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Abstract. Let G be a finite group and D(G) be the degree pattern of G. De-

note by hOD(G) the number of isomorphism classes of finite groups H satisfying

(|H|,D(H)) = (|G|,D(G)). A finite group G is called k-fold OD-characterizable
if hOD(G) = k. As the main results of this paper, we prove that each of the

following pairs {G1, G2} of groups:

{Bn(q), Cn(q)}, n = 2m > 2,

∣∣∣∣π(
qn + 1

2

)∣∣∣∣ = 1, q is odd prime power;

{Bp(3), Cp(3)},
∣∣∣∣π(

3p − 1

2

)∣∣∣∣ = 1, p is an odd prime,

{B3(5), C3(5)},

satisfies hOD(Gi) = 2, i = 1, 2. We also prove that, if (1) n = 2 and q is any
prime power such that |π(q2 + 1/(2, q − 1))| = 1 or (2) n = 2m ≥ 2 and q is a

power of 2 such that |π(qn + 1)| = 1, then hOD(Cn(q)) = hOD(Bn(q)) = 1.
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1. Introduction

Let G be a finite group, π(G) the set of all prime divisors of its order and ω(G) be
the spectrum of G, that is the set of its element orders. The Gruenberg-Kegel graph
GK(G) or prime graph of G is a simple graph with vertex set π(G) in which two
vertices p and q are joined by an edge (and we write p ∼ q) if and only if pq ∈ ω(G).
Let s(G) be the number of connected components of GK(G). The ith connected
component is denoted by πi = πi(G) for each i. If 2 ∈ π(G), then we assume that
2 ∈ π1(G).
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The classification of finite simple groups with disconnected Gruenberg-Kegel graph
was obtained by Williams [21] and Kondrat’ev [11]. An corrected list of these groups
can be found in [12].

The degree deg(p) of a vertex p ∈ π(G) is the number of edges incident on p. If
π(G) = {p1, p2, . . . , pk} with p1 < p2 < · · · < pk, then we define

D(G) :=
(

deg(p1),deg(p2), . . . ,deg(pk)
)
,

which is called the degree pattern of G.
Given a finite group M , denote by hOD(M) the number of isomorphism classes

of finite groups G such that |G| = |M | and D(G) = D(M). In terms of the function
hOD, groups M are classified as follows:

Definition 1.1. A finite group M is called k-fold OD-characterizable if hOD(M) =
k. Usually, a 1-fold OD-characterizable group is simply called OD-characterizable.

In order to formulate the obtained results, we need some notation and definitions.
Throughout the paper, we assume that q is a prime power. We write Ln(q) instead of
the projective special linear group PSL(n, q) and write Un(q) instead of the projective
special unitary group PSU(n, q). We use Bn(q) and Cn(q) to denote the simple
orthogonal and symplectic groups, respectively. (In Atlas [4] notation, these are the
groups O2n+1(q) and S2n(q), respectively.)

Table 1 lists finite simple groups which are currently known to be OD-characterizable
or 2-fold OD-characterizable.

Table 1. Finite simple groups which are currently known to be OD-characterizable
or 2-fold OD-characterizable

M Conditions on M hOD(M) References
An n = p, p+ 1, p+ 2 (p a prime) 1 [13, 14]

n = p+ 3, p ∈ π(100!) \ {7} 1 [7, 16, 17, 24]

n = 10 2 [15]

L2(q) q 6= 2, 3 1 [13, 14, 25, 30]

L3(q) |π( q2+q+1
d )| = 1, d = (3, q − 1) 1 [13]

U3(q) |π( q2−q+1
d )| = 1, d = (3, q + 1), q > 5 1 [13]

L4(q) q = 5, 7 1 [1]

L3(9) 1 [27]

U3(5) 1 [29]

U4(7) 1 [1]

Ln(2) n = p or p+ 1, for which 2p − 1 is a prime 1 [1]

R(q) |π(q ±
√

3q + 1)| = 1, q = 32m+1, m ≥ 1 1 [13]

Sz(q) q = 22n+1 ≥ 8 1 [13, 14]
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Continuation of Table 1.

M Conditions on M hOD(M) References
B3(3) 2 [13]

C3(3) 2 [13]

M A sporadic simple group 1 [13]

M |π(M)| = 4, M 6= A10 1 [26]

M |M | ≤ 108, M 6= A10, U4(2) 1 [23]

It was shown in [13] and [15] that each of the following pairs {G1, G2} of groups:

{A10, Z3 × J2}, {B3(3), C3(3)}
satisfies |G1| = |G2| and D(G1) = D(G2), and hOD(Gi) = 2, i = 1, 2. Until recently,
no examples of simple groups M with hOD(M) ≥ 3 are known. In [14], we posed
the following question:

Problem 1.1. Is there a simple group which is k-fold OD-characterizable for k ≥ 3?

If n is a positive integer, then π(n) denotes the set of prime divisors of n. Given
a finite group G, the order of G can be expressed as a product of some coprime
positive integers mi, i = 1, 2, . . . , s(G), with π(mi) = πi. These integers mi’s are
called the order components of G. Let OC(G) = {m1,m2, . . . ,ms(G)} be the set of
order components of G. The order components of simple groups with disconnected
prime graphs are obtained in Tables 1–4 in [3].

Given a finite group M , define hOC(M) to be the number of isomorphism classes
of finite groups with the same set OC(M) of order components. In terms of the
function hOC, groups M are classified as follows:

Definition 1.2. A finite group M is called k-fold OC-characterizable if hOC(M) =
k. Usually, a 1-fold OC-characterizable group is simply called OC-characterizable.

It is clear that 1 ≤ hOD(M) <∞ and 1 ≤ hOC(M) <∞ for any finite group M .
In fact, by Cayley’s theorem, for each positive integer n, there are only finitely many
distinct types of groups of order n. Evidently, a simple group S with connected prime
graph is not OC-characterizable, because hOC(S) ≥ νnil(|S|) ≥ 2, where νnil(n)
denotes the number of isomorphism classes of nilpotent groups of order n.

Table 2. The groups of order 30.

G GK(G) s(G) OC(G) D(G) hOD(G) hOC(G)
Z30 2 ∼ 3 ∼ 5 ∼ 2 1 {30} (2, 2, 2) 1 3
Z3 ×D10 2 ∼ 3 ∼ 5 1 {30} (1, 2, 1) 1 3
Z5 ×D6 2 ∼ 5 ∼ 3 1 {30} (1, 1, 2) 1 3
D30 2, 3 ∼ 5 2 {2, 15} (0, 1, 1) 1 1

Note that, the values of the functions hOD and hOC may be different. For example,
there are only four non-isomorphic groups of order 30, which we list in Table 2. Now,
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it can be easily seen that hOD(Z30) = hOD(Z3 ×D10) = hOD(Z5 ×D6) = 1, while
hOC(Z30) = hOC(Z3 ×D10) = hOC(Z5 ×D6) = 3.

We recall that a clique in a graph is a set of pairwise adjacent vertices. An
independence set in a graph is a set of pairwise non-adjacent vertices. Note that
the prime graph of a nilpotent finite group is always a clique. Moreover, if S is a
simple group with disconnected prime graph, then all connected components πi(S)
for 2 ≤ i ≤ s(S) are clique, for instance, see [11, 18, 21].

The purpose of this paper is to prove the following theorems.

Theorem 1.1. Let r be an odd prime such that |π( 3r−1
2 )| = 1. Then, we have

hOD(Br(3)) = hOD(Cr(3)) = 2.

Example 1.1. For 2 < r < 100, we obtain the following simple groups among Br(3)
and Cr(3):

B3(3), C3(3); B5(3), C5(3); B7(3), C7(3); B13(3), C13(3).

Theorem 1.2. Let q be a prime power and n = 2m ≥ 2. Then we have
(a) If q is even, |π(qn+1)| = 1 and (n, q) 6= (2, 2),then hOD(Bn(q)) = hOD(Cn(q)) =

1.
(b) If q is odd, |π((qn + 1)/2)| = 1 and (n, q) 6= (2, 3), then

hOD(Bn(q)) = hOD(Cn(q)) =
{

2 if n ≥ 4,
1 if n = 2.

Example 1.2. Some groups Bn(q) and Cn(q) satisfying the hypothesis of Theorem
1.2 have been computed and as a consequence we have listed the following OD-
characterizable or 2-fold OD-characterizable simple groups in Table 3.

Theorem 1.3. The simple groups B3(5) and C3(5) are 2-fold OD-characterizable.

In fact, the pair {B3(5), C3(5)} is the first pair of finite simple groups with con-
nected prime graph which are 2-fold OD-characterizable.

We conclude the introduction with notation to be used throughout the paper.
The socle of a group G is the subgroup generated by the set of all minimal normal
subgroups of G; it is denoted by soc(G). If H is a subgroup of G, then CG(H)
and NG(H) are, respectively, the centralizer and the normalizer of H in G. If a
is a natural number, r is an odd prime and (r, a) = 1, then by e(r, a) we denote
the multiplicative order of a modulo r, that is the minimal natural number n with
an ≡ 1 (mod r). If a is odd, we put

e(2, a) =
{

1 if a ≡ 1 (mod 4),
2 if a ≡ −1 (mod 4).

We also define the function η : N −→ N, as follows

η(m) =
{
m if m ≡ 1 (mod 2),
m
2 if m ≡ 0 (mod 2).
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Table 3. The simple groups Bn(q) and Cn(q), where n = 2m ≥ 2 and d = (2, q− 1).

G qn+1
d hOD(G)

B2(22) 17 1

B2(24) 257 1

B2(28) 65537 1

B4(2) 17 1

B4(22) 257 1

B4(24) 65537 1

B8(2) 257 1

B8(22) 65537 1

B16(2) 65537 1

B4(3), C4(3) 41 2

B16(3), C16(3) p1 2

B32(3), C32(3) p2 2

B64(3), C64(3) p3 2

B2(32) 41 1

B8(32), C8(32) p1 2

B16(32), C16(32) p2 2

B32(32), C32(32) p3 2

B4(34), C4(34) p1 2

B8(34), C8(34) p2 2

B16(34), C16(34) p3 2

B2(38) p1 1

B4(38), C4(38) p2 2

B8(38), C8(38) p3 2

B2(316) p2 1

B4(316), C4(316) p3 2

B2(332) p3 1

B2(5) 13 1

G qn+1
d hOD(G)

B4(5), C4(5) 313 2

B2(52) 313 1

B2(7) 52 1

B4(7), C4(7) 1201 2

B2(72) 1201 1

B2(11) 61 1

B4(11), C4(11) 7321 2

B2(112) 7321 1

B4(13), C4(13) 14281 2

B8(13), C8(13) p4 2

B2(132) 14281 1

B4(132), C4(132) p4 2

B2(134) p4 1

B4(17), C4(17) 41761 2

B2(172) 41761 1

B2(19) 181 1

B4(23), C4(23) 139921 2

B2(232) 139921 1

B2(29) 421 1

B4(29), C4(29) 353641 2

B16(29), C16(29) p5 2

B2(292) 353641 1

B8(292), C8(292) p5 2

B4(294), C4(294) p5 2

B2(298) p5 1

B2(41) 292 1

B16(41), C16(41) p6 2
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Continuation of Table 3.

G qn+1
d hOD(G)

B8(412), C8(412) p6 2

B4(414), C4(414) p6 2

B2(418) p6 1

B8(43), C8(43) p7 2

B4(432), C4(432) p7 2

B2(434) p7 1

B8(47), C8(47) p8 2

B4(472), C4(472) p8 2

B2(474) p8 1

B8(53), C8(53) p9 2

B4(532), C4(532) p9 2

B2(534) p9 1

B2(59) 1741 1

G qn+1
d hOD(G)

B2(61) 1861 1

B4(61), C4(61) 6922921 2

B2(612) 6922921 1

B2(71) 2521 1

B4(71), C4(71) 12705841 2

B2(712) 12705841 1

B4(73), C4(73) 14199121 2

B16(73), C16(73) p10 2

B2(732) 14199121 1

B8(732), C8(732) p10 2

B4(734), C4(734) p10 2

B2(738) p10 1

B2(79) 3121 1

p1 = 21523361, p6 = 31879515457326527173216321
p2 = 926510094425921 p7 = 5844100138801
p3 = 1716841910146256242328924544641 p8 = 11905643330881
p4 = 407865361 p9 = 31129845205681
p5 = 125123236840173674393761 p10 = 325188939908904785521061417281

2. Preliminary results

The following lemma is a consequence of Zsigmondy’s theorem (see [30]).

Lemma 2.1. Let a be a natural number greater than 1. Then for every natu-
ral number n there exists a prime r with e(r, a) = n but for the cases (n, a) ∈
{(1, 2), (1, 3), (6, 2)}

A prime r with e(r, a) = n is called a primitive prime divisor of an−1. By Lemma
2.1, such a prime exists except for the cases mentioned in the lemma. Given a natural
number a, we denote by Rn(a) the set of all primitive prime divisors of an − 1 and
by rn(a) any element of Rn(a). By our definition, we have π(a − 1) = R1(a) but
for the following sole exception, namely, 2 /∈ R1(a) if e(2, a) = 2. In this case, we
assume that 2 ∈ R2(a).

From [2, Theorems 11.3.2 and 14.5.2], we have the following lemma.

Lemma 2.2. The following isomorphisms hold:
(1) Bn(q) ∼= PΩ2n+1(q) ∼= O2n+1(q),
(2) Cn(q) ∼= PSp2n(q) ∼= S2n(q),
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(3) B2(3) ∼= 2A4(22), Bn(2m) ∼= Cn(2m), B2(q) ∼= C2(q).

In what follows, we concentrate on the simple groups Bn(q) and Cn(q), where
n ≥ 2. Note that, if n = 1, then we have

B1(q) ∼= C1(q) ∼= L2(q).

Also, in the case that n ≥ 3 and q is an odd prime power, we have Bn(q) � Cn(q)
(see [8]).

Lemma 2.3. [20] Let M be one of the simple groups of Lie type, Bn(q) or Cn(q),
over a field of characteristic p. Let r, s be odd primes with r, s ∈ π(G) \ {p}. Put
k = e(r, q) and l = e(s, q), and suppose that 1 ≤ η(k) ≤ η(l). Then r and s are
non-adjacent if and only if η(k) + η(l) > n and 1/k is not an odd natural number.

Lemma 2.4. [19] Let M be one of the simple groups of Lie type, Bn(q) or Cn(q),
over a field of characteristic p, and let r ∈ π(M) \ {p} and k = e(r, q). Then r and
p are non-adjacent if and only if η(k) > n− 1.

Lemma 2.5. [19] Let M be one of the simple groups of Lie type, Bn(q) or Cn(q),
over a field of characteristic p. Let r be an odd prime in π(M) \{p} and k = e(r, q).
Then 2 and r are non-adjacent if and only if η(k) = n and one of the following
holds:

(1) n is odd and k = (3− e(2, q))n.
(2) n is even and k = 2n.

Using Lemmas 2.3–2.5, we have the following corollary.

Corollary 2.1. Assume that (B,C) = (Bn(q), Cn(q)). Then the following state-
ments hold.

(a) The prime graphs GK(B) and GK(C) coincide [19, Proposition 7.5].
(b) |B| = |C| and D(B) = D(C). In particular, if B � C, then we have

hOD(B) = hOD(C) ≥ 2.

Since GK(Bn(q)) = GK(Cn(q)), in Table 4 we consider these groups together
and, for brevity, use the symbol Bn(q) in both cases.

Table 4. The connected components of GK
(
Bn(q)

)
= GK

(
Cn(q)

)
.

Group Conditions on n Conditions on q π1 π2

n = 2m ≥ 2 none π
(
q
∏n−1

i=1 (q2i − 1)
)

π( qn+1
(2,q−1) )

Bn(q) n = r odd prime q = 2, 3 π
(
q(qr + 1)

∏r−1
i=1 (q2i − 1)

)
π( qr−1

(2,q−1) )

n 6= 2m q 6= 2, 3 π
(
qn2 ∏n

i=1(q2i − 1)
)

-

n 6= r, 2m q = 2, 3 π
(
qn2 ∏n

i=1(q2i − 1)
)

-

Corollary 2.2. Let M ∈ {Bn(q), Cn(q)}, where q is a power of a prime p. Then,
the following hold for M :



72 M. Akbari and A. R. Moghaddamfar

(1) If n = 2m ≥ 2, then deg(2) = deg(p) = |π1(M)| − 1.
(2) If n = r is an odd prime and q = 3, then deg(2) = |π1(M)| − 1.

Proof. (1) In this case, from Table 4, we have π1(M) = π
(
q
∏n−1

i=1 (q2i − 1)
)

and
π2(M) = π (qn + 1/(2, q − 1)). Moreover, by Lemma 2.4, it follows that only primi-
tive prime divisors of q2n − 1 are non-adjacent to p. But since

R2n(q) ⊂ π
(

qn + 1
(2, q − 1)

)
= π2(G),

we deduce that deg(p) = |π1(M)| − 1, as desired. In the sequel, we assume that p is
an odd prime. From Lemma 2.4, it is easy to see that 2 ∼ p. Moreover, by Lemma
2.5, we conclude that only primitive prime divisors of q2n− 1 are non-adjacent to 2,
and similar to the previous case it yields that deg(2) = |π1(M)| − 1.
(2) Again, in this case we have π1(M) = π

(
3(3r + 1))

∏r−1
i=1 (32i − 1)

)
and π2(M) =

π((3r − 1)/2). Here, by Lemma 2.5, we conclude that only primitive prime divisors
of 3r − 1 are non-adjacent to 2. Therefore, we obtain deg(2) = |π1(M)| − 1, as
desired.

The following corollary is easily obtained from Lemmas 2.3–2.5 and [4]:

Corollary 2.3. Let M ∈ {B3(5), C3(5)}. The following hold for M :
(1) D(M) = (4, 4, 3, 1, 3, 1),
(2) |M | = 29 · 34 · 59 · 7 · 13 · 31.
(3) |Out(M)| = 2.
(4) The prime graph of M appears as shown in Figure 1.
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Figure 1. GK(B3(5)) = GK(C3(5))

Lemma 2.6. [6, 9, 10] Let M be one of the finite simple groups of Lie type, Bn(q)
or Cn(q), over a field of characteristic p and order q. Then

(a) If n = r be an odd prime and q = 3, then hOC(M) = 2.
(b) If n = 2 and q > 5, then hOC(M) = 1.
(c) If n = 2m ≥ 4, then

hOC(M) =
{

2 if p > 2,
1 if p = 2.

Lemma 2.7. [22] Let S = P1×P2×· · ·×Pt, where Pi’s are isomorphic non-Abelian
simple groups. Then

Aut(S) ∼=
(

Aut(P1)×Aut(P2)× · · · ×Aut(Pt)
)
o St.
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In particular, |Aut(S)| =
∏t

i=1 |Aut(Pi)| · t!.

Lemma 2.8. [17] Let S be a simple group such that π(S) ⊆ {2, 3, 5, 7, 13, 31}. Then
S is isomorphic to one of the simple groups listed in Table 5.

Table 5. The simple groups S with π(S) ⊆ {2, 3, 5, 7, 13, 31}.

S |S| |Out(S)| S |S| |Out(S)|
A5 22 · 3 · 5 2 L2(26) 26 · 32 · 5 · 7 · 13 6
A6 23 · 32 · 5 4 L3(3) 24 · 33 · 13 2
U4(2) 26 · 34 · 5 2 L4(3) 27 · 36 · 5 · 13 4
A7 23 · 32 · 5 · 7 2 B3(3) 29 · 39 · 5 · 7 · 13 2
A8 26 · 32 · 5 · 7 2 O+

8 (3) 212 · 312 · 52 · 7 · 13 24
A9 26 · 34 · 5 · 7 2 G2(3) 26 · 36 · 7 · 13 2
A10 27 · 34 · 52 · 7 2 C3(3) 29 · 39 · 5 · 7 · 13 2
B3(2) 29 · 34 · 5 · 7 1 L3(32) 27 · 36 · 5 · 7 · 13 4
O+

8 (2) 212 · 35 · 52 · 7 6 L2(33) 22 · 33 · 7 · 13 6
L3(22) 26 · 32 · 5 · 7 12 U4(5) 27 · 34 · 56 · 7 · 13 4
L2(23) 23 · 32 · 7 3 B2(5) 26 · 32 · 54 · 13 2
U3(3) 25 · 33 · 7 2 L2(52) 23 · 3 · 52 · 13 4
U4(3) 27 · 36 · 5 · 7 8 L2(13) 22 · 3 · 7 · 13 2
U3(5) 24 · 32 · 53 · 7 6 L5(2) 210 · 32 · 5 · 7 · 31 2
L2(7) 23 · 3 · 7 2 L6(2) 215 · 34 · 5 · 72 · 31 2
B2(7) 28 · 32 · 52 · 74 2 L3(5) 25 · 3 · 53 · 31 2
L2(72) 24 · 3 · 52 · 72 4 L4(5) 27 · 32 · 56 · 13 · 31 8
J2 27 · 33 · 52 · 7 2 B3(5) 29 · 34 · 59 · 7 · 13 · 31 2
3D4(2) 212 · 34 · 72 · 13 3 C3(5) 29 · 34 · 59 · 7 · 13 · 31 2
2F4(2)′ 211 · 33 · 52 · 13 2 O+

8 (5) 212 · 35 · 512 · 7 · 132 · 31 24
U3(22) 26 · 3 · 52 · 13 4 G2(5) 26 · 33 · 56 · 7 · 31 1
G2(22) 212 · 33 · 52 · 7 · 13 2 L3(52) 27 · 32 · 56 · 7 · 13 · 31 12
B2(23) 212 · 34 · 5 · 72 · 13 6 L2(53) 22 · 32 · 53 · 7 · 31 6
Sz(23) 26 · 5 · 7 · 13 3 L2(31) 25 · 3 · 5 · 31 2

3. Proof of theorems

Proof of Theorem 1.1. Let p be an odd prime such that |π
(
(3p − 1)/2

)
| = 1, and let

M be one of the finite simple groups of Lie type Bp(3) or Cp(3). Assume that G
is a finite group such that |G| = |M | and D(G) = D(M). We recall that s(M) = 2
and π(M) = π1(M) ∪ π

(
(3p − 1)/2

)
. By our hypothesis, it is easy to see that

π2(G) = π2(M) = π
(3p − 1

2

)
and π(G) = π1(M) ∪ π

(3p − 1
2

)
.
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Moreover, it follows from Corollary 2.2(2) that deg(2) = |π1(M)| − 1, and so
s(G) = 2 and π1(G) = π1(M). Therefore, we deduce that OC(G) = OC(M). Hence
hOD(M) ≤ hOC(M). Now, from Corollary 2.1(b) and Lemma 2.6, we conclude that
hOD(G) = 2, as desired.

Proof of Theorem 1.2. Let q be a power of a prime and n = 2m ≥ 2. Suppose
|π(qn + 1/(2, q − 1))| = 1 and (n, q) /∈ {(2, 3), (2, 4), (2, 5)}. Let M be one of the
finite simple groups of Lie type Bn(q) or Cn(q), and let G be a finite group such
that |G| = |M | and D(G) = D(M). Similar arguments as proof of Theorem 1.1,
show that s(M) = 2 and π(M) = π1(M) ∪ π (qn + 1/(2, q − 1)). In addition, it is
easy to see that

π2(G) = π2(M) = π

(
qn + 1

(2, q − 1)

)
and π(G) = π1(M) ∪ π

( qn + 1
(2, q − 1)

)
.

Furthermore, it follows from Corollary 2.2(1) that deg(2) = |π1(M)| − 1, and so
s(G) = 2 and π1(G) = π1(M). Now, we conclude that OC(G) = OC(M), and hence
hOD(M) ≤ hOC(M). Suppose first that q is even. Then by Lemma 2.6, we have
hOC(M) = 1, which implies that hOD(M) = 1. Suppose next that q is odd. Again,
by Lemma 2.6, we see that for n = 2, hOC(M) = 1 and for n ≥ 4, hOC(M) = 2.
Now, it is easy to see that in both cases we have hOD(M) = hOC(M), as required.

Now, assume that (n, q) ∈ {(2, 4), (2, 5)}. In both cases, we have |M | < 108 and
by a result in [23], we conclude that hOD(M) = 1.

Proof of Theorem 1.3. Let M ∈ {B3(5), C3(5)}. Suppose G is a finite group, such
that

|G| = |M | = 29 · 34 · 59 · 7 · 13 · 31 and D(G) = D(M) = (4, 4, 3, 1, 3, 1).

We have to show that G is isomorphic to B3(5) or C3(5). It is evident that the
prime graph of G is connected, since deg(2) = deg(3) = 4. Moreover, by hypothesis,
we immediately conclude that the only possibilities for the prime graph GK(G) of
G are:
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Figure 2. Prime graph GK(G) of G.

Therefore, we conclude that {2, 3, 5, 6, 7, 10, 13, 15, 26, 39, 65} ⊆ ω(G), and the sub-
sets {5, 7, 31} and {7, 13, 31} of vertices are independent sets of GK(G). In the
sequel, we break up the proof into a sequence of lemmas. Let K be the maximal
normal solvable subgroup of G.

Lemma 3.1. K is a {2, 3, 5}-group. In particular, G is non-solvable.
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Proof. First, we show that K is a 31′-group. Assume the contrary and let 31 divides
the order of K. In this case K possesses an element x of order 31. We set C := CG(x)
and N := NG(〈x〉). By the structure of D(G), it follows that C is a {p, 31}-group
where p ∈ {2, 3} . Now using (N/C)-Theorem the factor group N/C is embedded
in Aut(〈x〉) ∼= Z30. Hence, N is a {2, 3, 5, 31}-group. Now, by Frattini argument
G = KN . This implies that {7, 13} ⊆ π(K). Since K is solvable, it possesses a Hall
{7, 13}-subgroup L of order 7 · 13. Clearly L is cyclic and hence 7 ∼ 13, which is a
contradiction.

Next, we show that K is a p′-group for p ∈ {7, 13}. Let p ∈ π(K), Kp ∈ Sylp(K)
and N = NG(Kp). Again, by Frattini argument G = KN and hence 31 divides
the order of N . Let L be a subgroup of N of order 31. Since L normalizes Kp, G
contains a subgroup of order 31 · p and this leads to a contradiction as before, since
p - 31− 1. Therefore K is a {2, 3, 5}-group.

In addition, since K 6= G, it follows that G is non-solvable. This completes the
proof.

Lemma 3.2. The factor group G/K is an almost simple group. In fact, S ≤ G/K ≤
Aut(S) where S ∈ {B3(5), C3(5)}.

Proof. Let H := G/K and S := soc(H). Evidently, S = P1 × P2 × · · · × Pm, where
Pi’s are non-Abelian simple groups. This implies that Z(S) = 1, or equivalently
CH(S)∩S = 1. But then CH(S) = 1, since otherwise CH(S) would contain minimal
normal subgroups of H disjoint from S, which is a contradiction. Consequently, we
get

G/K ∼=
NH(S)
CH(S)

↪→ Aut(S).

In what follows, we will show that m = 1 and P1
∼= B3(5) or C3(5).

Suppose that m ≥ 2. In this case, it is easy to see that {7, 31} ∩ π(S) = ∅, since
otherwise deg(7) ≥ 2 or deg(31) ≥ 2, which is a contradiction. Hence, for every
i we have maxπ(Pi) = 13. On the other hand, by Lemma 3.1, we observe that
31 ∈ π(H) ⊆ π(Aut(S)). Thus, we may assume that 31 divides the order of Out(S).
But

Out(S) = Out(S1)× · · · ×Out(Sr),
where the groups Sj are direct products of isomorphic Pi’s such that

S ∼= S1 × · · · × Sr.

Therefore, for some j, 31 divides the order of an outer automorphism group of a
direct product Sj of t isomorphic simple groups Pi. Since maxπ(Pi) = 13, it follows
that |Out(Pi)| is not divisible by 31, see [17, Table 4]. Now, by Lemma 2.7, we
obtain |Aut(Sj)| = |Aut(Pi)|t · t!. Therefore, t ≥ 31 and so 262 must divide the order
of G, which is a contradiction. Therefore m = 1 and S = P1.

Now, from Lemma 3.1, we easily conclude that

|S| = 2a · 3b · 5c · 7 · 13 · 31,

where 2 ≤ a ≤ 9, 0 ≤ b ≤ 4 and 0 ≤ c ≤ 9. Using collected results contained in Table
5, we deduce that S ∼= B3(5), C3(5) or L3(52). If S ∼= L3(52), then 7 · 31 ∈ ω(S) (see
[5]), which is a contradiction. This completes the proof.
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Lemma 3.3. G is isomorphic to B3(5) or C3(5).

Proof. By Lemma 3.2, M ≤ G/K ≤ Aut(M), which implies that G/K ∼= M or
Aut(M). In the case that G/K ∼= M , by order consideration we deduce that |K| = 1
and G ∼= M , as desired. In the latter case, we have |K| = 2 and so K ≤ Z(G). But
then, we obtain deg(2) = 5, which is a contradiction. This proves the lemma and
the theorem.

Acknowledgement. The authors are thankful to the referee for carefully reading
the paper and for his suggestions and remarks. The second author would like to
thank the IPM for the financial support. This research was in part supported by a
grant from IPM (No. 88200014).

References

[1] M. Akbari, A. R. Moghaddamfar and S. Rahbariyan, A characterization of some finite simple
groups through their orders and degree patterns, Algebra Colloq. to appear.

[2] R. W. Carter, Simple Groups of Lie Type, John Wiley & Sons, London, 1972.

[3] G. Chen, A new characterization of sporadic simple groups, Algebra Colloq. 3 (1996), no. 1,
49–58.

[4] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite

Groups, Oxford Univ. Press, Eynsham, 1985.
[5] M. R. Darafsheh, A. R. Moghaddamfar and A. R. Zokayi, A recognition of simple groups

PSL(3, q) by their element orders, Acta Math. Sci. Ser. B Engl. Ed. 24 (2004), no. 1, 45–51.

[6] M. R. Darafsheh, On non-isomorphic groups with the same set of order components, J. Korean
Math. Soc. 45 (2008), no. 1, 137–150.

[7] A. A. Hoseini and A. R. Moghaddamfar, Recognizing alternating groups Ap+3 by their orders

and degree patterns, Front. Math. China 5 (2010), no. 3, 541–553.
[8] J. F. Humphreys, A Course in Group Theory, Oxford Science Publications, Oxford Univ.

Press, New York, 1996.

[9] A. Iranmanesh and B. Khosravi, A characterization of C2(q) where q > 5, Comment. Math.
Univ. Carolin. 43 (2002), no. 1, 9–21.

[10] A. Khosravi and B. Khosravi, r-recognizability of Bn(q) and Cn(q) where n = 2m ≥ 4, J.
Pure Appl. Algebra 199 (2005), no. 1-3, 149–165.

[11] A. S. Kondrat’ev, On prime graph components of finite simple groups, Mat. Sb. 180 (1989),

no. 6, 787–797, 864; translation in Math. USSR-Sb. 67 (1990), no. 1, 235–247.
[12] A. S. Kondrat’ev and V. D. Mazurov, Recognition of alternating groups of prime degree from

the orders of their elements, (R Sibirsk. Mat. Zh. 41 (2000), no. 2, 359–369, iii; translation in

Siberian Math. J. 41 (2000), no. 2, 294–302.
[13] A. R. Moghaddamfar, A. R. Zokayi and M. R. Darafsheh, A characterization of finite simple

groups by the degrees of vertices of their prime graphs, Algebra Colloq. 12 (2005), no. 3,

431–442.
[14] A. R. Moghaddamfar and A. R. Zokayi, Recognizing finite groups through order and degree

pattern, Algebra Colloq. 15 (2008), no. 3, 449–456.

[15] A. R. Moghaddamfar and A. R. Zokayi, OD-characterization of certain finite groups having
connected prime graphs, Algebra Colloq. 17 (2010), no. 1, 121–130.

[16] A. R. Moghaddamfar and A. R. Zokayi, OD-characterization of alternating and symmetric
groups of degrees 16 and 22, Front. Math. China 4 (2009), no. 4, 669–680.

[17] A. R. Moghaddamfar and S. Rahbariyan, More on the OD-characterizability of a finite group,

Algebra Colloq. 18 (2011), no. 4, 663–674.
[18] M. Suzuki, On the prime graph of a finite simple group—an application of the method of

Feit-Thompson-Bender-Glauberman, in Groups and Combinatorics—in Memory of Michio

Suzuki, 41–207, Adv. Stud. Pure Math., 32 Math. Soc. Japan, Tokyo, 2001.



Simple Groups Which are 2-Fold OD-Characterizable 77

[19] A. V. Vasil’ev and E. P. Vdovin, An adjacency criterion in the prime graph of a finite simple

group, Algebra Logika 44 (2005), no. 6, 682–725, 764; translation in Algebra Logic 44 (2005),

no. 6, 381–406.
[20] A. V. Vasiliev and E. P. Vdovin, Cocliques of maximal size in the prime graph of a finite

simple group, Algebra and Logic 50 (2011), no. 4, 291–322.
[21] J. S. Williams, Prime graph components of finite groups, J. Algebra 69 (1981), no. 2, 487–513.

[22] A. V. Zavarnitsin, Recognition of alternating groups of degrees r + 1 and r + 2 for prime r

and of a group of degree 16 by the set of their element orders, Algebra Log. 39 (2000), no. 6,
648–661, 754; translation in Algebra and Logic 39 (2000), no. 6, 370–377.

[23] L. Zhang and W. Shi, OD-characterization of all simple groups whose orders are less than 108,

Front. Math. China 3 (2008), no. 3, 461–474.
[24] L. Zhang, W. Shi, L. L. Wang and C. G. Shao, OD-Characterization of A16, J. Suzhou Univ.

Nat. Sci. Ed. 24 (2008), no. 2, 7–10.

[25] L. Zhang and W. Shi, OD-characterization of almost simple groups related to L2(49), Arch.
Math. (Brno) 44 (2008), no. 3, 191–199.

[26] L. Zhang and W. Shi, OD-characterization of simple K4-groups, Algebra Colloq. 16 (2009),

no. 2, 275–282.
[27] L. Zhang, W. Shi, C. G. Shao and L. L. Wang, OD-Characterization of the simple group L3(9),

J. Guangxi Univ. Nat. Sci. Ed. 34 (2009), no. 1, 120–122.
[28] L. Zhang and W. J. Shi, OD-characterization of almost simple groups related to U3(5), Acta

Math. Sin. (Engl. Ser.) 26 (2010), no. 1, 161–168.

[29] L. Zhang and W. Shi, OD-Characterization of the projective special linear groups L2(q),
Algebra Colloq. to appear.

[30] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), no. 1, 265–284.


