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Abstract. In this paper, first we characterize Cayley graphs of finite Brandt semigroups,
and we give a criterion to check whether a finite digraph is a Cayley graph of a finite Brandt
semigroup. Also Kelarev and Praeger gave necessary and sufficient conditions for Cayley
graphs of semigroups to be vertex-transitive. Then, some authors gave descriptions for all
vertex-transitive Cayley graphs of some special classes of semigroups. In this note similar
descriptions for all vertex-transitive Cayley graphs of Brandt semigroups are given.
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1. Introduction

Let S be a semigroup and C be a subset of S. Recall that the Cayley graph Cay(S,C) of S with
the connection set C is defined as the digraph with vertex set S and arc set E(Cay(S,C)) =
{(s,cs) : s ∈ S,c ∈C}.

Cayley graphs of groups have been extensively studied and some interesting results have
been obtained (see for example, [1]). Also, the Cayley graphs of semigroups have been
considered by some authors (see for example, [2], [3], [6]–[17]).

It is known that the Cayley graphs of groups are vertex transitive; i.e. for every two ver-
tices g1, g2 there exists a graph automorphism φ such that φ(g1) = g2. In [10], Kelarev and
Praeger characterized vertex transitive Cayley graphs Cay(S,C) of semigroups S for which
all principal left ideals of the subsemigroup generated by the connection set C are finite.
Using this result, in [3, 14, 15, 17], descriptions of vertex transitive Cayley graphs of some
special classes of semigroups are given. In this paper we give similar descriptions for all
vertex-transitive Cayley graphs of Brandt semigroups which form one of the most popular
classes of semigroups. Sabidussi in [18] presented a criterion to check whether a digraph
is a Cayley graph of a group. In [16] by presenting a characterization of the Cayley graphs
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of Clifford semigroups, a similar criterion for these Cayley graphs is obtained. Similarly
in [15], a characterization of the Cayley graphs of rectangular groups is obtained. Also in
this note, we present a characterization of Cayley graphs of finite Brandt semigroups and
we give a criterion to check whether a finite digraph is a Cayley graph of a finite Brandt
semigroup.

2. Preliminaries

A digraph (directed graph) Γ is a nonempty set V = V (Γ) of vertices, together with a
binary relation E = E(Γ) on V . We denote the digraph Γ by Γ = (V,E). A digraph is
symmetric if the relation E is symmetric. Symmetric digraphs are more conveniently viewed
as (undirected) graphs. The elements a = (u,v) of E are called the arcs of Γ, u is said the
tail of a and v is its head. An empty digraph is one with no arcs. Given a digraph Γ, the
underlying graph of Γ which is denoted by Γ̄, is the graph with the same vertices of Γ and
(u,v),(v,u) ∈ E(Γ̄) if (u,v) or (v,u) belongs to E(Γ). A digraph Γ is said to be connected if
its underlying graph is connected. If for each pair of vertices u,v of Γ, there exists a directed
path from u to v, then Γ is said to be strongly connected. By a connected component of a
digraph Γ we mean any component of the underlying graph of Γ. The in-degree d−

Γ
(v) of a

vertex v in a digraph Γ is the number of arcs with head v; the out-degree d+
Γ

(v) of v is the
number of arcs with tail v.

Let Γ = (V,E) be a digraph. Suppose that V ′ is a nonempty subset of V. The subgraph
of Γ whose vertex set is V ′ and whose arc set is the set of those arcs of Γ that have both
ends in V ′ is called the subgraph of Γ induced by V ′ and is denoted by Γ[V ′]. The union
of digraphs Γ1 and Γ2, written Γ1 ∪Γ2, is the digraph with vertex set V (Γ1)∪V (Γ2) and
arc set E(Γ1)∪E(Γ2). If Γ1 and Γ2 are disjoint, we denote their union by Γ1 + Γ2. In this
paper, the i-th projection map is denoted by πi.

Let S be a semigroup, and C be a nonempty subset of S. The Cayley digraph Cay(S,C) of
S relative to C (which is simply called Cayley graph) is defined as the digraph with vertex
set S and arc set E(C) consisting of those ordered pairs (s, t) such that cs = t, for some
c ∈ C. The set C is called the connection set of Cay(S,C) (see [7]). Obviously, if C is an
empty set, then Cay(S,C) is an empty digraph.

Let Γ1 = (V1,E1) and Γ2 = (V2,E2) be digraphs. A graph (digraph) homomorphism
φ : Γ1→ Γ2 is a mapping φ : V1→ V2 such that (u,v) ∈ E1 implies (φ(u),φ(v)) ∈ E2, and
is called a graph (digraph) isomorphism if it is bijective and both φ and φ−1 are graph
homomorphisms. A graph homomorphism φ : Γ→ Γ is called an endomorphism, and a
graph isomorphism φ : Γ→ Γ is said to be an automorphism. We denote the set of all
endomorphisms on a digraph Γ by End(Γ), and the set of all automorphisms on Γ by Aut(Γ).

For a Cayley graph Cay(S,C), we denote End (Cay(S,C)) by EndC(S), and Aut (Cay(S,C))
by AutC(S). An element f ∈ EndC(S) is called a color-preserving endomorphism if cx = y
implies c f (x) = f (y) for every x,y ∈ S and c ∈C. The set of all color-preserving endomor-
phisms of Cay(S,C) is denoted by ColEndC(S), and the set of all color-preserving automor-
phisms of Cay(S,C) by ColAutC(S). Obviously ColEndC(S)⊆ EndC(S) and ColAutC(S)⊆
AutC(S).

The following proposition, known as Sabidussi’s Theorem, gives a criterion to check
whether a digraph is a Cayley graph of a group (see also [16, Theorem 2.5]).
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Proposition 2.1. [18] A finite digraph Γ = (V,E) is a Cayley graph of a group G if and only
if the automorphism group of Γ contains a subgroup ∆ isomorphic to G such that for every
two vertices u,v ∈V there exists a unique σ ∈ ∆ such that σ(u) = v.

The Cayley graph Cay(S,C) is said to be automorphism-vertex transitive or simply
AutC(S)-vertex-transitive if, for every two vertices x,y ∈ S, there exists f ∈ AutC(S) such
that f (x) = y. The notions of ColAutC(S)-vertex-transitive, ColEndC(S)-vertex-transitive,
and EndC(S)-vertex-transitive for Cayley graphs are defined similarly.

A right zero semigroup (left zero semigroup) is a semigroup S satisfying the identity
xy = y (xy = x). Also, recall that a semigroup is said to be left simple (right simple) if it
has no proper left (right) ideals. A semigroup is called a left group (right group) if it is
left (right) simple and right (left) cancellative. It is known that a semigroup is a right (left)
group if and only if it is isomorphic to the direct product of a group and a right (left) zero
semigroup (see [5]). The following proposition describes all semigroups S and all subsets
C of S, satisfying a certain finiteness condition, such that the Cayley graph Cay(S,C) is
ColAutC(S)-vertex-transitive.

Proposition 2.2. [10, Theorem 2.1] Let S be a semigroup, and C be a subset of S which
generates a subsemigroup 〈C〉 such that all principal left ideals of 〈C〉 are finite. Then, the
Cayley graph Cay(S,C) is ColAutC(S)-vertex-transitive if and only if the following condi-
tions hold:

(i) cS = S, for all c ∈C;
(ii) 〈C〉 is isomorphic to a right group;

(iii) |〈C〉s| is independent of the choice of s ∈ S.

A semigroup is completely simple if it has no proper ideals and has an idempotent ele-
ment which is minimal with respect to the partial order on idempotents e≤ f ⇔ e = e f = f e.

Proposition 2.3. [10, Theorem 2.2] Let S be a semigroup, and C be a subset of S such that
all principal left ideals of the subsemigroup 〈C〉 are finite. Then, the Cayley graph Cay(S,C)
is AutC(S)-vertex-transitive if and only if the following conditions hold:

(i) CS = S;
(ii) 〈C〉 is a completely simple semigroup;

(iii) the Cayley graph Cay(〈C〉,C) is AutC(〈C〉)-vertex-transitive;
(iv) |〈C〉s| is independent of the choice of s ∈ S.

Let G be a group and Iλ be a set of cardinality λ > 0. Now we define a semigroup
operation on S = (Iλ ×G× Iλ )∪{0} as follows:

(i,g, j)(l,h,k) =
{

(i,gh,k), i f j = l,
0, i f j 6= l;

and (i,g, j)0 = 0(i,g, j) = 00 = 0, for all i, j, l,k ∈ Iλ and g,h ∈G. Then the semigroup S is
called a Brandt semigroup and is denoted by B(G,λ ).

Lemma 2.1. [10, Lemma 6.1] Let S be a semigroup, and C be a subset of S.
(i) If Cay(S,C) is EndC(S)-vertex-transitive, then CS = S.

(ii) If Cay(S,C) is ColEndC(S)-vertex-transitive, then cS = S for each c ∈C.

Lemma 2.2. [10, Lemma 5.2, Corollary 5.3] Let S be a semigroup with a subset C such that
〈C〉 is completely simple, and CS = S. Then, every connected component of the Cayley graph
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Cay(S,C) is strongly connected, and for every v ∈ S, the connected component containing
v is equal to 〈C〉v. Also, if 〈C〉 is isomorphic to a right group, then the right 〈C〉-cosets are
the connected components of Cay(S,C).

For more information on graphs, we refer to [4], and for semigroups see [5].

3. Characterization of Cayley graphs of Brandt semigroups

In this section, we suppose that every digraph is finite. To provide a criterion for Cayley
graphs of finite Brandt semigroups, we present a characterization of Cayley graphs of finite
Brandt semigroups. Let S be a finite Brandt semigroup and C ⊆ S. Then it is obvious that
if 0 ∈ C, then each vertex of Cay(S,C) is joined to 0. Also if C = /0, then Cay(S,C) is an
empty digraph. Therefore in the sequel of this section we suppose that C is a nonempty set
and 0 /∈C.

Theorem 3.1. A finite digraph D is a Cayley graph of a finite Brandt semigroup if and only
if D consists of a vertex v0, with a loop on it, and λ mutually disjoint subgraphs {Dα}λ

α=1
such that v0 /∈ V (Dα), for each α . Also the arc set of D satisfies the following conditions:
there exists no arc between V (Dα) and V (Dα ′), for 1 ≤ α,α ′ ≤ λ and α 6= α ′, and every
Dα is isomorphic to a digraph denoting by Γ = (V,E) such that

(1) V =
⋃

λ
i=1 Vi, where Vi’s are pairwise disjoint and have the same cardinality,

(2) there exists a group G such that for every 1 ≤ i ≤ λ , if Γi = Γ[Vi], then Γi ∼=
Cay(G,Ci), for some Ci ⊆ G,

(3) there exists a family of graph isomorphisms { fi}λ
i=1, fi : Cay(G,Ci)→ Γi, for 1 ≤

i ≤ λ such that if, for x ∈ G and e the identity of G, fi(e) is joined to f j(x), then
fi(g) is joined to f j(xg) for every g ∈ G. Also there is not any other arc from Γi to
Γ j. Let Ci j be the elements of G, say x, such that fi(e) is joined to f j(x).

Moreover let ηα : Γ→ Dα , where 1≤ α ≤ λ , be the isomorphism between Γ and Dα . For
every 1≤ α ≤ λ , if Ci 6= /0, for some 1≤ i≤ λ or Ci j 6= /0, for some 1≤ i, j ≤ λ and i 6= j,
then all vertices in ηα(V \Vi) are joined to v0 in D.

Proof. (⇒) Let D = Cay(S,C), where S = (Iλ ×G× Iλ )∪{0} is a finite Brandt semigroup
and C ⊆ S. By the definition of Brandt semigroup we know that Iλ is a set of cardinality
λ , G is a group, and 0 is the zero of S. Without loss of generality we can assume that
Iλ = {1,2, . . . ,λ}. Let v0 = 0. Also since for every c ∈ C, c0 = 0, there exists a loop on
0. We know that S = (

⋃
1≤i, j≤λ{(i,g, j)|g ∈ G})∪{0}. For every 1 ≤ i, j ≤ λ , let Di j =

D[{(i,g, j)|g ∈ G}] and Ai j = {(i,g, j) ∈C|g ∈ G}. We claim that Di j ∼= Cay(G,Ci), where
Ci = {g ∈ G|(i,g, i) ∈ C}. To prove it, we define ψi j : Di j → Cay(G,Ci), by (i,g, j) 7→ g.
Obviously ψi j is one-to-one and onto. So it is enough to check that ψi j preserves adjacency
and non-adjacency. To prove ψi j preserves adjacency, let v1 = (i,g1, j), v2 = (i,g2, j) ∈
V (Di j) and (v1,v2) ∈ E(Di j). So there exists c ∈ C such that v2 = cv1. So (i,g2, j) =
c(i,g1, j). Thus g2 = π2(c)g1, π1(c) = i, and also since (i,g2, j) 6= 0, π3(c) = i. Hence
π2(c) ∈Ci. Therefore (g1,g2) ∈ E(Cay(G,Ci)). So (ψi j(v1),ψi j(v2)) ∈ E(Cay(G,Ci)). To
prove ψi j preserves non-adjacency, let (ψi j(v1),ψi j(v2)) = (g1,g2) ∈ E(Cay(G,Ci)). Then,
there exists h∈Ci, such that g2 = hg1. Since h∈Ci, (i,h, i)∈ Aii. Also since v1,v2 ∈V (Di j)
and (i,g2, j) = (i,h, i)(i,g1, j), we conclude that ((i,g1, j),(i,g2, j)) = (v1,v2) ∈ E(Di j).
Therefore

(3.1) Di j ∼= Cay(G,Ci),
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for each 1≤ i, j ≤ λ .
Now we show that there exists no arc between V (Di j) and V (Di′ j′), for 1≤ i, i′ ≤ λ , 1≤

j, j′≤ λ and j 6= j′. On the contrary if there exists some arcs between V (Di j) and V (Di′ j′) in
D, there exist (i,g, j)∈V (Di j) and (i′,g′, j′)∈V (Di′ j′) such that ((i,g, j),(i′,g′, j′))∈E(D).
Since D = Cay(S,C), there exists (l,h,k) ∈ C such that (i′,g′, j′) = (l,h,k)(i,g, j). Since
(i′,g′, j′) 6= 0, we get that k = i. Thus (i′,g′, j′) = (l,hg, j). Hence j = j′, which is a
contradiction. Now we prove that D has λ subgraphs {Dα}λ

α=1 such that Dα ’s are pairwise
disjoint and isomorphic to each other. Let Dα = D[

⋃
λ
i=1 V (Diα)], for 1≤ α ≤ λ . Then the

Dα ’s are pairwise disjoint and there exists no arc between Dα and Dα ′ if α 6= α ′. Obviously,
V (D) =

⋃
λ
α=1 V (Dα)∪{0}. Now we prove that Dα ’s are isomorphic to each other. To prove

it, for every arbitrary 1≤ α,α ′ ≤ λ , we define ψ : Dα → Dα ′ , by ψ(i,g,α) = (i,g,α ′), for
every (i,g,α)∈V (Dα). Since (i1,g1,α) = (i2,g2,α) if and only if (i1,g1,α

′) = (i2,g2,α
′),

we get that ψ is well-defined and one-to-one. Also it is obvious that ψ is onto. So it
is enough to prove that ψ preserves adjacency and non-adjacency. To prove ψ preserves
adjacency, let (u,v) ∈ E(Dα), u = (i1,g1,α) and v = (i2,g2,α). Hence there exists c =
(l,h,k)∈C such that (i2,g2,α) = (l,h,k)(i1,g1,α). So l = i2, g2 = hg1 and k = i1. Thus c =
(i2,h, i1) and (i2,g2,α

′) = (i2,h, i1)(i1,g1,α
′). Therefore (ψ(u),ψ(v))∈ E(Dα ′). Similarly

if (ψ(u),ψ(v)) = ((i1,g1,α
′),(i2,g2,α

′)) ∈ E(Dα ′), then ((i1,g1,α),(i2,g2,α)) ∈ E(Dα),
which proves that ψ preserves non-adjacency. Without loss of generality we can assume
that Γ = (V,E) is equal to D1. Let ηα : D1→ Dα by

(3.2) ηα(i,g,1) = (i,g,α),

where (i,g,α) ∈V (Dα) and 1≤ α ≤ λ .
Now we prove that conditions (1) and (2) are satisfied. Let Vi = V (Di1) and Γi = Γ[Vi],

1≤ i≤ λ . Therefore Γi = Di1 and, by (3.1), we have Γi = Di1 ∼= Cay(G,Ci). Also we note
that V (D1) =

⋃
λ
i=1 V (Di1) and so V =

⋃
λ
i=1 Vi. Since by (3.1), Di1 ∼= Cay(G,Ci), we get that

|V (Di1)|= |G|. So Vi’s have the same cardinality. Hence conditions (1) and (2) are satisfied.
To prove condition (3), for every 1≤ i≤ λ , we define fi : Cay(G,Ci)→ Γi, for 1≤ i≤ λ ,

by fi(g) = (i,g,1). It is easy to check that the fi’s are well-defined, one-to-one and onto.
So it is enough to prove that fi preserves adjacency and non-adjacency. To prove that fi
preserves adjacency for every arc (g1,g2)∈ E(Cay(G,Ci)), we know that there exists d ∈Ci
such that g2 = dg1. So (i,d, i) ∈ Aii and fi(g2) = (i,g2,1) = (i,d, i)(i,g1,1) = (i,d, i) fi(g1).
Hence ( fi(g1), fi(g2))∈E(Γi). Therefore fi preserves adjacency. To prove fi preserves non-
adjacency, let ( fi(g1), fi(g2)) ∈ E(Γi). There exists c ∈C such that fi(g2) = c fi(g1), since
D = Cay(S,C). Let c = (l,d,k). Similarly to the above, we conclude that π1(c) = i,π3(c) =
i. Thus, c = (i,d, i), d ∈ Ci and g2 = dg1. Therefore (g1,g2) ∈ E(Cay(G,Ci)). Hence fi
preserves adjacency and non-adjacency. Therefore fi is a graph isomorphism. Since (i,e,1)
is joined to ( j,x,1), where x ∈Ci j, it follows that ( j,x, i) ∈C and so { j}×Ci j×{i} ⊆C.
Thus, for every g ∈G, fi(g) is joined to each vertex of {( j,d, i)(i,g,1)|d ∈Ci j}= f j(Ci jg).
Now we prove that all arcs from Γi to Γ j are arcs mentioned above. Let there exists an arc
from a vertex fi(g) ∈ Vi = V (Γi), for some g ∈ G, to a vertex f j(g′) ∈ Vj = V (Γ j), where
g′ ∈ G. Since D = Cay(S,C), there exists (l,h,k) ∈C such that ( j,g′,1) = (l,h,k)(i,g,1).
So l = j, k = i and g′ = hg. Since ( j,h, i)(i,e,1) = ( j,h,1), it follows that fi(e) is joined
to f j(h). Thus h ∈ Ci j, and so g′ ∈ Ci jg. Therefore f j(g′) ∈ f j(Ci jg) and condition (3) is
satisfied.
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Now we prove that if Ci 6= /0 or Ci j 6= /0, then each vertex of ηα(V \Vi) are joined to v0
in D, where 1 ≤ α ≤ λ . If Ci 6= /0, then there exists d ∈Ci such that (i,d, i) ∈C. Thus, for
every vertex (i′,g,1) ∈V \Vi, we have i 6= i′ and since (i,d, i)(i′,g,1) = 0, we conclude that
(i′,g,1) is joined to 0. Also since, for every 1 ≤ α ≤ λ , (i,d, i)(i′,g,α) = 0, we get that
ηα(i′,g,1) = (i′,g,α) is joined to 0 in D.

If Ci j 6= /0, then as we mentioned above ( j,h, i) ∈ C, for h ∈ Ci j. For every vertex
(i′,g,1) ∈ V \Vi, we have i 6= i′ and since ( j,d, i)(i′,g,1) = 0, we conclude that (i′,g,1)
is joined to 0. Also since, for every 1≤ α ≤ λ , ( j,h, i)(i′,g,α) = 0, we get that ηα(i′,g,1)
is joined to 0 in D.

(⇐) Take a digraph Γ = (V,E) with properties (1)-(3) and take a digraph D with the given
properties. Then D consists of a vertex v0 with a loop on it and λ mutually disjoint subgraphs
{Dα}λ

α=1 such that each Dα is isomorphic to Γ = (V,E). We define a Brandt semigroup S
as S = (Iλ ×G× Iλ )∪{0}, where G is the group given in part (2) and Iλ = {1,2, . . . ,λ}.
Let

(3.3) C =
( λ⋃

i=1

{i}×Ci×{i}
)
∪
( ⋃

1≤i, j≤λ

i 6= j

{ j}×Ci j×{i}
)
,

where Ci and Ci j are given in parts (2) and (3), respectively. Let D′ = Cay(S,C) and D′α =
D′[{(i,g,α)|g ∈ G,1 ≤ i ≤ λ}], for 1 ≤ α ≤ λ . Using the (⇒) part of the theorem, we
conclude that D′= Cay(S,C) consists of the vertex 0 with a loop on it and λ pairwise disjoint
subgraphs D′α which are isomorphic to a graph satisfying conditions (1)-(3) and there exists
no arc between these subgraphs. We claim that D is isomorphic to D′ = Cay(S,C).

To prove D is isomorphic to D′, first we prove that Γ ∼= D′1. Using (2), we know that
Γi = Γ[Vi] ∼= Cay(G,Ci), for 1 ≤ i ≤ λ , and by (3) there exists a graph isomorphism fi :
Cay(G,Ci)→ Γi. For every v∈V =V (Γ), using (1) we get that there exists a unique 1≤ i≤
λ such that v∈Vi =V (Γi). To prove Γ∼= D′1, we define ψ : Γ→D′1, by ψ(v) = (i, f−1

i (v),1),
where v ∈Vi = V (Γi). Now we prove that ψ is a graph isomorphism. Since f−1

i is a graph
isomorphism, we get that ψ is one-to-one and onto. So it is enough to show that ψ pre-
serves adjacency and non-adjacency. Let (u,v) ∈ E(Γ). There exists 1 ≤ i, j ≤ λ such that
u ∈Vi = V (Γi) and v ∈Vj = V (Γ j). Now we consider two cases. If i = j, then using (2) we
get that there exists d ∈Ci such that f−1

i (v) = d f−1
i (u). So by the definition of C in (3.3),

we conclude that (i,d, i) ∈C. Now since (i, f−1
i (v),1) = (i,d, i)(i, f−1

i (u),1), we conclude
that (ψ(u),ψ(v))∈ E(D′1). If i 6= j, then there exist g,g′ ∈G such that fi(g) = u, f j(g′) = v.
Using (3), we get that fi(g) is joined in Γ j only to f j(Ci jg). Hence g′g−1 ∈Ci j. By the defi-
nition of C in (3.3), we get that ( j,g′g−1, i)∈C. Hence ( j, f−1

j (v),1) = ( j,g′g−1, i)(i,g,1) =
( j,g′g−1, i)(i, f−1

i (u),1). Thus, (ψ(u),ψ(v)) ∈ E(D′1). Therefore ψ preserves adjacency.
To prove ψ preserves non-adjacency, let (ψ(u),ψ(v)) ∈ E(D′1). Also let ψ(u) = (i,g,1)
and ψ(v) = (i′,g′,1). Therefore g = f−1

i (u) and g′ = f−1
i′ (v). By definition of Cay-

ley graph, there exists (ic,gc, jc) ∈ C such that (i′,g′,1) = (ic,gc, jc)(i,g,1). So ic = i′,
jc = i, and g′ = gcg. If i = i′, then by the definition of C in (3.3), we get that gc ∈ Ci.
Since i = i′, we have g = f−1

i (u) and g′ = f−1
i (v). Since fi is a graph isomorphism and

(g,g′) ∈ E(Cay(G,Ci)), ( fi(g), fi(g′)) = (u,v) ∈ E(Γi)⊆ E(Γ). If i 6= i′, then (i′,gc, i) ∈C
and so gc ∈Cii′ . Using (3), each vertex fi(g′′), g′′ ∈ G, is joined to fi′(gcg′′). Thus fi(g) is
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joined to fi′(gcg) = fi′(g′). Hence u is joined to v. So (u,v) ∈ E(Γ). Therefore ψ preserves
non-adjacency. Hence Γ∼= D′1.

Now we prove that D ∼= D′ = Cay(S,C). By assumption, D′ = Cay(S,C) is a Cay-
ley graph of a Brandt semigroup. Therefore as we mentioned in the necessary part of
the proof, for each 1 ≤ α ≤ λ , there exists a graph isomorphism η ′α : D′1 → D′α , where
η ′α(i,g,1) = (i,g,α) (see 3.2). To prove D ∼= D′ = Cay(S,C), we define µ : D→ D′ by
µ(v0) = 0 and µ(v) = η ′α ψη−1

α (v) if v ∈ V (Dα), for some 1 ≤ α ≤ λ . It is easy to check
that µ is bijection since η ′α , ψ and η−1

α are bijection and v0 does not belong to any V (Dα),
for 1≤ α ≤ λ . Hence to prove µ is a graph isomorphism, it is enough to prove that µ pre-
serves adjacency and non-adjacency. For this purpose let v1,v2 ∈V (D) and (v1,v2)∈ E(D).
Since in the graph D there does not exist any arc from v0 to any other vertex of D, we have
three following cases.

Case (1). Let v1 = v2 = v0. Since we know that there is a loop on v0 in D, and there is a
loop on µ(v0) = 0 in D′, we conclude that (µ(v1),µ(v2)) = (0,0) ∈ E(D′).

Case (2). Let v1 6= v0 and v2 6= v0. Since there does not exist any arc between Dα and
Dα ′ , for 1≤ α,α ′ ≤ λ and α 6= α ′, we conclude that there exists some 1≤ α ≤ λ such that
v1,v2 ∈V (Dα). Since η ′α , ψ and η−1

α are graph isomorphisms, we get that (µ(v1),µ(v2)) =
(η ′α ψη−1

α (v1),η ′α ψη−1
α (v2)) ∈ E(D′α)⊆ E(D′).

Case (3). Let v1 6= v0 and v2 = v0. Then v1 ∈ V (Dα), for some 1 ≤ α ≤ λ . By the
hypothesis, v1 is joined to v0. Therefore Ci 6= /0, for some 1 ≤ i ≤ λ , or Ci j 6= /0, for some
1 ≤ i, j ≤ λ , i 6= j and η−1

α (v1) ∈ V \Vi. Let η−1
α (v1) ∈ Vi′ = V (Γi′), for some 1 ≤ i′ ≤ λ ,

where i′ 6= i. By the definition of ψ , we know that ψ(η−1
α (v1)) = (i′, f−1

i′ (η−1
α (v1)),1).

Therefore µ(v1) = η ′α(ψ(η−1
α (v1))) = (i′, f−1

i′ (η−1
α (v1)),α) ∈V (D′α). If Ci 6= /0, then there

exists d ∈Ci and so (i,d, i) ∈C. Then (i,d, i)(i′, f−1
i′ (η−1

α (v1)),α) = 0 shows that µ(v1) is
joined to µ(v0) = 0. Similarly if Ci j 6= /0 and d ∈Ci j, then by the definition of C, ( j,d, i)∈C.
Similarly to the above, we conclude that µ(v1) = η ′α ψη−1

α (v1) = (i′, f−1
i′ (η−1

α (v1)),α) is
joined to µ(v2) = 0 in D′.

Thus µ(v1) is joined to µ(v2) in D′. Therefore µ preserves adjacency. Similarly we can
conclude that µ preserves non-adjacency. Hence µ is a graph isomorphism. Thus D∼= D′ =
Cay(S,C). Therefore D is isomorphic to a Cayley graph of a finite Brandt semigroup.

In the next example we show that the following digraph is not a Cayley graph of a Brandt
semigroup, because condition (3) of the above theorem is not satisfied.

Example 3.1. Let D be the following digraph. By Theorem 3.1, we show that D is not
a Cayley graph of a Brandt semigroup. Throughout of the proof, we use the notations of
Theorem 3.1. On the contrary suppose that D is a Cayley graph of a Brandt semigroup. Let
S = (Iλ ×G× Iλ )∪{0} be a Brandt semigroup and C ⊆ S such that D∼= Cay(S,C).

Since |S|= λ 2|G|+1 = 17, we get that λ ∈ {1,2,4}. In any case v0 = 0. If λ = 1, then
S ∼= G0. So, by conditions (1) and (2) of Theorem 3.1 we conclude that D[V \{0}] must be
isomorphic to a Cayley graph of a group. By Proposition 2.1, we know that every Cayley
graph of a group is vertex-transitive. Also we know that in a finite vertex-transitive graph
the in-degree is the same for each vertex, and is equal to its out-degree. Now we note that
D is not vertex-transitive because d−D[V\{0}](v3) = 1 and d−D[V\{0}](v6) = 2. Since D[V \{0}]
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is not vertex-transitive, we get that D[V \ {0}] can not be isomorphic to a Cayley graph of
a group, which is a contradiction. Hence λ > 1. Then there exist λ mutually disjoint sub-
graphs, {Di}λ

i=1 such that there exists no arc between them. Let v1 ∈ V (D1). Since there
does not exist any arc between Di’s, we get that v2,v4,v8 ∈V (D1). Since v2,v4,v8 ∈V (D1),
similarly to the above we conclude that v3,v5,v6,v7 ∈ V (D1), too. Similarly we conclude
that there exists Di, where 2 ≤ i ≤ λ , such that v′1,v

′
2,v
′
3,v
′
4,v
′
5,v
′
6,v
′
7,v
′
8 belong to V (Di).

This implies that λ = 2. Without loss of generality, we can assume that Iλ = {1,2}. We
choose D1 = D[{v1,v2,v3,v4,v5,v6,v7,v8}] and D2 = D[{v′1,v′2,v′3,v′4,v′5,v′6,v′7,v′8}]. It is
obvious that D1 and D2 are isomorphic to each other and up to isomorphism the choices of
D1 and D2 are unique. Without loss of generality, we can assume that Γ = D1. By condition
(1), we get that {v1,v2,v3,v4,v5,v6,v7,v8} =

⋃2
i=1 Vi such that |V1| = |V2| = 4 and Γ[Vi] is

isomorphic to a Cayley graph of a group, for i = 1,2. Without loss of generality let v1 ∈V1.
Now we consider the following four cases.
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Case (1). Let v2 ∈V1 and v8 ∈V1. We claim that this case can not occur. Since v2,v8 ∈V1,
d+

Γ1
(v1) = 2. But d−

Γ1
(v1) ≤ d−

Γ
(v1) = 1, which is a contradiction because Γ1 is vertex-

transitive.

Case (2). Let v2 /∈ V1 and v8 ∈ V1. Since Γ1 is vertex-transitive, we get that d−
Γ1

(v1) =
d+

Γ1
(v1) = 1. So v4 ∈ V1 and d−

Γ1
(v4) = d+

Γ1
(v4) = 1. Therefore v3 ∈ V1 and d−

Γ1
(v3) =

d+
Γ1

(v3) = 1 which implies that v2 ∈V1, and this is a contradiction.

Case (3). Let v2 ∈V1 and v8 /∈V1. Then d−
Γ1

(v1) = d+
Γ1

(v1) = 1 and so v4 ∈V1. Now similar
to the above cases, we conclude that v3 ∈V1. Therefore

V1 = {v1,v2,v3,v4}, V2 = {v5,v6,v7,v8}.

So Γ[V1] ∼= Cay(Z4,{c}), where c = 1̄ or c = 3̄, and Γ[V2] ∼= Cay(Z4,{2̄}) (we note that
since Γ[V1] is a square, then c must be an element of order 4 and so G can be only Z4).
Hence S = (I2 × Z4 × I2) ∪ {0}. Let f1 : Cay(Z4,{c}) → Γ[V1], where c ∈ {1̄, 3̄} and
f2 : Cay(Z4,{2̄})→ Γ[V2]. Now we claim that condition (3) of Theorem 3.1 can not be sat-
isfied. To prove it we note that v1 = f1(g1) is joined to v2 = f1(g2)∈V1 and v8 = f2(g′)∈V2,
for some g1,g2,g′ ∈ Z4. Since f1 is a graph isomorphism, (g1,g2) ∈ E(Cay(Z4,{c})) and
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so g2 = g1 + c. We note that v1 = f1(g1) is joined to v8 = f2(g′). Hence f1(e) is joined
to f2(g′− g1). By condition (3) of Theorem 3.1, since v2 = f1(g2) = f1(g1 + c) is joined
to v5, we get that v5 = f2(g′−g1 + g1 + c). Therefore v5 = f2(g′+ c). Since f2 is a graph
isomorphism and (v5,v8) ∈ E(Γ2), we get that ( f−1

2 (v5), f−1
2 (v8)) ∈ E(Cay(Z4,{2̄})) and

so f−1
2 (v8) = f−1

2 (v5) + 2̄. Thus g′ = g′+ c + 2̄. Hence c = 2̄, which is a contradiction
because c∈ {1̄, 3̄}. Therefore in this case the graph D can not be a Cayley graph of a Brandt
semigroup.

Case (4). Let v2 /∈V1 and v8 /∈V1. Then d−
Γ1

(v1) = d+
Γ1

(v1) = 0. So v4 ∈V2. Also d−
Γ2

(v2) =
d+

Γ2
(v2) = 0 implies that v3,v5 ∈V1. Finally d−

Γ2
(v4) = 0 and so v7 ∈V1. Therefore

V1 = {v1,v3,v5,v7}, V2 = {v2,v4,v6,v8}.
Also we note that by condition (3) of Theorem 3.1, each vertex of Γ1 is joined to exactly
|C12| vertices of Γ2. Now v1 is joined to v2 and v8 in V2 = V (Γ2) but v7 is joined only to
v6 in V2 = V (Γ2), which is a contradiction. Therefore in this case the graph D can not be a
Cayley graph of a Brandt semigroup.

So D is not a Cayley graph of a finite Brandt semigroup.

4. Vertex-transitive Cayley graphs of Brandt semigroups

In this section, we describe Cayley graphs of Brandt semigroups which are vertex transitive.
Throughout this section, we assume that S is a Brandt semigroup and C is a nonempty subset
of S.

Theorem 4.1. Let S = (Iλ ×G× Iλ )∪{0} be a Brandt semigroup. Let C be a subset of
S which generates a subsemigroup 〈C〉 such that all principal left ideals of 〈C〉 are finite.
Then the following statements are equivalent:

(i) Cay(S,C) is ColAutC(S)-vertex-transitive;
(ii) Cay(S,C) is AutC(S)-vertex-transitive;

(iii) Cay(S,C) is ColEndC(S)-vertex-transitive;
(iv) |Iλ |= 1, S∼= G0 and C = {(i,eG, i)}, where Iλ = {i};
(v) Cay(S,C)∼= |S|~K1.

Proof. (i)⇒(iv) By Proposition 2.2, we get that cS = S, for every c∈C. Let c = (i0,g0, j0)∈
C. For every s = (i,g, j)∈ S, since cS = S, there exists s′ = ( j0,g′, j)∈ S such that (i,g, j) =
(i0,g0, j0)( j0,g′, j). Since s is arbitrary, for every i ∈ Iλ , i = i0. Therefore |Iλ | = 1. Let
Iλ = {i}. Now we define ψ : ({i} ×G× {i})∪ {0} → G0, by (i,g, i) 7→ g and 0 7→ 0.
Obviously, ψ is a semigroup isomorphism. Hence S ∼= G0. Since for every c ∈C, cS = S,
we get that 0 /∈C. So C ⊆ {i}×G×{i}.

By Proposition 2.2, we conclude that 〈C〉 is isomorphic to a right group. By Lemma 2.2,
we conclude that for every v ∈ S the connected component containing v is equal to 〈C〉v.
Since |〈C〉0|= |{0}|= 1, by Proposition 2.2, we conclude that for every v ∈ S, |〈C〉v|= 1.
So the cardinality of all connected components of Cay(S,C) are 1. Since C is not empty, all
connected components of Cay(S,C) are isomorphic to ~K1. Since C ⊆ {i}×G×{i} and all
connected components of Cay(S,C) are isomorphic to ~K1, C = {(i,eG, i)}.

(iv)⇒ (v) Since C = {(i,eG, i)} and for every (i,g, i) in S, (i,eG, i)(i,g, i) = (i,g, i), it follows
that each vertex is joined only to itself. Therefore every connected component of Cay(S,C)
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is isomorphic to ~K1. Hence Cay(S,C)∼= |S|~K1.

(v)⇒ (i) It is routine to verify that the digraph |S|~K1 is ColAutC(S)-vertex-transitive.

(ii)⇔ (v) It is routine to verify that the digraph |S|~K1 is AutC(S)-vertex-transitive. Con-
versely let Cay(S,C) be an AutC(S)-vertex-transitive Cayley graph. First we claim that
0 /∈ C. On the contrary let 0 ∈ C. So all vertices of Cay(S,C) are joined to 0. Also we
know that 0 is not adjacent to any other vertex of Cay(S,C). Since Cay(S,C) is AutC(S)-
vertex-transitive, for a non-zero vertex v, we conclude that there exists f ∈AutC(S) such that
f (v) = 0. Since (v,0) ∈ E(Cay(S,C)), we get that ( f (v), f (0)) = (0, f (0)) ∈ E(Cay(S,C)).
Since 0 is not adjacent to any other vertex of Cay(S,C), we conclude that f (0) = 0 which
is a contradiction since f (0) = 0 = f (v), f ∈ AutC(S) and v 6= 0. Therefore 0 /∈ C. On
the other hand, by Proposition 2.3 we know that |〈C〉s| is independent of s ∈ S. Since
|〈C〉0| = |{0}| = 1, and C 6= /0, by Lemma 2.2 we conclude that all connected components
of Cay(S,C) are isomorphic to ~K1. Therefore Cay(S,C)∼= |S|~K1.

(iii)⇔ (v) It is routine to verify that the digraph |S|~K1 is ColEndC(S)-vertex-transitive. Con-
versely let Cay(S,C) be a ColEndC(S)-vertex-transitive Cayley graph. By Lemma 2.1, we
get that cS = S, for every c ∈C. Now similar to the proof of (i)⇒ (iv) we get that |Iλ |= 1,
0 /∈ C, and S ∼= G0. Let Iλ = {i}. Since Cay(S,C) is ColEndC(S)-vertex-transitive and
there exists a loop on the vertex 0, there exists a loop on each vertex of Cay(S,C). Hence
(i,eG, i) ∈ C, since C ⊆ {i}×G×{i}. Since Cay(S,C) is ColEndC(S)-vertex-transitive,
for every vertex v 6= 0, there exists a ψ ∈ ColEndC(S) such that ψ(0) = v. Since for
every c ∈ C, c0 = 0, we get that v = ψ(0) = ψ(c0) = cψ(0) = cv. So (i,π2(v), i) =
(i,π2(c), i)(i,π2(v), i). Since π2(v) = π2(c)π2(v) and c is an arbitrary element of C, we
conclude that C = {(i,eG, i)}. So we get (iv) and we proved that (iv) and (v) are equiva-
lent.

Remark 4.1. Let S = (Iλ ×G× Iλ )∪{0} be a Brandt semigroup, and let C be a subset of
S. By the proof of Theorem 4.1 we conclude that the following statements are equivalent:

(i) Cay(S,C) is ColEndC(S)-vertex-transitive;
(ii) |Iλ |= 1, S∼= G0 and C = {(i,eG, i)} where Iλ = {i};

(iii) Cay(S,C)∼= |S|~K1.

Now we present a necessary and sufficient condition for Cayley graphs of Brandt semi-
groups to be endomorphism-vertex-transitive.

Theorem 4.2. Let S = (Iλ ×G× Iλ )∪{0} be a Brandt semigroup, and let C be a subset of
S such that all principal left ideals of the subsemigroup 〈C〉 are finite. Then the following
statements are equivalent:

(i) Cay(S,C) is EndC(S)-vertex-transitive;
(ii) there exists a loop on each vertex;

(iii) (i,eG, i) ∈C, for every i ∈ Iλ .

Proof. (i)⇒(ii) Since C 6= /0, there exists a loop on vertex 0. Also since Cay(S,C) is
EndC(S)-vertex-transitive, there exists a loop on each vertex of Cay(S,C).
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(ii)⇒ (i) For every s ∈ S, we consider the map ψs(v) = s, which maps every vertex of
Cay(S,C) to s. Since there exists a loop on each vertex of Cay(S,C), every ψs is a digraph
endomorphism, for s ∈ S. Hence for every vertices s, t ∈ S, ψs(t) = s and so Cay(S,C) is
EndC(S)-vertex-transitive.

(ii)⇒(iii) For every (i,g, j)∈ S\{0}, there exists (ic,gc, jc)∈C such that (i,g, j)= (ic,gc, jc)
(i,g, j). So jc = i, ic = i and gcg = g. Hence gc = eG. Therefore for every i∈ Iλ , (i,eG, i)∈C.

(iii)⇒ (ii) It is obvious.

Theorem 4.3. Let S = (Iλ ×G× Iλ )∪{0} be a Brandt semigroup and C ⊆ S. Then Γ =
Cay(S,C) is symmetric if and only if

(i) |Iλ |= 1;
(ii) π2(C) = (π2(C))−1;

(iii) 0 /∈C.

Proof. (⇒) We claim that |Iλ | = 1. On the contrary suppose that |Iλ | > 1. Since C is not
empty, there exists (ic,gc, jc) ∈ C. Since |Iλ | > 1, there exists i ∈ Iλ such that i 6= jc. So
every vertex (i,g, j)∈ S is joined to 0, which is a contradiction since there does not exist any
arc from 0 to (i,g, j) and we know that Cay(S,C) is symmetric. So |Iλ |= 1. Let Iλ = {i}. If
0 ∈C, then every vertex of Γ is joined to 0 and similarly we get a contradiction. Let c ∈C.
Since Iλ = {i}, we get that c = (i, t, i), where t ∈ G. Therefore (i, t, i)(i,g, i) = (i, tg, i)
implies that Cay(S,C) ∼= Cay(G,π2(C)) + ~K1. To prove π2(C) = (π2(C))−1, let c ∈ C.
Then c = (i, t, i), for some t ∈ G. For every (i,g, i) ∈ S, since ((i,g, i),(i, t, i)(i,g, i)) ∈
E(Cay(S,C)), then ((i, t, i)(i,g, i),(i,g, i)) ∈ E(Cay(S,C)). So there exists (i,g′, i) ∈C such
that (i,g, i) = (i,g′, i)(i, t, i)(i,g, i). Hence t−1 = g′ ∈ π2(C). Therefore π2(C) = π2(C)−1.

(⇐) Since |Iλ | = 1, S ∼= G0. Also since 0 /∈C, then as we mentioned above it follows that
Cay(S,C) ∼= Cay(G,π2(C))+ ~K1. On the other hand we know that if π2(C) = (π2(C))−1,
then Cay(G,π2(C)) is symmetric. Therefore Cay(S,C) is symmetric.
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[2] J. Dénes, Connections between transformation semigroups and graphs, in Theory of Graphs (Internat. Sym-

pos., Rome, 1966), 93–101, Gordon and Breach, New York.
[3] S. Fan and Y. Zeng, On Cayley graphs of bands, Semigroup Forum 74 (2007), no. 1, 99–105.
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