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Abstract. A group G is called capable if it is the group of inner automorphisms
of some group E. Capable pairs are defined in terms of a relative central

extension. In this paper, we introduce the precise center for a pair of groups

and prove that this subgroup makes a criterion for characterizing the capability
of the pair. We also show that our result sharpens the obtained result in this

area. A complete classification of finitely generated abelian capable pairs will
also be given.
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1. Introduction and motivation

Following Hall Jr. and Senior [5], a group G is called capable if it is the group
of inner automorphisms of some group or equivalently if there exists a group E
with E/Z(E) ∼= G. The study of capable groups was started by Baer [1], who
determined all capable abelian groups. Hall remarked in [6] that characterization of
capable groups are important in classifying groups of prime power order. In 1979,
Beyl, Felgner and Schmid [2] studied capable groups by focusing on a characteristic
subgroup Z∗(G) which is called the precise center of G. They actually proved that
the triviality of the precise center is a criterion for capability of the group itself.

The theory of capability of groups may be extended to the theory of pairs of
groups. In fact capable pairs are defined in terms of Loday’s notion [7] of a relative
central extension. By a pair of groups we mean a group G and a normal subgroup
N and this is denoted by (G,N). Let M be another group on which an action of G
is given. The G-commutator subgroup of M is defined by the subgroup [M,G] of M
generated by all the G-commutators

[m, g] = mgm−1,
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in which g ∈ G, m ∈M and mg is the action of g on m. Also we define the G-center
of M to be the subgroup

Z(M,G) = {m ∈M |mg = m,∀g ∈ G}.

For introducing the capable pair, we need to define a relative central extension
as follows:

Definition 1.1. Let (G,N) be a pair of groups. A relative central extension of the
pair (G,N) consists of a group homomorphism σ : M → G, together with an action
of G on M such that

(i) σ(M) = N ,
(ii) σ(mg) = g−1σ(m)g, for all g ∈ G, m ∈M ,
(iii) m′σ(m) = m−1m′m, for all m,m′ ∈M ,
(iv) ker (σ) ⊆ Z(M,G).

We shall say that the pair (G,N) is capable if it admits such a relative central
extension with ker σ = Z(M,G).

Note that Z(M,G) is a central subgroup of M and therefore, if N is equal to G,
then the relative central extension σ : M → G gives the following central extension
of G

1→ ker σ →M → G→ 1.

Now, it is obvious that a group G is capable precisely when the pair (G,G) is capable.
One of the interesting results of Beyl et al.’s type [2] for the capability of pairs of

groups was proved by Ellis [4] in 1996. He actually introduced the exterior G-center
of N for a pair of groups (G,N), and proved that the pair (G,N) is capable if and
only if the exterior G-center of N is the trivial group. Using this, he could generalize
Baer’s [1] characterization of finitely generated capable abelian groups to capable
pairs (G,N) of finitely generated abelian groups. His method is also based on the
tensor product and exterior product of groups.

This paper is organized as follows. In the next section we give some more proper-
ties of capable pairs of groups of Beyl et al.’s type [2]. A description of the exterior
G-center of N , in terms of a free presentation of G, is given in Section 3. In Section
4, we introduce a central subgroup Z∗(G,N) of G, for a pair of groups (G,N), and
we shall call it the precise center of the pair (G,N) throughout the article. We go on
to show that the precise center of a pair (G,N) provides a criterion for recognizing
the capability of the pair and also it is a subgroup contained in the exterior G-center
of N . This shows that the precise center is a smaller and more suitable subgroup of
G, with respect to the to the exterior G-center of N , for characterizing the capabil-
ity of the pair (G,N). Therefore the attained result sharpens the one obtained by
Ellis (see [4, Theorem 3]) and the important point is the easier technique applied
to attain the conclusion. Finally in Section 5, we turn our attention to determining
the capability of a pair of finitely generated abelian groups, and give a complete
classification of finitely generated abelian capable pairs.

2. Some results of Beyl et al.’s type

In what follows, we present some properties of a capable pair of groups.
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Theorem 2.1. Let (G,N) be a pair of groups and {Ki}i∈I be a family of normal
subgroups of N . If the pair of groups (G/Ki, N/Ki) is capable for all i ∈ I, then(

G⋂
i∈I Ki

,
N⋂
i∈I Ki

)
is capable.

Proof. Suppose that for each i ∈ I, δi : Ei → G/Ki, together with an action of
G/Ki on Ei, is a relative central extension of the pair (G/Ki, N/Ki) such that
δi(Ei) = N/Ki and ker δi = Z (Ei, G/Ki). Put

H =

{
{ei}i∈I ∈

∏
i∈I

Ei|∃g ∈ G; δi(ei) = gKi

}
and K =

⋂
i∈I Ki, where

∏
i∈I Ei denotes the Cartesian product of the groups Ei.

It is readily verified that δ : H → G/K defined by δ({ei}i∈I) = gK is a relative
central extension of the pair

(
G/
⋂
i∈I Ki, N/

⋂
i∈I Ki

)
and that ker δ = Z (H,G/K).

So the result follows.

Theorem 2.2. If (G,N) is capable and G/G′ is of finite exponent, then the exponent
of Z(G) ∩N divides that of G/G′.

Proof. By the assumption, there is a relative central extension ϕ : M → G with
ker ϕ = Z(M,G). Thus for every x ∈ N there exist tx ∈ M such that ϕ(tx) = x.
Now consider the map γ : Z(G) ∩ N × G −→ Z(M,G) with γ((x, g)) = [tx, g], for
x ∈ Z(G) ∩N and g ∈ G. One can easily verify that the map γ is well defined and
since Z(M,G) ≤ Z(M) and ker ϕ = Z(M,G), then γ is left linear. On the other
hand, for all g1, g2 ∈ G and x ∈ Z(G) ∩N we have

[tx, g1g2] = tx
−1tx

g1g2 = tx
−1tx

g2 [tx, g1]g2 = [tx, g1][tx, g2].

This proves that γ is right linear and therefore γ is a bilinear map. Also the equality
[tx, g] = 1, for all g ∈ G, implies that tx ∈ Z(M,G) and this shows that the left
kernel of γ is trivial. The right kernel of γ also must contain G

′
= [G,G]. So if G/G

′

is of exponent n, then γ(xn, g) = γ(x, gn) = 1, for all x ∈ Z(G) ∩N and g ∈ G. It
follows that xn = 1, for all x ∈ Z(G) ∩N and this completes the proof.

Using Theorem 2.2, we obtain the following corollary which states a necessary
condition for the capability of the pair (G,N), when G is a perfect group.

Corollary 2.1. If G is a perfect group, then the capability of the pair (G,N) implies
that Z(G) ∩N = 1.

3. The exterior G-center subgroup and free presentation

In order to study the capability of a pair of groups (G,N), Ellis [4] introduced a
subgroup Z∧G(N) with the property that the pair is capable if and only if Z∧G(N) = 1.
But to define this subgroup, we need to recall the definition of exterior product from
[3] as follows.
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Definition 3.1. Let N and P be arbitrary normal subgroups of G. The exterior
product P ∧N is the group generated by symbols p ∧ n for p ∈ P , n ∈ N subject to
the relations

pp′ ∧ n = (p′p ∧ np)(p ∧ n),

p ∧ nn′ = (p ∧ n)(pn ∧ n′n),
x ∧ x = 1,

for x ∈ P ∩N , n, n′ ∈ N , p, p′ ∈ P .

Now for a group G and normal subgroups N and P , the exterior P -center of N
is denoted by Z∧P (N), and is defined to be

{n ∈ N |1 = p ∧ n ∈ P ∧N, for all p ∈ P},

(see [4]). Clearly Z∧P (N) is a central subgroup of N , if P contains N . As Ellis proved
in [4], the pair (G,N) is capable if and only if Z∧G(N) = 1. Therefore determining
the structure of exterior G-center of N is useful for studying the capability of a pair
(G,N). In what follows we intend to describe the exterior G-center of N , Z∧G(N), in
terms of a free presentation for G. The description has some interesting applications
which are stated in the last section of the paper. To prove the main purpose of
the section, we need the following lemma which gives a considerable isomorphism.
But first note that for a group G with a free presentation G ∼= F/R and a normal
subgroup N E G with N ∼= S/R, we consider the action of G on S/[R,F ], defined
by (s[R,F ])g := sf [R,F ], such that g = π(f), for f ∈ F, s ∈ S and g ∈ G, where π
is the natural epimorphism from F to G.

Lemma 3.1. Let F/R be a free presentation of G and N EG with N = S/R. Then

N ∧G ∼=
[

S

[R,F ]
, G

]
.

Proof. Put F̄ = F/[R,F ] and S̄ = S/[R,F ]. It is easy to see that [S̄, G] = [S̄, F̄ ] =
[S, F ]/[R,F ]. On the other hand, by a theorem of Lue [8] there exists the epimor-
phism

ϕ : N ∧G→ [S, F ]/[R,F ]

sR ∧ fR 7→ [s, f ][R,F ].

It remains to prove that ϕ is an isomorphism. Using the universal property of
free groups and tensor products, we obtain an isomorphism θ : [F, F ]→ F ∧F with
θ([x, y]) = x∧y, for x, y ∈ F . Then the restriction of θ to [S, F ] is the homomorphism
θ|[S,F ] : [S, F ]→ S ∧ F . Now considering the natural epimorphism S ∧ F → N ∧G,
we obtain the homomorphism

ψ : [S, F ]→ N ∧G,
[s, f ] 7→ sR ∧ fR

whose kernel contains [R,F ]. Hence ψ̄ : [S, F ]/[R,F ]→ N ∧G is a homomorphism
such that ψ̄ ◦ ϕ = 1 and ϕ ◦ ψ̄ = 1, and the proof is completed.



Capability of a Pair of Groups 209

Let G, N , F , R and S be the above groups and the action of G on S/[R,F ] be
considered as in Lemma 3.1. Define the group homomorphism

σ :
S

[R,F ]
→ G,

s[R,F ] 7→ π(s)

where π is the natural epimorphism from F to G. It is straightforward to check
that σ is a relative central extension. Now using this, a description of the exterior
G-center of N , in terms of the given free presentation of G, is presented.

Theorem 3.1. Considering the above notation and assumption, we have

Z∧G(N) = σ

(
Z

(
S

[R,F ]
, G

))
.

Proof. Lemma 3.1 implies that [s̄, f̄ ] = 1 if and only if π(s) ∧ g = 1, for all s ∈ S,
f ∈ F and g ∈ G with π(f) = g. (Note that for x ∈ F , x̄ denotes the image of x in
F/[R,F ]). Hence

σ

(
Z

(
S

[R,F ]
, G

))
= {σ(s̄)| [s̄, g] = 1, for all g ∈ G}

= {σ(s̄)| [s̄, f ] = 1, for all f ∈ F}
= {π(s)| π(s) ∧ g = 1, for all g ∈ G}
= Z∧G(N).

4. The precise center of a pair of groups

In this section, we introduce a central subgroup Z∗(G,N) of G for a pair (G,N),
which is as useful and important as Z∧G(N). It is also shown that the subgroup
Z∗(G,N) is actually a subgroup of Z∧G(N) with the property that (G,N) is capable
if and only if Z∗(G,N) = 1.

Definition 4.1. Let G be a group and N EG. Then the precise center of the pair
(G,N) is denoted by Z∗(G,N) and is defined to be

∩{ψ(Z(M,G)) |ψ : M → G is a relative central extension}.

One may see that if N = G, then Z∗(G,G) is exactly Z∗(G) defined in [2].

Theorem 4.1. If G is a group with a normal subgroup N , then(
G

Z∗(G,N)
,

N

Z∗(G,N)

)
is capable.

Proof. Let ϕ : M → G be a relative central extension of the pair (G,N) and π : G→
G/ϕ(Z(M,G)) be the natural epimorphism. Put ψ = πoϕ. It is straightforward to
check that ψ is a relative central extension of the pair(

G

ϕ(Z(M,G))
,

N

ϕ(Z(M,G))

)
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such that

ker ψ = Z

(
M,

G

ϕ(Z(M,G))

)
.

It follows that the pair (
G

ϕ(Z(M,G))
,

N

ϕ(Z(M,G))

)
is capable. So the result follows from Theorem 2.1.

Now the criterion for capability of a pair of groups is an immediate consequence
of Theorem 4.1 as follows.

Corollary 4.1. A pair (G,N) of groups is capable if and only if Z∗(G,N) = 1.

Another useful and interesting property of the precise center is given in the next
theorem.

Theorem 4.2. Let (G,N) be a pair of groups. Then Z∗(G,N) is the smallest
normal subgroup K of G such that (G/K,N/K) is capable.

Proof. Let K be a normal subgroup of G such that the pair (G/K,N/K) is capable.
Then there exists a relative central extension ϕ : M → G/K of (G/K,N/K) with
ker ϕ = Z (M,G/K). Define H = {(m,x) ∈M ×N |ϕ(m) = xK} with an action of
G on H defined by (m,x)g =

(
mgK , xg

)
, for all g ∈ G, x ∈ N and m ∈ M . Note

that mgK is the action of gK on m. Now considering ψ : H → G by ψ(m,x) = x,
one can easily see that ψ is a relative central extension of (G,N). So Z∗(G,N) ⊆
ψ(Z(H,G)). On the other hand, (m,x) ∈ Z(H,G) implies that x ∈ K. Therefore
Z∗(G,N) ⊆ K.

Invoking Theorem 3.1, one can observe that Z∗(G,N) ⊆ Z∧G(N). This point
together with Corollary 4.1, show that the precise center of a pair (G,N) is a smaller
and more suitable subgroup for characterizing the capability of the pair with respect
to the exterior G-center of N . This means that Corollary 4.1 sharpens the criterion
obtained by Ellis [4, Theorem 3], while in fact the method applied in this article is
easier and also much shorter than [4].

We now intend to determine a sufficient condition under which the precise center
of a pair (G,N) coincides with the exterior G-center of N . For this aim, we should
recall from Ellis [4] that all relative central extensions of a pair (G,N) form a category
and this category is denoted by RCE(G,N). Let δ : M → G and δ′ : M ′ → G be
two relative central extensions of a pair (G,N). A morphism between these relative
central extensions is a group homomorphism ψ : M →M ′ satisfying δ′ ◦ ψ = δ and
ψ(mg) = ψ(m)g, for all g ∈ G and m ∈ M . A universal object in this category
is naturally called a universal relative central extension. Now the above mentioned
sufficient condition is stated.

Theorem 4.3. Let (G,N) be a pair of groups and F/R be a free presentation of G
with N = S/R. If σ : S/[R,F ]→ G (defined in the Section 3) is a universal relative
central extension, then

Z∗(G,N) = Z∧G(N).



Capability of a Pair of Groups 211

Proof. Let ϕ : M → G be an arbitrary relative central extension of (G,N). Since
σ is universal, then there exists a group homomorphism ψ : S/[R,F ] → M , such
that ϕ ◦ ψ = σ and ψ(s̄g) = ψ(s̄)g, for all g ∈ G and s̄ ∈ S/[R,F ]. Thus if
s̄ ∈ Z(S/[R,F ], G), then ψ(s̄) ∈ Z(M,G). So σ(s̄) = ϕ ◦ ψ(s̄) ∈ ϕ(Z(M,G)) and
therefore σ(Z(S/[R,F ], G)) ≤ Z∗(G,N). This implies that σ(Z(S/[R,F ], G)) =
Z∗(G,N). Now the result is an immediate consequence of Theorem 3.1.

The precise center of a pair of products of groups has the following property.

Theorem 4.4. Let I be an ordered set and Gi be a group with NiEGi, for all i ∈ I.
Then

Z∗

(∏
i∈I

Gi,
∏
i∈I

Ni

)
⊆
∏
i∈I

Z∗(Gi, Ni).

Proof. Let ψi : Mi → Gi be an arbitrary relative central extension of (Gi, Ni), for
all i ∈ I. Put G =

∏
i∈I Gi, N =

∏
i∈I Ni and M =

∏
i∈IMi. Define

Ψ : M → G.

{mi}i∈I 7→ {ψi(mi)}i∈I
It is easy to check that Ψ is a relative central extension of (G,N) and Ψ(Z(M,G)) =∏
i∈I ψi(Z(Mi, Gi)). Therefore Z∗(G,N) ≤

∏
i∈I ψi(Z(Mi, Gi)). Since ψ,is are ar-

bitrary, the result follows.
The above theorem has an immediate consequence for the capability of a pair of

products of groups.

Corollary 4.2. Let (Gi, Ni) be a capable pair of groups, for all i ∈ I. Then(∏
i∈I Gi,

∏
i∈I Ni

)
is capable.

5. Finitely generated Abelian group

In this section we present some interesting applications of Theorem 3.1 for finitely
generated abelian groups. We give a necessary and sufficient condition under which
the pair (G,N) of finitely generated abelian groups is capable. Another description
of the exterior G-center subgroup Z∧G(N), in terms of the precise center Z∗(G), is
also provided.

Now, first recall that if a group G is presented as a quotient of a free group F by
a normal subgroup R, then the Schur multiplier of G is defined to be

M(G) =
R ∩ F ′

[R,F ]
.

To attain the mentioned results, we need the following lemma from [2].

Lemma 5.1. Let N be a central subgroup of G. Then N ⊆ Z∗(G) if and only if the
natural map M(G)→M(G/N) is monomorphism.

Theorem 5.1. Let (G,N) be a pair of groups and K ≤ N . Let F/R be a free
presentation of G with N = S/R and K = T/R. Then K ≤ Z∧G(N) if and only if
[T, F ]/[R,F ] = 1.
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Proof. Using Theorem 3.1, we have

K ≤ Z∧G(N)⇐⇒ σ

(
T

[R,F ]

)
≤ σ

(
Z

(
S

[R,F ]
, G

))
⇐⇒ T

[R,F ]
≤ Z

(
S

[R,F ]
, G

)
⇐⇒

[
T

[R,F ]
, G

]
= 1

⇐⇒
[

T

[R,F ]
,

F

[R,F ]

]
= 1

⇐⇒ [T, F ]
[R,F ]

= 1.

Now Theorem 5.1 gives a relationship between the precise center Z∗(G) and the
exterior G-center subgroup Z∧G(N) for an abelian group G as follows.

Corollary 5.1. Let G be an abelian group and N ≤ G. Then

Z∧G(N) = N ∩ Z∗(G).

Proof. Let F/R be a free presentation of G and K ≤ N with K = T/R. Then
K ≤ Z∗(G) ∩N if and only if M(G)→ M(G/K) is injective and this is equivalent
to the equality [T, F ]/[R,F ] = 1. Now the required assertion follows from Theorem
5.1.

As an application of Corollary 5.1, we can establish a complete classification of
finitely generated abelian capable pairs.

Theorem 5.2. Let G be a finitely generated abelian group as follows:

G = 〈x1〉 ⊕ ...⊕ 〈xm〉 ⊕ 〈y1〉 ⊕ ...⊕ 〈yr〉,
where 〈xi〉 ∼= Z, for 1 ≤ i ≤ rm and |yi| = di for 1 ≤ i ≤ r, such that di+1 | di. If
N ≤ G such that N = 〈xα1

1 〉⊕ ...⊕〈xαm
m 〉⊕ 〈y

β1
1 〉⊕ ...⊕〈yβr

r 〉, then (G,N) is capable
if and only if

(i) m ≥ 2, or
(ii) m = 0, r ≥ 2 and d1 | [d2, β1],

in which [d2, β1] means the least common multiple of d2 and β1.

Proof. It follows from [2, Proposition 7.3] that

Z∗(G) =


1; m ≥ 2,
〈xd11 〉; m = 1,
〈yd21 〉; m = 0.

Then, by Corollary 5.1, we have

Z∧G(N) = Z∗(G) ∩N =


1; m ≥ 2,
〈x[d1,α1]

1 〉; m = 1,
〈y[d2,β1]

1 〉; m = 0.

The result now follows easily.
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