
BULLETIN of the
MALAYSIAN MATHEMATICAL

SCIENCES SOCIETY

http://math.usm.my/bulletin

Bull. Malays. Math. Sci. Soc. (2) 35(2) (2012), 335–343

Completely Simple and Regular Semi Hypergroups

1HOSSEIN MOUSA JAFARABADI, 2NOR HANIZA SARMIN
AND 3MOHAMMAD REZA MOLAEI

1 ,2Department of Mathematics, Faculty of Science,
Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia

3Department of Mathematics, University of Kerman (Shahid Bahonar), Kerman, Iran
1hmjafarabadi@gmail.com, 2nhs@fs.utm.my, 3mrmolaei@mail.uk.ac.ir
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1. Introduction

The origin of hypergroup can be traced back to the time of the rise of group theory in 1900
with the work of Frobenious. In the mid of 30’s, Marty [11] and Wall [16] introduced the
concept of an algebraic hypergroup, mainly within the theory of Non-abelian groups and
related structures of spaces of conjugacy classes and double cosets. Now this field of mod-
ern algebra is widely studied from the theoretical and applied viewpoints because of their
applications to many subjects of pure and applied mathematics. This theory has been sub-
sequently developed by Corsini [1, 2], Davvaz [4, 5, 6], Mittas [12], Vougiouklis [15] and
by various authors. The basic notions and results of the object can be found in [1]. In 2003,
Corsini and Leoreanu presented numerous applications of hyperstructure theory [2]. These
applications can be used in the following areas: geometry, graphs, fuzzy sets, cryptography,
automata, lattices, binary relations, codes, and artificial intelligence. By an analogue to semi
group theory, semi hypergroups can be considered from two points of view: algebraic and
harmonic analysis. The theory of hypergroups was introduced into harmonic analysis in the
70’s by the papers of Dunkl [7], Jewett [10], and Spector [14]. Up to now many researchers
have been studying in this field of applications of hyperstructures theory. Norbert Youmbi
has studied completely simple semi hypergroups from harmonic analysis point of view [17].
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He considered a semi hypergroup S that is also a locally compact Hausdorff space, and hy-
peroperation in S defines a probability measure with the compact support contained in S. In
2006, Chaopraknoi and Triphop introduced the regular semi hypergroups and they proved
some results on the regularity of semi hypergroups of infinite matrices [3]. This paper is
concerned to a generalization of Rees theorem for semi group theory [8, 13] to semi hy-
pergroups theory. It has proved that Rees matrix semi hypergroup is a completely simple
semi hypergroup. The outline of this paper is as follows: Section 2 is a brief overview of
some basic notions and results on hyperstructures theory related to this research. Simple
semi hypergroups and some properties of this algebraic structure are presented in Section 3.
In Section 4, some methods for constructing new simple semi hypergroups are presented.
Completely simple semi hypergroups and some properties of this algebraic structure are
presented in Section 5. Section 6 is concerned with three methods for constructing new
completely simple semi hypergroups. In this paper, it will be proved that the product of two
simple semi hypergroups and also two completely simple semi hypergroups are simple and
completely simple semi hypergroup, respectively. The quotients of semi hypergroups are
considered and it is shown that if S is a simple semi hypergroup and ρ is a regular equiv-
alence relation then S/ρ is a simple semi hypergroup. It is shown that in this case if S is
a regular hyperhroup then S/ρ is a completely simple semi hypergroup. In Section 7 three
structural results on the regularity of semi hypergroups are presented.

2. Basic notions and preliminaries

We recall the following terminologies from [1, 2, 12, 15]. Let H be a nonempty set and
P∗(H) be the set of all nonempty subsets of H. An n-hyperoperation on H is a map ◦ : Hn→
P∗(H) and a set H endowed with a family Γ of hyperoperations, is called a hyperstructure
(multivalued algebra). If Γ is a singleton, that is Γ = { f}, then the hyperstructure is called
hypergroupoid. The hyperoperation is denoted by ” ◦ ” and the image of (a,b) of H is
denoted by a◦b and is called the hyperproduct of a and b. If A and B are nonempty subsets
of H then A◦B =

⋃
a∈A,b∈B a◦b . A semi hypergroup is hypergroupoid (H,◦) such that:

∀(a,b,c) ∈ H3,(a◦b)◦ c = a◦ (b◦ c).

A hypergroup is a semi hypergroup (H,◦) such that :

∀a ∈ H,a◦H = H ◦a = H.

For example, let (G,◦) be a group and H be a normal subgroup of G. Then (G,∗) with
the following hyperoperation is a hypergroup:

∀(x,y) ∈ H2,x∗ y = Hx◦ y.

Let (H,◦) be a hypergroupoid. An element e is called an identity or unit if

∀a ∈ H,a ∈ a◦ e∩ e◦a.

Let (H,◦) be a hypergroup endowed with at least an identity. An element a′ ∈ H is called
an inverse of a ∈ H if there exists an identity e ∈ H such that:

e ∈ a◦a′∩a′ ◦a.

A hypergroup is called regular if it has at least one identity and each element has at least
one inverse. The element a in hypergroup (H,◦) is called scalar if

∀x ∈ H, |a◦ x|= |x◦a|= 1.
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Let (H,◦) and (K,∗) be two hypergroups, and F : H→ K be a map. Then:
(i) f is a homomorphism if

∀(a,b) ∈ H2, f (a◦b)⊆ f (a)∗ f (b).

(ii) f is a good homomorphism if

∀(a,b) ∈ H2, f (a◦b) = f (a)∗ f (b).

Let (H,◦) a hypergroupoid and ρ be an equivalence relation on H. We say that ρ is
regular on the right if the following implication holds: aρb→ ∀u ∈ H,∀x ∈ a ◦ u,∃y ∈
b ◦ u : xρy and ∀y′ ∈ b ◦ u,∃x′ ∈ a ◦ u : x′ρy′. Similarly, the regularity on the left can be
defined. The equivalence relation ρ is said to be regular if it is regular on the right and on
the left.

3. Simple semi hypergroups

In this section the concept of simple in the context of semi hypergroups is introduced. The
results of this section give an important characterization of simple semi hypergroups.

If a semi hypergroup S with at least two elements contains an element 0 such that 0s =
0s = {0}, for all s in S, then 0 is said to be a zero scalar element (or just zero scalar) of
S and S is called a semi hypergroup with zero scalar. The concept of hyperideal in semi
hypergroups theory is given as the following: A nonempty subset I of a semi hypergroup S
is called left hyperideal if SI ⊆ I, a right hyperideal if IS ⊆ I, and (two-sided) hyperideal
if it is both left and right hyperideal [4]. Using the terminologies of semi group theory, the
following definitions for 0-simple and simple semi hypergroups are presented.

Definition 3.1. [9] A semi hypergroup without zero scalar is called simple if it has no
proper hyperideals. A semi hypergroup S with zero scalar is called 0-simple if it has the
following conditions:

i) 0 and S are only its hyperideals.
ii) S2 6= 0.

Example 3.1. The set of real numbers R with the hyperoperation

a.b =


(a,b), if a < b;
(b,a), if b < a; for all a,b ∈ R
{a}, if a = b;

is a simple semi hypergroup.

Proposition 3.1. Semi hypergroup S is 0-simple if and only if SaS = S for all a∈ S. It means
for every a,b ∈ S−{0} there exist x,y in S such that b ∈ xay.

Proof. The scheme of the proof is similar to the proof of the same result in semi group
theory [8]. First, suppose that S is a 0-simple semi hypergroup. It is easy to see that S2 is
a hyperideal of S. By Definition 5.1, S2 6= 0. Thus S2 = S, and it follows that S3 = S. Now
consider an element a∈ S that is not a zero scalar element. It is clear that SaS is a hyperideal
of S. In the case of SaS = {0} the set I = {s∈ S,SsS = {0}} is a nonempty subset of S since
a ∈ I. If x is an element of SI, then there exist elements s in S and i in I such that x ∈ si and
hence SxS⊆ SsiS⊆ SiS = {0}.
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This implies SxS = {0} and x ∈ I. In a similar way, it can be shown that IS is also a
subset of I. It follows that I is a hyperideal of S, hence I = S. Thus for all s in S, SsS = {0},
that is S3 = {0}, which is a contradiction to S3 = S. Therefore, SaS = S for every a 6= 0 in
S. Conversely, assume that SaS = S for all a 6= 0 in S, then S2 is not equal to {0} (S2 = {0}
means SaS = {0} for all a 6= 0 in S). Now, suppose that a is an element of S that is not a
zero scalar and I is a hyperideal of S containing a. Then S = SaS ⊆ SIS ⊆ I or S = I. Thus
S is 0-simple.

Proposition 3.1 leads to the following important corollary that can be used for a charac-
terization of simple semi hypergroups.

Corollary 3.1. A semi hypergroup S is simple if and only if for all a in S,SaS = S.

Proposition 3.2. Every hypergroup is a simple semi hypergroup.

Proof. If H is a hypergroup, then for all a in H , aH = Ha = H. Hence, H = aH ⊆HH ⊆H
and so HH = H. On the other hand, aH = H, thus HaH = HH = H, that is H is simple.

4. Construction of simple semi hypergroups

This section is concerned with some methods to construct new simple semi hypergroups.
Let (S,∗) and (T,◦) be two semi hypergroups. It has been proved that the Cartesian product
of these two semi hypergroups is a semi hypergroup with the following hyperoperation [1]:
(s1, t1)⊗ (s2, t2) = (s1 ∗ s2)× (t1 ◦ t2).

Theorem 4.1. Let (S,∗) and (T,◦) be two simple semi hypergroups. Then the product S×T
with the above hyperoperation is a simple semi hypergroup.

Proof. Suppose that (a,b) is an arbitrary element of S× T that is not a zero scalar. It is
clear that SaS = S and T bT = T , and so S×T = SaS×T bT . Now, consider z = (x,y) as an
element of S×T . It follows that there exist (c,d) in Sa×T b and (s, t) in S×T such that
(x,y) ∈ cs×dt = (c,d)⊗ (s, t).

There exists also (s′, t ′) in S×T such that (c,d) ∈ (s′, t ′)(a,b), and so (x,y) ∈ (c,d)⊗
(s, t)⊆ S×T (a,b)(s, t)⊆ S×T (a,b)S×T . Hence S×T ⊆ S×T (a,b)S×T . It is clear that
S×T (a,b)S×T ⊆ S×T , and so S×T (a,b)S×T = S×T . That is S×T is simple.

Let (H,◦) be a semi hypergroup and ρ an equivalence relation on H. Then:
(i) If ρ is regular, then H/ρ is a semi hypergroup, with respect to the following hyper-

operation ∀(x,y) ∈ (H/ρ)2,x⊗ y = {z,z ∈ x◦ y}.
(ii) Conversely, if hyperoperation ”⊗ ” is well-defined on H/ρ , then ρ is regular.

(iii) The canonical projection π : H → H/ρ is a good epimorphism and when (H,◦) is
a hypergroup, then (H/ρ,⊗) is also a hypergroup, denoted by H/ρ [2].

New simple semi hypergroups by using of the above result and the next proposition can also
be constructed.

Proposition 4.1. Let (H,◦) be a simple semi hypergroup and ρ be a regular equivalence
relation on H. Then H/ρ is a simple semi hypergroup with respect to the following hyper-
operation ∀(x,y) ∈ (H/ρ)2,x⊗ y = {z,z ∈ x◦ y}.

Proof. As mentioned above in this case H/ρ is a semi hypergroup. Suppose that a and b
are two arbitrary elements of H/ρ . There exist elements a and b in H such that a and b are
the images of a and b in H/ρ with respect to the canonical projection respectively. Since H
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is simple, then there exist elements x and y in H such that b ∈ xay. Thus b ∈ xay, and hence
b ∈ x⊗a⊗y (in this case canonical projection is a good homomorphism [1, 2]), that is H/ρ

is simple.

Example 4.1. Consider the set of integer numbers Z with the hyperoperation i◦ j = {i, j}.
By Proposition 3.2, this hyperstructure is a simple semi hypergroup. Let the equivalence
relation ρ be the congruence modulo 2, that is a regular equivalence relation. Then Z =
Z/ρ = {0,1} with respect to the following hyperoperation is a simple semi hypergroup:
i⊗ j = {k,k ∈ i◦ j = {i, j}}. In fact, Z⊗ i⊗Z = Z for i = 0,1.

The following theorem is an approach to a generalization of Rees theorem in semi group
theory. By using of this theorem new simple semi hypergroups can also be constructed.

Theorem 4.2. Let H be a regular hypergroup, and I,Λ be nonempty sets. Let P = (pi j) be
a Λ× I regular matrix (it has no row or column that consists entirely of zeros) with entries
from H.Then S = I×H ×Λ (Rees Matrix Semi hypergroup)with respect to the following
hyperoperation is a simple semi hypergroup: (i,a,λ )( j,b,µ) = {(i, t,µ), t ∈ apλ jb}.

Proof. In a direct verification, the associativity of the hyperoperation can be proved. Let
(i,a,λ ),( j,b,µ) and (k,c,ψ) be arbitrary elements of S, and z is an element of the following
set:

(i,a,λ )[( j,b,µ)(k,c,ψ)] =
⋃

t∈bpµkc

{(i,x,ψ),x ∈ apλ jt}.

There exists t ′ in bpµkc and x′ in apλ jt ′ such that z = (i,x′,ψ). This means there exists v in
pµkc and u in apλ j such that t ′ ∈ bv and x′ ∈ ut ′, and so x′ ∈ ubv. It follows that there exists
s in apλ jb such that x′ ∈ spµkc. Thus

z = (i,x′,ψ) ∈
⋃

s∈apλ jb

{(i,y,ψ),y ∈ spµkc}= [(i,a,λ )( j,b,µ)](k,c,ψ).

In a similar way, it can be shown that every element of [(i,a,λ )( j,b,µ)](k,c,ψ) is an ele-
ment of the set (i,a,λ )[( j,b,µ)(k,c,ψ)]. Therefore, S is a semi hypergroup.

To verify that S is simple, suppose that (i,a,λ ) and ( j,b,µ) are two elements of S that
are not zero scalar. Since H is a hypergroup, then there exist elements x and y in H such
that b ∈ xay, and due to the regularity of H, there exists an identity element e in H such that
b ∈ xeaey, and so b ∈ xpvi

−1 pviapλk pλk
−1y ( by the regularity of matrix P the elements v in

Λ and k in I can be chosen such that pλk and pvi are not zero scalar). It follows that there
exists t in xpvi

−1 pvia such that b ∈ t pλk pλk
−1y, hence

( j,b,µ) ∈ {( j,e,v),e ∈ xpvi
−1}(i,a,λ ){(k, f ,µ), f ∈ pλk

−1y}

=
⋃

t∈xpvi−1 pvia

{( j,s,µ),s ∈ t pλk pλk
−1y}.

It means that there exists e′ in xpvi
−1 and f ′ in pλk

−1y such that

( j,b,µ) ∈ ( j,e′,v)(i,a,λ )(k, f ′,µ).

Thus S is simple.
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5. Completely simple semi hypergroups

In this section completely simple semi hypergroup is introduced. By using of the results
in Sections 3 and 4 new results about completely simple semi hypergroups are proved. For
notational simplicity, hereafter we identify a singleton with its element.

Definition 5.1. An element e in a semi hypergroup S is called an idempotent if e ∈ e2.

In the set of all scalar idempotent elements of semi hypergroup S we can define an order
e≤ f if and only if e = e f = f e It is easy to show that this relation is an order relation.

Definition 5.2. A scalar idempotent e in the set of all scalar idempotent elements of semi
hypergroup S is called primitive scalar idempotent (or just primitive) if it is minimal within
the set of all nonzero scalar idempotent elements of S. Thus a primitive scalar idempotent
has the following property: If 0 6= f = e f = f e then e = f .

Definition 5.3. A semi hypergroup is called completely simple semi hypergroup if it is
simple and has primitive idempotent.

Example 5.1. Consider semi hypergroup S = {p,q,r, t} with respect to the following Cay-
ley table: In this semi hypergroup p and t are idempotent elements. The idempotent p is

∗ p q r t
p p q r t
q q {p,r} {q,r} t
r r {q,r} {p,q} t
t t t t S

Table 1. Cayley table for a completely simple semi hypergroup

the only scalar idempotent, that is a primitive idempotent. This semi hypergroup is clearly
simple (SaS = S,∀a ∈ S) so it is a completely simple semi hypergroup.

Example 5.2. Semi hypergroup of Example 3.1 is a completely simple semi hypergroup.
In fact, every element of this semi hypergroup is a primitive idempotent.

Lemma 5.1. Every scalar idempotent of a regular hypergroup is a scalar identity.

Proof. Let H be a regular hypergroup and a be a scalar idempotent of H. Then a2 = a, so
a−1a2 = a−1a (due to regularity of H, a−1 as an inverse of a exists), it means there exists
an identity element such as e in H such that ea = e (a is scalar). On the other hand, e is the
identity, thus ea = ae = a, and so a = e.

Proposition 5.1. Every regular hypergroup is a completely simple semi hypergroup.

Proof. Let H be a regular hypergroup. Assume that e and f are two scalar idempotent
elements of H, and f = e f = f e, By Lemma 1, f is an identity element of H, thus e = e f =
f e, and so e = f . It means every scalar idempotent of H is primitive and this conduces that
H is a completely simple semi hypergroup.
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6. Construction of completely simple semi hypergroups

In this section, three methods to construct new completely simple semi hypergroups are
presented. To construct new completely simple semi hypergroups by using of the quotient
semi hypergroups the following theorem will be used.

Theorem 6.1. Let (H,∗) be a regular hypergroup and ρ be a regular equivalence relation
on H. Then H/ρ with respect to the following hyperoperation is a regular hypergroup:
∀(x,y) ∈ (H/ρ)2,x⊗ y = {z,z ∈ x∗ y}.
Proof. It is proved that if H is a hypergroup then H/ρ is also a hypergroup [1, 2]. Suppose
that e is an identity element of H. Then x ∈ xe∩ ex, for all x ∈ H, sox ∈ xe∩ ex. Canonical
projection π : H → H/ρ is a good epimorphism [1, 2], thus x ∈ x e∩ e x. It means e is an
identity element of H/ρ . On the other hand, if x is an arbitrary element of H/ρ , then there
exists x in H such that π(x) = x. By the regularity of H, there exist elements such as e
(identity) and x′ in H such that e ∈ xx′∩ x′x and so e ∈ xx′∩ x′x = x x′∩ x′ x. It means x′ is
an inverse for x.

Example 6.1. Consider the set of integers (Z,+) as a regular hypergroup. Let the equiv-
alence relation ρ be the congruence modulo 2, that is a regular equivalence relation. Then
it is easy to show that Z = Z/ρ = {0,1} with respect to the following hyperoperation is a
regular semi hypergroup: ∀

(
i, j
)
∈ Z2

, i⊗ j = {k,k = i+ j}.
Corollary 6.1. Let (H,∗) be a regular hypergroup and ρ be a regular equivalence relation
on H. Then H/ρ with the following hyperoperation is a completely simple semi hypergroup.
∀(x,y) ∈ (H/ρ)2,x⊗ y = {z,z ∈ x∗ y}.
Proof. The proof follows from Theorem 6.1 and Proposition 5.1.

Proposition 6.1. Every finite hypergroup with at least one scalar element is a completely
simple semi hypergroup.

Proof. Let H be a finite hypergroup with at least one scalar element. Then there exists an
identity element of H such as e such that the set of all scalar elements of H is a group with
the identity e [2, page 9]. It is clear that e is a scalar idempotent. It now follows that the
primitive scalar idempotent exists. Consider a descending chain e1 ≥ e2 ≥ e3 ≥ ... of scalar
idempotent elements in H. This chain has to be finite because H is finite. It means H has
primitive scalar idempotent, and so it is completely simple semi hypergroup.

Theorem 6.2. Let (S,∗) and (T,◦) be two completely simple semi hypergroups. Then the
product S×T with the following hyperoperation is a completely simple semi hypergroup:
(s1, t1)⊗ (s2, t2) = (s1 ∗ s2)× (t1 ◦ t2).

Proof. In Theorem 4.1, it is proved that S×T with the above hyperoperation is a simple
semi hypergroup. So it is sufficient to prove that S× T has primitive scalar idempotent
element. Suppose that es,et are primitive scalar idempotent in S and T respectively. Then
es = es ∗ es and et = et ◦ et so (es,et) = es ∗ es× et ◦ et = (es,et)⊗ (es,et).

It means (es,et) is a scalar idempotent element of S×T . On the other hand, if ( fs, ft)
is another scalar idempotent element in S× T and ( fs, ft) = (es,et)⊗ ( fs, ft) = ( fs, ft)⊗
(es,et), then ( fs, ft) = es ∗ fs× et ◦ ft = fs ∗ es× ft ◦ et . And so fs = es ∗ fs = fs ∗ es and
ft = et ◦ ft = ft ◦et . Hence ( fs, ft) = (es,et), and (es,et) is a primitive scalar idempotent for
S×T .
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Theorem 6.3. Let H be a regular hypergroup, and I,Λ be nonempty sets. Let P = (Pi j) be
a Λ× I regular matrix (it has no row or column that consists entirely of zeros) with entries
from H. Then S = I×H×Λ (Rees Matrix Semi hypergroup) with respect to the following
hyperoperation is a completely simple semi hypergroup: (i,a,λ )( j,b,µ) = {(i, t,µ), t ∈
apλ jb}.

Proof. The associativity of the hyperoperation and to verify that S is simple are already
proved in Theorem 4.2. By analogues to semi group theory, it is easy to show that every
scalar idempotent of S is primitive idempotent. Therefore, S is a completely simple semi
hypergroup.

7. On the regularity of semi hypergroups

In this section, three results on the regularity of semi hypergroups are proved. An element
s in a semi hypergroup (S,◦) is called regular if there exists an element x in S such that
s ∈ s ◦ x ◦ s. A semi hypergroup is called regular semi hypergroup if all of its elements are
regular. For example let S be a semi group, P be a nonempty subset of S. Then S with the
hyperoperation x◦ y = xPy(x,y ∈ S) is a regular semi hypergroup [3].

Theorem 7.1. Let ϕ : S→ T be a good homomorphism from a regular semi hypergroup S
into semi hypergroup T . Then ℑϕ is a regular semi hypergroup.

Proof. Assume that t is an arbitrary element in ℑϕ . There exists an element such as s in S
such that ϕ(s) = t. By the regularity of S there exists an element x in S such that s∈ sxs, and
so t ∈ ϕ(s) ∈ ϕ(sxs) = ϕ(s)ϕ(x)ϕ(s) = tϕ(s)t. Thus ℑϕ is a regular semi hypergroup.

Corollary 7.1. Let (S,◦) be a regular semi hypergroup and ρ be a regular equivalence
relation on s. Then S/ρ with respect to the following hyperoperation is a regular semi
hypergroup: ∀(x,y) ∈ (S/ρ)2,x⊗ y = {z,z ∈ x◦ y}.

Proof. It is proved that with the above hyperoperation, S/ρ is a semi hypergroup and canon-
ical projection from S into S/ρ is a good epimorphism [3]. Now, by using of Theorem 7.1
it is clear that S/ρ is a regular semi hypergroup.

Theorem 7.2. Let (S,∗) and (T,◦) be two regular semi hypergroups. Then the product
S×T with respest to the following hyperoperation is a regular semi hypergroup: (s1, t1)⊗
(s2, t2) = s1 ∗ s2× t1 ◦ t2.

Proof. As mentioned in Section 4, it is proved that S×T with the above hyperoperation is
a semi hypergroup. Let (s, t) be an arbitrary element of S×T . Then there exist elements x
in S and y in T such that s ∈ sxs and t ∈ tyt. Thus (s, t) ∈ sxs× tyt = (s, t)⊗ (x,y)⊗ (s, t). It
means S×T is a regular semi hypergroup.
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