2008), no. 1-2, 111–128.
- [15] S. Li and S. Stević, Cesàro-type operators on some spaces of analytic functions on the unit ball, Appl. Math. Comput. 208 (2009), no. 2, 378–388.
- [16] K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc. 347 (1995), no. 7, 2679–2687.
- [17] A. Montes-Rodríguez, The Pick-Schwarz lemma and composition operators on Bloch spaces, *Rend. Circ. Mat. Palermo (2) Suppl.* **1998**, no. 56, 167–170.
- [18] A. Montes-Rodríguez, The essential norm of a composition operator on Bloch spaces, *Pacific J. Math.* 188 (1999), no. 2, 339–351.
- [19] A. Montes-Rodríguez, A. Rodríguez-Martínez and S. Shkarin, Spectral theory of Volterracomposition operators, *Math. Z.* 261 (2009), no. 2, 431–472.
- [20] C. Ouyang, W. Yang and R. Zhao, Möbius invariant Q_p spaces associated with the Green's function on the unit ball of \mathbb{C}^n , *Pacific J. Math.* **182** (1998), no. 1, 69–99.
- [21] S. Stević, On an integral operator on the unit ball in \mathbb{C}^n , J. Inequal. Appl. 2005, no. 1, 81–88.
- [22] S. Stević, On a new operator from H^{∞} to the Bloch-type space on the unit ball, *Util. Math.* **77** (2008), 257–263.
- [23] S. Stević, On a new integral-type operator from the weighted Bergman space to the Bloch-type space on the unit ball, *Discrete Dyn. Nat. Soc.* 2008, Art. ID 154263, 14 pp.
- [24] S. Stević, On a new operator from the logarithmic Bloch space to the Bloch-type space on the unit ball, Appl. Math. Comput. 206 (2008), no. 1, 313–320.
- [25] S. Stević, On a new integral-type operator from the Bloch space to Bloch-type spaces on the unit ball, J. Math. Anal. Appl. 354 (2009), no. 2, 426–434.
- [26] X. Tang, Extended Cesàro operators between Bloch-type spaces in the unit ball of Cⁿ, J. Math. Anal. Appl. 326 (2007), no. 2, 1199–1211.

- [27] J. Xiao, Riemann-Stieltjes operators on weighted Bloch and Bergman spaces of the unit ball, J. London Math. Soc. (2) 70 (2004), no. 1, 199–214.
- [28] W. Yang, On an integral-type operator between Bloch-type spaces, Appl. Math. Comput. 215 (2009), no. 3, 954–960.
- [29] X. J. Zhang, Chinese Ann. Math. Ser. A 26 (2005), no. 4, 477–486; translation in Chinese J. Contemp. Math. 26 (2005), no. 3, 249–258.
- [30] R. Zhao, On a general family of function spaces, Ann. Acad. Sci. Fenn. Math. Diss. No. 105 (1996), 56 pp.
- [31] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics, 226, Springer, New York, 2005.
- [32] X. Zhu, Integral-type operators from iterated logarithmic Bloch spaces to Zygmund-type spaces, Appl. Math. Comput. 215 (2009), no. 3, 1170–1175.
- [33] X. Zhu, Generalized composition operators and Volterra composition operators on Bloch spaces in the unit ball, *Complex Var. Elliptic Equ.* 54 (2009), no. 2, 95–102.
- [34] X. Zhu, Volterra composition operators on logarithmic Bloch spaces, Banach J. Math. Anal. 3 (2009), no. 1, 122–130.
- [35] X. Zhu, Volterra composition operators from generalized weighted Bergman spaces to μ-Bloch spaces, J. Funct. Spaces Appl. 7 (2009), no. 3, 225–240.
- [36] X. Zhu, Extended Cesàro operators from H[∞] to Zygmund type spaces in the unit ball, J. Comput. Anal. Appl. 11 (2009), no. 2, 356–363.
- [37] X. Zhu, Volterra composition operators from weighted-type spaces to Bloch-type spaces and mixed norm spaces, *Math. Ineq. Appl.* 14 (2011), no. 1, 223–233.