On Axiom Systems of Pseudo-BCK Algebras

ANDRZEJ WALENDZIAK

Institute of Mathematics and Physics, University of Podlasie, PL-08110 Siedlce, Poland walent@interia.pl

Abstract. A symplified axiomatization of pseudo-BCK algebras is given. In addition, we obtain a system of axioms defining bounded commutative pseudo-BCK algebras and show that these axioms are independent (that is, none follows from the others).

2010 Mathematics Subject Classification: 03G25, 06F05, 06F35

Keywords and phrases: BCK algebra, pseudo-BCK algebra, (bounded) commutative pseudo-BCK algebra.

1. Introduction

In 1958, C. C. Chang [1] introduced MV (Many Valued) algebras. In 1966, Y. Imai and K. Iséki [8] introduced the notion of BCK algebra. A *BCK algebra* [2] is an algebra (A; *, 0) of type (2, 0) satisfying the following axioms:

$$(BCK-1) ((x * y) * (x * z)) * (z * y) = 0,$$

(BCK-2)
$$(x * (x * y)) * y = 0,$$

(BCK-3) x * x = 0,

(BCK-4) 0 * x = 0,

(BCK-5) x * y = 0 and y * x = 0 imply x = y.

In 1996, P. Hájek ([6, 7]) invented Basic Logic (BL for short) and BL algebras, structures that correspond to this logical system. The class of BL algebras contains the MV algebras. G. Georgescu and A. Iorgulescu [3] (1999), and independently J. Rachůnek [15] introduced pseudo-MV algebras which are a non-commutative generalization of MV algebras. After pseudo-MV algebras, the pseudo-BL algebras [4] (2000), and the pseudo-BCK algebras [5] (2001) were introduced and studied. The paper [5] contains basic properties of pseudo-BCK algebras and their connections with pseudo-MV algebras and with pseudo-BL algebras. Y. B. Jun [12] obtained some characterizations of pseudo-BCK algebras. A. Iorgulescu [10, 11] studied particular classes of pseudo-BCK algebras. There exist several generalizations of BCK algebras such as BCI algebras [19] and BE algebras [18].

Communicated by Lee See Keong.

Received: October 30, 2008; Revised: January 9, 2010.

In this paper, we give a system of axioms defining pseudo-BCK algebras. We provide conditions for a pseudo-BCK algebra to be commutative and bounded. It is also shown that the question of [5] (see Open problem 23) has a negative answer.

2. An axiomatization of pseudo-BCK algebras

The notion of pseudo-BCK algebras is defined by Georgescu and Iorgulescu [5] as follows:

Definition 2.1. A pseudo-BCK algebra is a structure $\mathcal{A} = (A; \leq, *, \circ, 0)$, where for any $x, y, z \in A$ the following conditions are satisfied: (pBCK-1) $(x * y) \circ (x * z) \leq z * y$, $(x \circ y) * (x \circ z) \leq z \circ y$, (pBCK-2) $x * (x \circ y) \leq y$, $x \circ (x * y) \leq y$, (pBCK-3) $x \leq x$, (pBCK-4) $0 \leq x$, (pBCK-5) $(x \leq y \text{ and } y \leq x) \Rightarrow x = y$, (pBCK-6) $x \leq y \Leftrightarrow x * y = 0 \Leftrightarrow x \circ y = 0$.

Remark 2.1. An equivalent definition of pseudo-BL algebras can be found (in a dual form) in [9], namely as a structure $(A; \leq, *, \circ, 0)$ such that for all $x, y, z \in A$:

- (R0) $(A; \le, 0)$ is a poset with smallest element 0, (R1) $[(x * y) \circ (x * z)] \circ (z * y) = 0$, $[(x \circ y) * (x \circ z)] * (z \circ y) = 0$,
- (R3) $x * 0 = x = x \circ 0;$
- (R4) $y * x = 0 \Leftrightarrow y \circ x = 0 \Leftrightarrow x \ge y$,
- (R5) $x \leq y \Rightarrow x * z \leq y * z, x \circ z \leq y \circ z.$

Remark 2.2. If $(A; \leq , *, \circ, 0)$ is a pseudo-BCK algebra verifying $x * y = x \circ y$ for all $x, y \in A$, then (A; *, 0) is a BCK algebra.

Proposition 2.1. [12, Theorem 3.8] A structure $(A; \leq , *, \circ, 0)$ is a pseudo BCKalgebra if and only if it satisfies (pBCK-1), (pBCK-5), (pBCK-6), and

 $x * (0 \circ y) = x = x \circ (0 * y)$ for all $x, y \in A$.

Proposition 2.2. Let(A; $*, \circ, 0$) be an algebra of type (2, 2, 0) satisfying the following

- (A1) $[(x * y) \circ (x * z)] \circ (z * y) = 0,$
- (A2) $[(x \circ y) * (x \circ z)] * (z \circ y) = 0,$
- $(A3) \qquad x \circ (0 * y) = x,$
- $(A4) \qquad x * (0 \circ y) = x.$

Then for all $x, y \in A$:

- (a) $0 * x = 0 = 0 \circ x$,
- (b) $x * 0 = x = x \circ 0$,
- (c) $[x \circ (x * y)] \circ y = 0, [x * (x \circ y)] * y = 0,$
- (d) $x * y = 0 \Leftrightarrow x \circ y = 0.$

Proof. (a) Substituting x = z = 0, y = x, (A1) becomes

$$0 = [(0 * x) \circ (0 * 0)] \circ (0 * x).$$

Hence, applying (A3) we get $0 = (0 * x) \circ (0 * 0) = 0 * x$, that is,

(2.1)
$$0 * x = 0$$

for all $x \in A$. Using (A2) and (A4) we obtain

$$0 = [(0 \circ x) * (0 \circ 0)] * (0 \circ x) = (0 \circ x) * (0 \circ 0) = 0 \circ x$$

From this and (2.1) we see that (a) holds.

(b) By (A3), $x = x \circ (0 * y) = x \circ 0$. Applying (A4) gives $x = x * (0 \circ y) = x * 0$. (c) (A1) yields

$$[(x*0) \circ (x*y)] \circ (y*0) = 0.$$

Then $[x \circ (x * y)] \circ y = 0$. Similarly, $[x * (x \circ y)] * y = 0$.

(d) Follows from (c).

Remark 2.3. Note that (A1) & (A2) = (R1).

The following theorem gives a simplified axiomatization of pseudo-BCK algebras.

Theorem 2.1. Let(A; *, \circ , 0) be an algebra of type (2, 2, 0) obeying (A1)–(A4) and the following axiom:

(A5) $x * y = y \circ x = 0 \Rightarrow x = y$. Let us define

$$x \le y \Leftrightarrow x * y = 0.$$

Then the structure $\mathcal{A} = (A; \leq, *, \circ, 0)$ is a pseudo-BCK algebra. Conversely, if \mathcal{A} is a pseudo-BCK algebra, then it satisfies the axioms (A1)–(A5).

Proof. We conclude (pBCK-1) from (A1), (A2), and Proposition 2.2 (d). By Proposition 2.2 (c, d) we have (pBCK-2). Using (A2) we get

$$x * x = [(x \circ 0) * (x \circ 0)] * (0 \circ 0) = 0,$$

which is (pBCK-3). From Proposition 2.2(a) we obtain (pBCK-4). Moreover, (A5) and Proposition 2.2(d) clearly force (pBCK-5) and (pBCK-6). Hence the structure \mathcal{A} is a pseudo-BCK algebra.

The converse is obvious.

According to the above theorem, we say that $\mathbf{A} = (A; *, \circ, 0)$ is a pseudo-BCK algebra if (A1)–(A5) are true in \mathbf{A} .

Remark 2.4. If Ψ is a statement expressed in terms * and \circ , then we denote by Ψ' the statement we get from Ψ by interchanging * and \circ . Obviously (A2) = (A1'), (A4) = (A3'), and (A5) = (A5').

Hence:

Corollary 2.1. If $\mathbf{A} = (A; *, \circ, 0)$ is a pseudo-BCK algebra, then $\mathbf{A}^d = (A; \circ, *, 0)$ is also a pseudo-BCK algebra.

Remark 2.5. Applying Proposition 2.2 we can assert that the axioms (A1)–(A5) are equivalent to the conditions (1.1.7)–(1.1.12) from Theorem 1.1.10 of [13].

Lemma 2.1. [5] Let $(A; *, \circ, 0)$ be a pseudo-BCK algebra. Then for all $x, y, z \in A$: $(x * y) \circ z = (x \circ z) * y.$

Definition 2.2. [5, 10] In a pseudo-BCK algebra $\mathbf{A} = (A; *, \circ, 0)$ we define, for all $x, y \in A$:

$$x \wedge y = y \circ (y * x), \quad x \cap y = y * (y \circ x).$$

We say that \mathbf{A} is:

I

A. Walendziak

- (a) \wedge -commutative if $x \wedge y = y \wedge x$ for all $x, y \in A$,
- (b) \cap -commutative if $x \cap y = y \cap x$ for all $x, y \in A$.

Proposition 2.3. [5, Theorem 18] Let $\mathbf{A} = (A; *, \circ, 0)$ be a pseudo-BCK algebra. Then:

- (i) **A** is \wedge commutative if and only if $(A; \wedge)$ is a semilattice,
- (i') **A** is \cap commutative if and only if $(A; \cap)$ is a semilattice.

Proposition 2.4. Let $\mathbf{A} = (A; *, \circ, 0)$ be an algebra of type (2, 2, 0). Then:

- (i) A is a ∧ commutative pseudo-BCK algebra if and only if A satisfies (A1)– (A4) and
- (B1) $y \circ (y * x) = x \circ (x * y);$
 - (i') A is a ∩ commutative pseudo-BCK algebra if and only if A satisfies (A1)– (A4) and
- (B1') $y * (y \circ x) = x * (x \circ y).$

Proof. (i) If **A** is a \wedge -commutative pseudo-BCK algebra, then it obviously satisfies (A1)–(A4) and (B1). Conversely, let **A** satisfy the axioms (A1)–(A4) and (B1). By Proposition 2.2 (b),

(2.2)
$$x \circ 0 = x$$
 for all $x \in A$.

To prove (A5), let $x * y = y \circ x = 0$. Using Proposition 2.2 (d) we get y * x = 0. From (2.2) and (B1) we obtain

$$x = x \circ 0 = x \circ (x * y) = y \circ (y * x) = y \circ 0 = y.$$

Consequently, (A5) holds in **A**. Thus **A** is a pseudo-BCK algebra. By (B1), **A** is \wedge -commutative.

(i') has a similar proof.

Following a suggestion of [13] (see also [14]), we call a pseudo-BCK algebra $(A; *, \circ, 0)$ commutative if and only if it satisfies both (B1) and (B1'). In [5] these algebras were considered under name "semilattice-ordered" pseudo-BCK algebras.

Corollary 2.2. An algebra $\mathbf{A} = (A; *, \circ, 0)$ of type (2, 2, 0) is a commutative pseudo-BCK algebra if and only if \mathbf{A} satisfies (A1)–(A4), (B1), and (B1').

Remark 2.6. Another axiomatization of commutative pseudo-BCK algebras can be found in [13]. The axioms are: (B1), (B1'), and (SK1)–(SK4), where

 $\begin{array}{l} ({\rm SK1}) \ y*(y\circ x) = x\circ (x*y), \\ ({\rm SK2}) \ (z\circ y)*x = (z*x)\circ y, \\ ({\rm SK3}) \ 0*x = 0 = 0\circ x, \\ ({\rm SK4}) \ x*0 = x = x\circ 0. \end{array}$

Proposition 2.5. [5, Corollary 22] If **A** is a commutative pseudo-BCK algebra, then

(2.3)
$$x \wedge y = x \cap y \text{ for all } x, y \in A.$$

Remark 2.7. Is every pseudo-BCK algebra verifying the condition (2.3) commutative? (Open problem 23 of [5]). The answer is in the negative. Indeed, let (A; *, 0)be a non-commutative BCK algebra (that is, $y * (y * x) \neq x * (x * y)$ for some

290

 $x, y \in A$). Then $\mathbf{A} = (A; *, *, 0)$ is a pseudo-BCK algebra satisfying (2.3), but it is not commutative since (B1) does not hold in \mathbf{A} .

3. Bounded pseudo-BCK algebras

Definition 3.1. If there is an element 1 of a pseudo-BCK algebra \mathbf{A} , satisfying (B2) x * 1 = 0 for all $x \in A$, then 1 is called a unit of \mathbf{A} . We say that $(A; *, \circ, 0, 1)$ is a bounded pseudo-BCK algebra if $(A; *, \circ, 0)$ is a pseudo-BCK algebra and 1 is a unit of $(A; *, \circ, 0)$.

Theorem 3.1. Let $\mathbf{A} = (A; *, \circ, 0, 1)$ be an algebra of type (2, 2, 0, 0). A is a bounded commutative pseudo-BCK algebra if and only if it satisfies (B1), (B2), and the following axioms:

(B3) $(x * y) \circ z = (x \circ z) * y,$ (B4) $y \circ (y * x) = y * (y \circ x)$ (B5) x * 0 = x.

Proof. Let \mathbf{A} be a bounded commutative pseudo-BCK algebra. It is obvious that \mathbf{A} satisfies (B1), (B2), and (B5). The axiom (B3) follows from Lemma 2.1. By (2.3) we obtain (B4).

Conversely, let \mathbf{A} satisfy (B1)–(B5). Using (B4) and (B1) we have

$$y * (y \circ x) = y \circ (y * x) = x \circ (x * y) = x * (x \circ y),$$

which is (B1'). Applying (B2) and (B3) we get

 $0 \circ x = (x * 1) \circ x = (x \circ x) * 1 = 0,$

i.e., for all $x \in A$,

 $(3.1) 0 \circ x = 0.$

We have

$$x \circ x = x \circ (x * 0)$$
 (by (B5))
= $x * (x \circ 0)$ (by (B4))
= $0 * (0 \circ x)$ (by (B1'))
= $0 * 0 = 0$ (by (3.1) and (B5)).

Then

 $(3.2) x \circ x = 0$

for all $x \in A$. Observe that

$$(3.3) x \circ y = 0 \Rightarrow x * y = 0.$$

Indeed, let $x \circ y = 0$. Using (B5), (B4), (B3), and (3.2) we get

 $x * y = (x * 0) * y = [x * (x \circ y)] * y = [x \circ (x * y)] * y = (x * y) \circ (x * y) = 0.$

Thus (3.3) is satisfied. Now applying (3.2) and (3.3) we have

for all $x \in A$. From (B5), (3.2), (B4), and (3.4) we obtain

$$x = x * 0 = x * (x \circ x) = x \circ (x * x) = x \circ 0$$

i.e., (B5') holds in A. Since

$$x \circ 1 = x \circ (1 * 0) = x * (1 \circ 0) = x * 1 = 0,$$

we see that (B2') also holds in **A**. Moreover, (B3) = (B3') and (B4) = (B4'). Thus the identities (B1')–(B5') are true in **A**. From this and (3.3) we deduce that

$$(3.5) x * y = 0 \Rightarrow x \circ y = 0$$

for all $x, y \in A$. By (B3) and (B1),

$$(x * y) \circ (x * z) = [x \circ (x * z)] * y$$

= $[z \circ (z * x)] * y$
= $(z * y) \circ (z * x).$

Hence, applying (B3), (3.4), and (3.1), we obtain

$$[(x * y) \circ (x * z)] * (z * y) = [(z * y) \circ (z * x)] * (z * y)$$

= $[(z * y) * (z * y)] \circ (z * x)$
= $0 \circ (z * x) = 0.$

Using (3.5) we get (A1). Similarly, since the identities (B1')-(B5') are true in **A**, we conclude that (A2) = (A1') holds in **A**. It is easy to see that (A3) and (A4) also hold in **A**. From Corollary 2.2 it follows that **A** is a bounded commutative pseudo-BCK algebra.

By the proof of Theorem 3.1 we get:

Corollary 3.1. If $\mathbf{A} = (A; *, \circ, 0, 1)$ is a bounded commutative pseudo-BCK algebra, then $\mathbf{A}^d = (A; \circ, *, 0, 1)$ is also a bounded commutative pseudo-BCK algebra.

Corollary 3.2. The class of bounded commutative pseudo-BCK algebras is a variety defined by the identities (B1)-(B5) or (B1')-(B5').

Theorem 3.2. The axioms (B1)–(B5) are independent, that is, none of them can be deduced from the others.

Proof. We are going to give some examples of algebras in which only four of the axioms hold. Let $A = \{0, a, 1\}$. Define binary operations * and \circ on A as follows:

:	*	0	a	1		0	0	a	1
	0	0	0	0	-	0	0	0	0
	a	a	0	0		a	a	0	a
	1	1	1	0		1	1	1	0

Then (A; *, *, 0, 1) fulfils the axioms (B2)–(B5), but not (B1), since $1 * (1 * a) = 0 \neq a = a * (a * 1)$. However, $(A; \circ, \circ, 0, 1)$ satisfies (B1) and (B3)–(B5), but not (B2). Now we define the binary operations * and \circ on the set A by the following tables:

*	0	a	1	0	0	a	1
0	0	a	0	0	a	a	a
a	a	a	0	a	a	a	a
1	1	a	0	1	a	a	a

292

The identities (B1), (B2), (B4), and (B5) are valid in $(A; *, \circ, 0, 1)$, but (B3) does not hold because $(0 * 1) \circ a = a$, while $(0 \circ a) * 1 = 0$.

Now, consider the set $A = \{0, 1\}$ with the operations * and \circ given as follows:

*	0	1	C	5	0	1
0	0	0	(0	0	0
1	1	0	1	1	0	0

Then the algebra $(A; *, \circ, 0, 1)$ satisfies (B1)–(B3) and (B5), but not (B4). Indeed, $1 \circ (1 * 1) = 0 \neq 1 = 1 * (1 \circ 0)$. Finally, it is evident that the axioms (B1)–(B4) hold in $(A; \circ, \circ, 0, 1)$, while (B5) does not.

Acknowledgement. The author is highly grateful to referees for their remarks and suggestions for improving the paper.

References

- C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467–490.
- [2] A. Dvurečenskij and S. Pulmannová, New Trends in Quantum Structures, Mathematics and its Applications, 516, Kluwer Acad. Publ., Dordrecht, 2000.
- [3] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: A noncommutative extension of MV algebras, in *Information Technology (Bucharest, 1999)*, 961–968, Inforce, Bucharest.
- [4] G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: A noncommutative extension of BL algebras, in Abstracts of the Fifth International Conference FSTA 2000, Slovakia, February 2000, 90–92.
- [5] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK algebras, in Combinatorics, Computability and Logic (Constanța, 2001), 97–114, Springer Ser. Discrete Math. Theor. Comput. Sci, Springer, London.
- [6] P. Hájek, Metamathematics of Fuzzy Logic, Inst. of Comp. Science, Academy of Science of Czech Rep., Technical report 682 (1996).
- [7] P. Hájek, Metamathematics of Fuzzy Logic, Trends in Logic—Studia Logica Library, 4, Kluwer Acad. Publ., Dordrecht, 1998.
- [8] Y. Imai and K. Iséki, On axiom systems of propositional calculi. XIV, Proc. Japan Acad. 42 (1966), 19–22.
- [9] A. Iorgulescu, On pseudo-BCK algebras and porims, Sci. Math. Jpn. 60 (2004), no. 3, 501–513.
- [10] A. Iorgulescu, Classes of pseudo-BCK algebras. I, J. Mult.-Valued Logic Soft Comput. 12 (2006), no. 1-2, 71–130.
- [11] A. Iorgulescu, Classes of pseudo-BCK algebras. II, J. Mult.-Valued Logic Soft Comput. 12 (2006), no. 5-6, 575–629.
- [12] Y. B. Jun, Characterizations of pseudo-BCK algebras, Sci. Math. Jpn. 57 (2003), no. 2, 265–270.
- [13] J. Kühr, Pseudo-BCK-algebras and related structures, Univerzita Palackého v Olomouci, 2007.
- [14] J. Kühr, Commutative pseudo BCK-algebras, Southeast Asian Bull. Math. 33 (2009), no. 3, 451–475.
- [15] J. Rachunek, A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52(127) (2002), no. 2, 255–273.
- [16] S. Z. Song, Y. B. Jun and K. J. Lee, Fuzzy ideals in BE-algebras, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 1, 147–153.
- [17] J. Zhan and Y. B. Jun, Generalized fuzzy ideals of BCI-algebras, Bull. Malays. Math. Sci. Soc. (2) 32 (2009), no. 2, 119–130.