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Abstract. Let H(B) denote the space of all holomorphic functions on the unit
ball B C C". Let ¢ be a holomorphic self-map of B and g € H(B). In this paper,
we investigate the boundedness and compactness of the Volterra composition
operator

1 dt
Ven@ = [ reum T,
which map from general function space F'(p, g, s) to Bloch-type space B* in the
unit ball.
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1. Introduction
Let z = (21,...,2,) and w = (wy, ..., w,) be points in the complex vector space C"
and

(z,w) = z1W1 + - - + 2pW,.

Let dv stand for the normalized Lebesgue measure on C". For a holomorphic function

f we denote
of of
Vi=|=—",...,2— .
Let H(B) denote the class of all holomorphic functions on the unit ball. Let
Rf(z) =352 zjg—i(z) stand for the radial derivative of f € H(B) (see [31]). It is
easy to see that, if f € H(B), f(z) = )_, aaz®, where a is a multi-index, then

Rf(z) = Z |oaz®.
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For « > 0, the Bloch-type space (or a-Bloch space) B* = B*(B), is the space of
all f € H(B) such that
ba(f) = sup(1 — |2*)* [Rf(2)]| < oc.

zEB

On B® the norm is introduced by
Lf 11 = 1f(0)] + ba ().

With this norm B is a Banach space. Let By denote the subspace of B consisting
of those f € B* such that

ﬂm (1- \Z| )X IRf(2)] =

This function space is called little Bloch-type space. If a = 1, we denote B¢ simply
by B, which is the well-known classical Bloch space.

Let 0 < p,s <00, —n— 1 < ¢ < 0o. A function f € H(B) is said to belong to
general function space F(p,q, s) = F(p,q, s)(B) (see, e.g. [7,29,30]) if

7. = FOF + sup / VAP = [22)7g° (2, a)dv () < o,

where g(z,a) = log|p,(2)| 7! is the Green’s function for B with logarithmic singu-
larity at a.

We call F(p,q, s) general function space because we can get many function spaces,
such as BMOA space, Q,, space (see [20]), Bergman space, Hardy space, Bloch space,
if we take special parameters of p, q, s (see, e.g. [30]). If ¢ + s < —1, then F(p,q, s)
is the space of constant functions.

Suppose that g : B — C! is a holomorphic map of the unit ball, for a f € H(B),

define

(1.1) / f( tz dt / f(tz)Rg tz)dt z € B.

This operator is called Riemann-Stieltjes operator (or Extended-Cesaro operator).
It was introduced in [4], and studied in [1,2,4-7,9-15,21,26,27,32, 36].

A product of Riemann-Stieltjes operator T, and composition operator C, is de-
fined as follows:

(1.2) VIf(z /f (tz)) dt /f (tz)) §Rg(tz) 7fGH( ),

which is called Volterra composition operator and studied in [19, 33-35,37]. See
[22-25, 28] for the boundedness and compactness of a related operator on some
holomorphic function spaces in the unit ball. In the case of n = 1, this operator has
form

(1.3) VIf(e / Flolt2)g (t2) t, feH(D), z €D,

which was introduced in [8]. See [3,16-18] for the study of composition operators
on Bloch spaces.

The purpose of this paper is to study the boundedness and compactness of the
Volterra composition operators VJ from F (p, q, s) to the Bloch-type space.
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In this paper, constants are denoted by C, they are positive and may differ from
one occurrence to the other. a < b means that there is a positive constant C' such
that a < Cb. Moreover, if both a < b and b < a hold, then one says that a < b.

2. Auxiliary results

In order to prove our results, we need some auxiliary results which are incorporated
in the following lemmas.

Lemma 2.1. Let ¢ be a holomorphic self-map of B. For every f,g € H(B), it holds
(2.1) RIVZ(N)](2) = fe(2))Rg(2)

Proof. We use the method of [4]. Assume that the holomorphic function f o Ry
has the expansion ) aq2®. Then

RIVE(HN(=) = RIT(f o o) éR/ > aalt?) —fﬁRZfoj] =3 e,

which is what we wanted. 1

Lemma 2.2. [29] For0 <p,s < oo, -n—1<g< oo, q+s>—1,if f € F(p,q,s),
ntle

then fe€e B~ 7  and
(2.2) 1] jntrza < ClFlE@,g,0)-

The following lemma can be found in [21].
Lemma 2.3. If f € B, then

£ (0 )|+Hf||6a D 0<ac<l;
sel<ed O+ fls ity ¢ a=1
| £(0 )|+(1_”‘fz“% oa>1,

for some C independent of f.

The following criterion for compactness follows from standard arguments similar
to those outlined in Proposition 3.11 of [3] or in Lemma 3 of [10]. We omit the
details.

Lemma 2.4. Let g € H(B) and ¢ be a holomorphic self-map of B, 0 < a,p, s < 00,
-n—1<qg<o0,q+s>—1. Then VJ: F(p,q,s) — B* is compact if and only if
V& F(p,q,s) — B is bounded and for any bounded sequence (fx)ren in F(p,q,s)
which converges to zero uniformly on compact subsets of B as k — oo, we have
IVE frllge — 0 as k — oo.

The next lemma was proved in [16] in the case of o = 1 in the unit disk. For the
general case the proof is similar, thus we omit the details (see, e.g. [7]).

Lemma 2.5. A closed set K in B§(B) is compact if and only if it is bounded and
satisfies

lim sup (1 - |2*)*[Rf ()| =

l2]—1 feK
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3. Main results and proofs

Theorem 3.1. Let g € H(B) and ¢ be a holomorphic self-map of B, 0 < a,p, s <
00, n—-1<qg<oo,qg+s>-1,p<n+1+q. ThenVJ: F(p,q,s) — B* is
bounded if and only if

(3.1) sup L1 o)
B (1—|p()2) =

Moreover, the following relationship holds

(1= |2[*)*Rg(2)|
(3.2) ||V HF(p q,s)—Be = Sup ntita—p *

=€B (1 — |o(2)]?)
Proof. For f € H(B), note that V¢ f(0) = 0. By Lemmas 2.1, 2.2 and 2.3,

IV flls = jgg(l — ) IR(VEH) ()]
= jlelg(l — 21 £ (2(2))][Rg(2)]
(1= [21*)*[Rg(2)]

< CHfH n+1+q sup

<5 (1—[p(2)|?) 5
< Ol p = ETREL
5 (1= le(2)) 7

Therefore (3.1) implies that V¢ : F(p,q,s) — B* is bounded.
Conversely, suppose VJ : F/(p,q,s) — B is bounded. For w € B, let

(3.3) fule) = — 2=l

(1= (z,0(w))) >

It is easy to see that

1 lo(w)|?
(3'4) fw( (w)) = ntita—p |§wa( (w))| = ntitq
T ) 7 1 - [pw)?)

If o(w) = 0 then f,, = 1 obviously belongs to F(p, g, s). From [29] we know that f,, €
F(p,q,s), moreover there is a positive constant K such that sup,ep ||fwllF(p.q.5)
< K. Therefore, for every z € B,

(1= |2[) ] fu(e(2))Rg(2)] = (1 = [2])*R(VE fu) (2)]
(3.5) S NVifwlse < KNIV F@p.g,s)—Be-

From this and (3.3), we get

(
(4= iy )
RO _ (1 o) Fu o)) Rg(w) < KV rpug) -t
(1~ Jp(w)?) A Fra =8
1

from which (3.1) follows. From the above proof, we see that (3.2) holds. The proof
is completed. 1




Volterra Composition Operators 271

Theorem 3.2. Let g € H(B) and ¢ be a holomorphic self-map of B, 0 < a,p, s <
00, n—-1<qg<oo,qg+s>-1,p<n+1+q. ThenVJ: F(p,q,s) — B* is
compact if and only if g € B* and
1—[z)* R
(3.6) lim =120 |nfl(fq)Jp —0
@=L (1 —Jp(2)[2) >
Proof. Assume VJ : F(p,q,s) — B is compact. Then VJ is bounded. Taking
f=1, weget g € B
Let {¢(zk) }ren be a sequence in B such that limy_. |¢(2)| = 1. Define
1 —|p(ze)
fk(Z - ntitq
(1= (z,0(2k))
Then fr € F(p,q,s), and fi uniformly converges to zero on any compact subset of
B. By Lemma 2.4, we have limy . [|[VZ(fk)|l5« = 0.
On the other hand, we have

IVE felle = fgg(l — [z IRV fi) (2)]
= jlelg(l — 1212)* fe(0(2))|[Rg(2)|

> (1 = lal*)* | fi((20)) IR (2]

(=l )::ﬂ 1Rg(z1)]-
(1= lp(zr)?)

) 1— 2k 2\«
lim ( I | )n+1+q ‘?Rg(Zk” =0,

P (1= Jo(zi)?) 7
which implies that (3.6) holds.
Conversely, if g € B* and (3.6) holds. From g € B* and (3.6), we see that (3.1)
holds. Hence V¢ : F(p,q,s) — B is bounded.
Let {fx}ren be a bounded sequence in F(p, ¢, s) with

I fell jmsaa < [ fillppa) < M, kEN,

Therefore,

and fr — 0 uniformly on any compact subset of B as k — oco. By Lemma 2.4, to
show that the operator V¢ is compact, we only need to show

Tim V2 i = 0.
In fact, for any positive number &, (3.6) implies that there is positive number ¢ < 1,
such that when § < |p(2)| < 1, we have
(1 = |2[*)*[Rg ()]
ntlt+qg—p
(I=le(2)]?)
Let Bs = {w € B : |w| < 4}. (3.7) together with the fact that g € B show that

IV el = flelg(l = 1) IR(VE i) (2)]

= Z‘lelg(l = 12%)° 1 fie(0(2) 1 Rg(2)]

(3.7)
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(s s - ) (e(2)Re(2)]
{2€B:|p(2)|<8}  {2€B:5<|p(2)|<1}

< llglls sup |fx(w)] + sup (1= 22| fu(p(2))]Rg(2)]
wEBs {z€B:6<|p(2)|<1}

(1= [2[)*[Rg ()]

< llgllse sup [f(w)] + Clifall niria sup i
wE Bs B P freB:5<|p(z)|<1} (1 — ‘(p(z)P) P

<llgllg> sup |fi(w)| + CMe.
weEBs

Note the compactness of the Bs, we have

lim sup |fr(w)| =0.

k—00 e Bj

Hence limy. ||V fil[e < CMe, i.e. we obtain
1. Vg a = O
i [V fills
Therefore V{ : F(p,q,s) — B is compact. The proof is completed. 1

Theorem 3.3. Let g € H(B) and ¢ be a holomorphic self-map of B, 0 < a,p, s <
00, n—1<qg<oo,q+s>—1,p<n+1+4+q. Then the following statements are
equivalent:
(i) V¢ :F(p,q,s) — Bg is compact.
(ii) g € B and
(1 - [2[*)*[Rg()|

3.8 lim i =0
. (PRI (1= (=) 5

(iii)
39) i L= PR
=1 (1 — Jp(2)]2) 7"

Proof. (i)=(ii). Assume V : F'(p,q,s) — B is compact. Taking f =1, we get g €
B. By the compactness of V¢ : F(p,q,s) — Bf, we see that V. : F(p,q,s) — B*
is compact and hence is bounded. Theorem 3.2 implies that (3.8) holds.

(ii)=-(iii). Assume that g € By and (3.8) holds. For every ¢ > 0, there exists a
t € (0,1) such that

(1= [2[)*[Rg ()]
nt+ltg—p
(1 =le()P) >
when ¢ < |¢(z)| < 1. Moreover there exists a r € (0,1) such that when r < |z| < 1,

3
(1= |2 Rg(2)] < —— s
(1-2)"%

Therefore, when r < |z| < 1 and ¢ < |p(2)| < 1, we have
(1= [2[)*[Rg ()]

ntl4+qg—p

(I =le())
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When r < |z| < 1 and |¢(2)| < t, we obtain

(1= [2") Ry 2)] £ g
L A (RO

In a word, for every € > 0, there exists a r € (0,1), when r < |z| < 1 we have

(1~ [2[2)° g )|
ntltq—p )
(I—=le(z)?)

which implies that (3.9) holds.

(iii)=-(i). If (3.9) holds. From Lemma 2.5, we know that V¢ : F(p,q,s) — By is
compact if and only if
(3.10) lim sup  (1-— |z|2)“|%(ng)(z)| =0.

=l 0,0 <1
On the other hand, by Lemmas 2.1, 2.2 and 2.3, we have that
(1 = 2[R 1 f | £ pya.)
EE e :

(1 =le(2)]?) ™
Taking the supremum (sup) in (3.11) over the the unit ball in the space F(p, g, s),
and letting |z| — 1, by (3.9) we see that (3.10) holds and hence V : F(p,q,s) — Bg
is compact. The proof is completed. 1

C
(3.11) (1= 2 RVIN()] <

Theorem 3.4. Let g € H(B) and ¢ be a holomorphic self-map of B, 0 < a,p, s <
00, n—-1<g<oo,qg+s>-1,p>n+1+q. ThenVJ: F(p,q,s) — B* is
bounded if and only if g € B*.

Moreover, the following relationship holds

(3.12) IVE N F(p,q,)—8 =< llgllBe-
Proof. For f € H(B), note that V¢ f(0) = 0. By Lemmas 2.1, 2.2 and 2.3, we have

IVE fllge = igg(l — |2[)*R(VEF)(2)]
= jgg(l — 2121 (0(2))|IRg(2)]

< C|f]

ne1eq sup(l — [2])*Rg(2)|
B P z2EB
< Clfllrp.a,s) Slelg(l — |2[*)*Rg(2)],

By g € B, we have that VJ : F/(p,q,s) — B is bounded.
Conversely, suppose VJ : F(p, q,s) — B* is bounded. Taking f(z) = 1, then
(1 =21 fule(2))Re(2)] = (1 = |2*)* RV fu) (2)]
< V2 fullse < KIVE | r(pge) 50
which implies g € B*. From the above proof, we see that (3.12) holds. The proof is
completed. 1

Theorem 3.5. Let g € H(B) and ¢ be a holomorphic self-map of B, 0 < a,p, s <
00, n—-1<qg<oo,qg+s>-1,p>n+1+q. ThenVJ: F(p,q,s) — B* is
compact if and only if g € B*.
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Proof. Assume VJ : F(p,q,s) — B is compact, and then V¢ is bounded. By
Theorem 3.4, we get g € B~.

Conversely, assume that g € BY. By Theorem 3.4 we see that V/ : F(p,q,s) — B*
is bounded. Let (fx)ren be any bounded sequence in F(p, g, s) and f; — 0 uniformly
on B as k — oo. Similarly to the proof of Lemma 4 and Theorem 12 of [35], we have

IV fillg = Sgg(l — 21| fe(p(2)Rg(2)] < llgll 5= sup | fr(e(2))] = 0,
as k — oo, which implies the desired result. 1

Theorem 3.6. Let g € H(B) and ¢ be a holomorphic self-map of B, 0 < a,p, s <
00, n—1<qg<oo,q+s>—1,p>n+1+q. Then the following statements are
equivalent:
(i) V¢ :F(p,q,s) — Bg is compact.

(ii) Vi : F(p,q,s) — Bf is bounded.

(iii) ¢ € B.
Proof. (1)=-(ii) is obvious.

(ii)=(iii). If Vi : F'(p,q,s) — B is bounded. Taking f =1, we get g € Bg".

(iil)=-(i). With little modifying the proof of (iii)=-(i) in Theorem 3.3, we can get
the desired result. The proof is completed. 1
Theorem 3.7. Let g € H(B) and ¢ be a holomorphic self-map of B, 0 < a,p, s <

00, —n—-1<qg<oo,q+s>-1,p=n+1+q ThenVJ: F(p,q,s) — B* is
bounded if and only if

e
3.13 sup(1 — [2]?)%|Rg(2)|In ————— < .
(3.13) ZEB( |217)% Ry ()] TP
Moreover, the following relationship holds
3.14 \%%4 s)RBe X Su 1—[z]2)¥ R zln#.
( ) || ‘PHF(ZML) B Zeg( | ‘ ) | g( )‘ 17|90(Z)|2

Proof. For f € H(B), by Lemmas 2.1, 2.2 and 2.3, we have
IVEflls = Slelg(l = [2[)[ ()| Rg(2)]

< C|lfl » 1— [2]2)%|Rg(2)|In —
< Ol ey sup(1 = )" Ryl In T

< ClfllFp.g.9) Sgg(l — |2*)*1Rg(2)|In

By (3.13) we see that V¢ : F(p,q,s) — B* is bounded.
Conversely, suppose VJ : F/(p,q,s) — B is bounded. For w € B, let

(3.15) fuw(z) =In

1—lp(2))

1= (z,¢(w))’

From [29] we know that f,, € F(p,q,s), moreover there is a positive constant K
such that sup,,ep || fullF(p.q,9) Therefore, for every z € B

<K.
(1= [22)* | ful(2)Rg()] = (1 = ) R(VE£u) )
(3.16) < V2 fullge < KNVElrpg.0—5e-
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Therefore
e
(1= Jw[*)*Rg(w) [ In -———7 = (1 = |[w]*)*] fu(p(w))Rg(w)|
1—[p(w)?
(3.17) < K[VZllr(p.g.s)—Be
which implies (3.13). From the above proof, we see that (3.14) holds. The proof is
completed. 1

Theorem 3.8. Let g € H(B) and ¢ be a holomorphic self-map of B, 0 < a,p, s <
00, —n—-1<qg<oo,q+s>-1,p=n+1+gq ThenVJ: F(p,q,s) — B is
compact if and only if g € B* and
e

3.18 lim (1 —|z*)%Rg(2)|In ————— =
(318) R S O,
Proof. Since the sufficiency part is similar to the proof of Theorem 3.2, we omit the
details.

Now we prove the necessity part. Assume that V. : F(p,q,s) — B® is compact.
Then V¢ is bounded. Taking f =1, by the boundedness of VJ, we get that g € B®.

Let {¢(zr)}ken be a sequence in B such that limy_, |¢(z;)| = 1. Define

fe(z) = (ln 1_<ZTM>2(1H 1_&%)'2)—1.

Then fr € F(p,q,s) and fi uniformly converges to zero on any compact subset of
B. By Lemma 2.4, we have limy o [|[V{(fk)|ls> = 0.
On the other hand, we have

IVE fille = Slelg(l = 2 R(VE fi) (2)]

= sup(1 — [2*)|fr(0(2))[|Rg(2)]

z€B

> (1 = zl)?|fi((20)) Ry (20)]

e
=(1—|z/)¥Rg(zx)| In ————.
(=l R T
Therefore,
e
lim (1 — |2x|?)%|Rg(z)| In ————— =0,
Jim (1= 242)* Ry )] 1o =
which implies that (3.18) holds. The proof is completed. i

Theorem 3.9. Let g € H(B) and ¢ be a holomorphic self-map of B, 0 < a,p, s <
00, -n—1<qg<oo,q+s>-1, p=n+1+gq. Then the following statements are
equivalent:

(i) Vg : F(p,q,s) — B is compact.

(i1) g € B and

i — |z]?)® z n# =0.
(3.19) |¢(lzlﬂi1(1 |2[%)%|Rg(2)[1 S ESIE 0
(ii)
(3.20) lim (1 — |22)*|Rg(2)|In ———— = 0.

|z|—1 1- |90(Z)|2
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Proof. The proof is similar to the proof of Theorem 3.3. We omit the details. 1
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