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Abstract. Let Mn be an n(n≥ 3)-dimensional complete connected and oriented hypersur-
face in a unit sphere Sn+1(1) or Euclidean space Rn+1 with constant k-th mean curvature
Hk > 0(k < n) and with two distinct principal curvatures λ and µ such that the multiplicity
of λ is n−1. We show that (1) in the case of Sn+1(1), if k≥ 3 and |h|2 ≤ (n−1)t2/k

2 + t−2/k
2 ,

then Mn is isometric to the Riemannian product S1(
√

1−a2)×Sn−1(a), where t2 is the pos-
itive real root of the function PHk (t) = kt

k−2
k − (n− k)t + nHk; (2) in the case of Rn+1, if

|h|2 ≤ (n−1)(nHk/(n−k))
2
k , then Mn is isometric to the Riemannian product Sn−1(a)×R.

We extend some recent results to the case k ≥ 3.
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1. Introduction

Let Mn+1(c) be an (n+1)-dimensional connected Riemannian manifold with constant sec-
tional curvature c. According to c > 0 or c = 0, it is called sphere space or Euclidean space,
respectively, and it is denoted by Sn+1(c),Rn+1. Let Mn be an n-dimensional hypersurface
in a unit sphere Sn+1(1). As it is well known there are many rigidity results for hypersur-
faces with constant mean curvature or constant scalar curvature in Sn+1(1), for example, see
[1–8]. In [7], Wei proved:

Theorem 1.1. Let Mn be an n(n ≥ 3)-dimensional complete connected and oriented hy-
persurface with constant mean curvature H and with two distinct principal curvatures such
that the multiplicity of one of the principal curvatures is n−1 in Sn+1(1). If

|h|2 ≤ n+
n3H2

2(n−1)
− n(n−2)

2(n−1)

√
n2H4 +4(n−1)H2,
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then Mn is isometric to the Riemannin product S1(a)×Sn−1(
√

1−a2), where

a2 = (1/2n(1+H2))[2+nH2 +
√

n2H4 +4(n−1)H2]

On the other hand, if Mn has constant scalar curvature n(n−1)r and two distinct principal
curvatures, one of which is simple, Wei [8] also proved the following theorems:

Theorem 1.2. Let Mn be an n-dimensional complete connected and oriented hypersurface
in Sn+1(1) with constant scalar curvature n(n−1) r(r 6= n−2

n−1 ) and with two distinct princi-
pal curvatures, one of which is simple. If

|h|2 ≤ (n−1)
n(r−1)+2

n−2
+

n−2
n(r−1)+2

,

then Mn is isometric to the Riemannian product S1(
√

1−a2)×Sn−1(a), where a2 =(n−2)/nr.

Let Hk be the normalized k-th symmetric function of principal curvatures of the hyper-
surface Mn defined by

(1.1) Ck
nHk = ∑

1≤i1<i2<···<ik≤n
λi1 · · ·λik ,

where Ck
n = n!/k!(n− k)!. We call Hk the k-th mean curvature of Mn.

We should note that for c = 1, if k = 1, H1 is the mean curvature of Mn and if k = 2, from
(1.1) and (2.11), we have H2 = r−1, where r is the normalized scalar curvature of Mn.

Denote by PH1(t) and PH2(t) the following function:

(1.2) PH1(t) =
1
t
− (n−1)t +nH1,

(1.3) PH2(t) =−(n−2)t +nH2 +2,

we can rewritten Theorem 1.1 and Theorem 1.2 as follows:

Theorem 1.3. Let Mn be an n(n≥ 3)-dimensional complete connected and oriented hyper-
surface with constant mean curvature H1 and with two distinct principal curvatures such
that the multiplicity of one of the principal curvatures is n−1 in Sn+1(1). If

|h|2 ≤ (n−1)t2
2 + t−2

2 ,

then Mn is isometric to the Riemannin product

S1(a)×Sn−1(
√

1−a2),a2 =
1

2n(1+H2)
[2+nH2 +

√
n2H4 +4(n−1)H2],

where t2 is the positive root of (1.2).

Theorem 1.4. Let Mn be an n-dimensional complete connected and oriented hypersurface
in Sn+1(1) with constant 2-th mean curvature H2(H2 6= −1/n−1) and with two distinct
principal curvatures, one of which is simple. If

|h|2 ≤ (n−1)t2 + t−1
2 ,

then Mn is isometric to the Riemannian product S1(
√

1−a2)×Sn−1(a), a2 =(n−2)/n(H2 +1),
where t2 is the root of (1.3).
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Now it is natural for us to consider the problem: May we extend recent results Theorem
1.3 and Theorem 1.4 of G. Wei [7, 8] to the case that Mn has constant k(k≥ 3)-th mean cur-
vature Hk(k < n) and with two distinct principal curvatures. Denote by PHk(t) the following
function:

(1.4) PHk(t) = kt
k−2

k − (n− k)t +nHk,

We may solve the problem and obtain the following:

Theorem 1.5. Let Mn be an n(n ≥ 3)-dimensional complete connected and oriented hy-
persurface with constant k(k ≥ 3)-th mean curvature Hk > 0(k < n) and with two distinct
principal curvatures λ and µ such that the multiplicity of λ is n−1 in Sn+1(1). If

|h|2 ≤ (n−1)t2/k
2 + t−2/k

2 ,

then Mn is isometric to the Riemannin product S1(
√

1−a2)×Sn−1(a), where t2 is the posi-
tive root of (1.4).

Let Mn be an n-dimensional hypersurface in a Euclidean space Rn+1 with constant k-th
mean curvature Hk(k < n). Recently, Wei [9] also obtained the following result:

Theorem 1.6. Let Mn be an n(n ≥ 3)-dimensional complete connected and oriented hy-
persurface in Rn+1 with constant k-th mean curvature Hk > 0(k < n) and with two distinct
principal curvatures, one of which is simple. If

|h|2 ≥ (n−1)
(

nHk

n− k

) 2
k
,

then Mn is isometric to Riemannin product Sn−1(a)×R.

It is natural for us again to consider the problem: May we extend recent results Theorem
1.6 of Wei [9] to the case that Mn has constant k(k ≥ 3)-th mean curvature Hk(k < n) and
with two distinct principal curvatures and satisfies |h|2 ≤ (n−1)(nHk/(n− k))2/k.

We solve the problem and obtain the following result:

Theorem 1.7. Let Mn be an n(n ≥ 3)-dimensional complete connected and oriented hy-
persurface in Rn+1 with constant k-th mean curvature Hk > 0(k < n) and with two distinct
principal curvatures, one of which is simple. If

|h|2 ≤ (n−1)
(

nHk

n− k

) 2
k
,

then Mn is isometric to Riemannin product Sn−1(a)×R.

For c = 0, if k = 1, H1 is the mean curvature of Mn and if k = 2, from (1.1) and (2.11),
we have H2 = r, where r is the normalized scalar curvature of Mn. From Theorem 1.7, we
have the following important corollaries:

Corollary 1.1. Let Mn be an n(n≥ 3)-dimensional complete connected and oriented hyper-
surface in Rn+1 with constant mean curvature H and with two distinct principal curvatures,
one of which is simple. If |h|2 ≤ n2H2/(n−1), then Mn is isometric to the Riemannian
product Sn−1(a)×R.
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Corollary 1.2. Let Mn be an n(n ≥ 3)-dimensional complete connected and oriented hy-
persurface in Rn+1 with constant scalar curvature n(n−1)r and with two distinct principal
curvatures, one of which is simple. If |h|2 ≤ n(n−1)r/(n−2), then Mn is isometric to the
Riemannian product Sn−1(a)×R.

2. Preliminaries

Let Mn+1(c) be an (n+1)-dimensional connected Riemannian manifold with constant sec-
tional curvature c(≥ 0). Let Mn be an n-dimensional complete connected and oriented
hypersurface in Mn+1(c). We choose a local orthonormal frame e1, · · · ,en+1 in Mn+1(c)
such that e1, · · · ,en are tangent to Mn. Let ω1, · · · ,ωn+1 be the dual coframe. We use the
following convention on the range of indices:

1≤ A,B,C, · · · ≤ n+1; 1≤ i, j,k, · · · ≤ n.

The structure equations of Mn+1(c) are given by

(2.1) dωA = ∑
B

ωAB∧ωB, ωAB +ωBA = 0,

(2.2) dωAB = ∑
C

ωAC ∧ωCB +ΩAB,

where

(2.3) ΩAB =−1
2 ∑

C,D
KABCDωC ∧ωD,

(2.4) KABCD = c(δACδBD−δADδBC).

Restricting to Mn,

(2.5) ωn+1 = 0.

(2.6) ωn+1i = ∑
j

hi jω j, hi j = h ji.

The structure equations of Mn are

(2.7) dωi = ∑
j

ωi j ∧ω j, ωi j +ω ji = 0,

(2.8) dωi j = ∑
k

ωik ∧ωk j−
1
2 ∑

k,l
Ri jklωk ∧ωl ,

(2.9) Ri jkl = c(δikδ jl−δilδ jk)+(hikh jl−hilh jk),

(2.10) Ri j = (n−1)cδi j +nHhi j−∑
k

hikhk j,

(2.11) n(n−1)(r− c) = n2H2−|h|2,
where n(n−1)r is the scalar curvature, H is the mean curvature and |h|2 is the squared norm
of the second fundamental form of Mn.

The Codazzi equation and the Ricci identity are

(2.12) hi jk = hik j,
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(2.13) hi jkl−hi jlk = ∑
m

hm jRmikl +∑
m

himRm jkl ,

where hi jk and hi jkl denote the first and the second covariant derivatives of hi j.
We choose e1, · · · ,en such that hi j = λiδi j. From (2.6), we have

(2.14) ωn+1i = λiωi, i = 1,2, · · · ,n.

Hence, we have from the structure equations of Mn

dωn+1i = dλi∧ωi +λidωi

= dλi∧ωi +λi ∑
j

ωi j ∧ω j.(2.15)

On the other hand, we have on the curvature forms of Mn+1(c),

Ωn+1i =−1
2 ∑

C,D
Kn+1iCDωC ∧ωD

=−1
2 ∑

C,D
c(δn+1CδiD−δn+1DδiC)ωC ∧ωD

=−cωn+1∧ωi = 0.(2.16)

Therefore, from the structure equations of Mn+1(c), we have

dωn+1i = ∑
j

ωn+1 j ∧ω ji +ωn+1n+1∧ωn+1i +Ωn+1i

= ∑
j

λ jωi j ∧ω j.(2.17)

From (2.15) and (2.17), we obtain

(2.18) dλi∧ωi +∑
j
(λi−λ j)ωi j ∧ω j = 0.

Putting

(2.19) ψi j = (λi−λ j)ωi j.

Then ψi j = ψ ji,(2.18) can be written as

(2.20) ∑
j
(ψi j +δi jdλ j)∧ω j = 0.

By Cartan’s lemma, we get

(2.21) ψi j +δi jdλ j = ∑
k

Qi jkωk,

where Qi jk are uniquely determined functions such that

(2.22) Qi jk = Qik j.
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3. Proof of main theorems

We firstly have the following Proposition 3.1 original due to Otsuki[6].

Proposition 3.1. Let Mn be a hypersurface in Mn+1(c) (c≥ 0) such that the multiplicities
of the principal curvatures are constant. Then the distribution of the space of the principal
vectors corresponding to each principal curvature is completely integrable. In particular,
if the multiplicity of a principal curvature is greater than 1, then this principal curvature is
constant on each integral submanifold of the corresponding distribution of the space of the
principal vectors.

Let Mn be an n(n≥ 3)-dimensional complete connected and oriented hypersurface with
constant k-th mean curvature Hk > 0 and with two distinct principal curvatures one of which
is simple, that is, without loss of generality, we may assume

(3.1) λ1 = λ2 = · · ·= λn−1 = λ , λn = µ,

where λi for i = 1,2, · · · ,n are the principal curvatures of Mn. Therefore, we obtain

Ck
nHk = Ck

n−1λ
k +Ck−1

n−1λ
k−1

µ,

this implies that

(3.2) λ
k−1[(n− k)λ + kµ] = nHk.

By changing the orientation for Mn and renumbering e1, · · · ,en if necessary, we may assume
that λ > 0. From (3.2), we have

(3.3) µ =
n
k

Hkλ
1−k− n− k

k
λ .

Since

λ −µ = n
λ k−Hk

kλ k−1 6= 0,

we know that λ k−Hk 6= 0.
Let ϖ = |λ k−Hk|−

1
n . We denote the integral submanifold through x∈Mn corresponding

to λ by Mn−1
1 (x). Putting

(3.4) dλ =
n

∑
k=1

λ ,k ωk, dµ =
n

∑
k=1

µ,k ωk.

From Proposition 3.1, we have

(3.5) λ ,1 = λ ,2 = · · ·= λ ,n−1 = 0 on Mn−1
1 (x).

From (3.3), we have

(3.6) dµ =
[

n(1− k)
k

Hkλ
−k− n− k

k

]
dλ .

Hence, we also have

(3.7) µ,1 = µ,2 = · · ·= µ,n−1 = 0 on Mn−1
1 (x).
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In this case, we may consider locally λ is a function of the arc length s of the integral curve
of the principal vector field en corresponding to the principal curvature µ . From (2.21),
(3.4) and (3.5), we have for 1≤ j ≤ n−1,

dλ = dλ j =
n

∑
k=1

Q j jkωk

=
n−1

∑
k=1

Q j jkωk +Q j jnωn

= λ ,n ωn.(3.8)

Therefore, we have

(3.9) Q j jk = 0, 1≤ k ≤ n−1, and Q j jn = λ ,n .

By (2.21), (3.4) and (3.7), we have

dµ = dλn =
n

∑
k=1

Qnnkωk

=
n−1

∑
k=1

Qnnkωk +Qnnnωn

=
n

∑
i=1

µ,i ωi

= µ,n ωn.(3.10)

Hence, we obtain

(3.11) Qnnk = 0, 1≤ k ≤ n−1, and Qnnn = µ,n .

From (3.6), we get

Qnnn = µ,n

=
[

n(1− k)
k

Hkλ
−k− n− k

k

]
λ ,n .(3.12)

From the definition of ψi j, if i 6= j, we have ψi j = 0 for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n− 1.
Therefore, from (2.21), if i 6= j and 1≤ i≤ n−1 and 1≤ j ≤ n−1 we have

(3.13) Qi jk = 0, for any k.

By (2.21), (3.9), (3.11), (3.12) and (3.13), we get

ψ jn =
n

∑
k=1

Q jnkωk

= Q j jnω j +Q jnnωn

= λ ,n ω j.(3.14)

From (2.19), (3.3) and (3.14), we have

ω jn =
ψ jn

λ −µ

=
λ ,n

λ −µ
ω j
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=
kλ k−1λ ,n

n(λ k−Hk)
ω j.(3.15)

Therefore, from the structure equations of Mn we have

dωn =
n−1

∑
k=1

ωk ∧ωkn +ωnn∧ωn = 0.

Therefore, we may put ωn = ds. By (3.8) and (3.10), we get

dλ = λ ,n ds, λ ,n =
dλ

ds
,

and

dµ = µ,n ds, µ,n =
dµ

ds
.

Then we have

ω jn =
kλ k−1λ ,n

n(λ k−Hk)
ω j

=
kλ k−1 dλ

ds
n(λ k−Hk)

ω j

=
d{log |λ k−Hk|

1
n }

ds
ω j.(3.16)

From (3.16) and the structure equations of Mn+1(c), we have

dω jn =
n−1

∑
k=1

ω jk ∧ωkn +ω jn∧ωnn +ω jn+1∧ωn+1n +Ω jn

=
n−1

∑
k=1

ω jk ∧ωkn +ω jn+1∧ωn+1n− cω j ∧ωn

=
d{log |λ k−Hk|

1
n }

ds

n−1

∑
k=1

ω jk ∧ωk− (λ µ + c)ω j ∧ds.

From (3.16), we have

dω jn =
d2{log |λ k−Hk|

1
n }

ds2 ds∧ω j +
d{log |λ k−Hk|

1
n }

ds
dω j

=
d2{log |λ k−Hk|

1
n }

ds2 ds∧ω j +
d{log |λ k−Hk|

1
n }

ds

n

∑
k=1

ω jk ∧ωk

=

−d2{log |λ k−Hk|
1
n }

ds2 +

[
d{log |λ k−Hk|

1
n }

ds

]2
ω j ∧ds

+
d{log |λ k−Hk|

1
n }

ds

n−1

∑
k=1

ω jk ∧ωk.
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From the above two equalities, we have

d2{log |λ k−Hk|
1
n }

ds2 −

{
d{log |λ k−Hk|

1
n }

ds

}2

− (λ µ + c) = 0.(3.17)

From (3.3) we get

d2{log |λ k−Hk|
1
n }

ds2 −

{
d{log |λ k−Hk|

1
n }

ds

}2

− n
k

Hkλ
2−k +

n− k
k

λ
2− c = 0.

Since we define ϖ = |λ k−Hk|−
1
n , we obtain from the above equation

(3.18)
d2ϖ

ds2 +ϖ
nHk− (n− k)λ k + ckλ k−2

kλ k−2 = 0.

We can prove the following Lemmas:

Lemma 3.1. Let
PHk(t) = kt

k−2
k − (n− k)t +nHk,

where t > 0, k ≥ 3 and Hk = const. > 0. Then PHk(t) obtains its maximum at t0 = [(k−2)/
(n− k)]k/2 and has a positive real root, denoted by t2. In addition,

(1) if Hk ≥ t0, then
(i) if t ≥ Hk, then t ≤ t2 holds if and only if PHk(t)≥ 0;

(ii) if t ≤ Hk, then PHk(t) > 0 for t0 < t < Hk, PHk(t) > 0 for 0 < t ≤ t0.
(2) if Hk ≤ t0, then
(i) if t ≥ Hk, then t0 ≤ t ≤ t2 holds if and only if PHk(t) ≥ 0 and PHk(t) > 0 for Hk ≤

t < t0;
(ii) if t ≤ Hk, then PHk(t) > 0 for 0 < t ≤ Hk.

Proof. We have
dPHk(t)

dt
=−(n− k)+(k−2)t−2/k,

it follows that the solution of dPHk(t)/dt = 0 is t0 = [(k−2)/(n− k)]k/2 > 0. Therefore, we
know that if t ≤ t0 if and only if PHk(t) is an increasing function, t ≥ t0 if and only if PHk(t)
is a decreasing function and PHk(t) obtain its maximum at t = t0.

Since PHk(t) is continuous and PHk(0) = nHk > 0, we infer that PHk(t) has a positive real

root, denoted by t2. Since PHk(Hk) = kH
k−2

k
k + kHk > 0 = PHk(t2), we have t2 > Hk.

Now we prove the next part of Lemma 3.1.
(1) If Hk ≥ t0, we consider two cases t ≥Hk and t ≤Hk.If t ≥Hk, since t ≥ t0 if and only

if PHk(t) is a decreasing function, we infer that if t ≥ Hk, then t ≤ t2 if and only if
PHk(t)≥ PHk(t2) = 0. If t ≤Hk, we have t ∈ (0, t0]∪(t0,Hk], from the increasing and

decreasing property of PHk(t), we easily have PHk(t)≥ PHk(Hk) = kH
k−2

k
k +kHk > 0

for t0 < t ≤ Hk, PHk(t) > PHk(0) = nHk > 0 for 0 < t ≤ t0.
(2) If Hk ≤ t0, we also consider two cases t ≥ Hk and t ≤ Hk. If t ≥ Hk, from the

increasing and decreasing property of PHk(t), we easily know that t0 ≤ t ≤ t2 holds

if and only if PHk(t) ≥ PHk(t2) = 0 and PHk(t) ≥ PHk(Hk) = kH
k−2

k
k + kHk > 0 for

Hk ≤ t < t0; If t ≤ Hk, we have t ∈ (0,Hk], from the increasing property of PHk(t),
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we easily have PHk(t) > PHk(0) > 0 for 0 < t ≤ Hk. We complete the proof of
Lemma 3.1.

Lemma 3.2. Let

|h|2(t) =
1

k2t(2k−2)/k
{(n−1)k2t2 +[nHk− (n− k)t]2},

t > 0, Hk = const. > 0 and k ≥ 3. Then, if t ≥ Hk, t ≤ t2 holds if and only if |h|2(t) ≤
(n−1)t2/k

2 + t−2/k
2 , where t2 is the positive real root of (1.4)

Proof. We have

d|h|2(t)
dt

=
2t(2−3k)/k

k3

(
(n2−2nk +nk2)t2 +n(k−2)(n− k)Hkt +(1− k)n2H2

k
)
,

it follows that the solution of d|h|2(t)/dt = 0 is t = Hk. Therefore, we know that if t ≤ Hk
if and only if |h|2(t) is a decreasing function, t ≥ Hk if and only if |h|2(t) is an increasing
function and |h|2(t) obtain its minimum at t = Hk.

From the proof of Lemma 3.1, we know that t2 > Hk. Since t ≥ Hk if and only if |h|2(t)
is an increasing function, we infer that if t ≥ Hk, then t ≤ t2 holds if and only if

|h|2(t)≤ |h|2(t2)

=
1

k2t(2k−2)/k
2

{(n−1)k2t2
2 +[nHk− (n− k)t2]2}

=
1

k2t(2k−2)/k
2

(
(n−1)k2t2

2 +
([

nHk− (n− k)t2 + kt
k−2

k
2

]
− kt

k−2
k

2

)2
)

=
1

k2t(2k−2)/k
2

(
(n−1)k2t2

2 +
(
−kt

k−2
k

2

)2
)

= (n−1)t2/k
2 + t−2/k

2 .

This completes the proof of Lemma 3.2.
Proof of Theorem 1.5. Firstly, we may prove that the positive function ϖ = |λ k−Hk|−1/n

is bounded from above. In fact, from the definition of ϖ and (3.18), we have

(3.19)
d2ϖ

ds2 +ϖ

(
n
k

Hk(Hk +ϖ
−n)

2
k−1− n− k

k
(Hk +ϖ

−n)
2
k + c

)
= 0,

for λ k−Hk > 0, or

(3.20)
d2ϖ

ds2 +ϖ

(
n
k

Hk(Hk−ϖ
−n)

2
k−1− n− k

k
(Hk−ϖ

−n)
2
k + c

)
= 0, for λ

k−Hk < 0.

Multiplying (3.19) or (3.20) by 2 dϖ

ds and integrating, we can get(
dϖ

ds

)2

+ cϖ
2 +ϖ

2(Hk +ϖ
−n)

2
k = C, for λ

k−Hk > 0,

or (
dϖ

ds

)2

+ cϖ
2 +ϖ

2(Hk−ϖ
−n)

2
k = C, for λ

k−Hk < 0,
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where C is a constant. Therefore, we have

(3.21) cϖ
2 +ϖ

2(Hk +ϖ
−n)

2
k ≤C, for λ

k−Hk > 0,

or

(3.22) cϖ
2 +ϖ

2(Hk−ϖ
−n)

2
k ≤C, for λ

k−Hk < 0.

Since c ≥ 0 and Hk > 0, from (3.21) and (3.22), we infer that the positive function ϖ is
bounded from above.

Denote t = λ k(> 0), we have |h|2 = |h|2(t). Putting c = 1 in (3.18), from (1.4), we have

(3.23)
d2ϖ

ds2 +ϖ
1

kt(k−2)/k
PHk(t) = 0.

Since

λ −µ = n
λ k−Hk

kλ k−1 6= 0,

we know that λ k−Hk 6= 0, that is, t 6= Hk. Therefore, we may consider two cases t > Hk
and t < Hk.

Case (i). If t > Hk, we may also consider two subcases Hk ≥ t0 and Hk ≤ t0, where t0 is
defined in Lemma 3.1.

Subcase (i). If Hk ≥ t0, since t > Hk, from Lemma 3.1, Lemma 3.2 and (3.23), we have
|h|2(t) ≤ (n− 1)t2/k

2 + t−2/k
2 if and only if t ≤ t2 if and only if PHk(t) ≥ 0 and if and only

if d2ϖ/ds2 ≤ 0. Thus dϖ/ds is a monotonic function of s ∈ (−∞,+∞). Therefore, by the
similar assertion in Wei [7], we have ϖ(s) must be monotonic when s tends to infinity. Since
ϖ(s) is bounded and monotonic when s tends to infinity, we know that both lims→−∞ ϖ(s)
and lims→+∞ ϖ(s) exist and then we get

(3.24) lim
s→−∞

dϖ(s)
ds

= lim
s→+∞

dϖ(s)
ds

= 0.

From the monotonicity of dϖ(s)/ds, we have dϖ(s)/ds ≡ 0 and ϖ(s) = constant. From
ϖ = |λ k−Hk|−1/n and (3.2), we have λ and µ are constant. Therefore, we know that Mn is
isometric to the Riemannian product S1(

√
1−a2)×Sn−1(a).

Subcase (ii). If Hk ≤ t0, since t > Hk, from Lemma 3.2, we have if |h|2(t) ≤ (n− 1)t2/k
2 +

t−2/k
2 then t ≤ t2. Thus, we have t ∈ (Hk, t0]∪ (t0, t2].

If t ∈ (Hk, t0], from Lemma 3.1, we have PHk(t) > 0. From (3.23), we have d2ϖ/ds2 < 0.
This implies that dϖ(s)/ds is a strictly monotone decreasing function of s and thus it has
at most one zero point for s ∈ (−∞,+∞). If dϖ(s)/ds has no zero point in (−∞,+∞), then
ϖ(s) is a monotone function of s in (−∞,+∞). If dϖ(s)/ds has exactly one zero point s0
in (−∞,+∞), then ϖ(s) is a monotone function of s in both (−∞,s0] and [s0,+∞).

On the other hand, since ϖ(s) is bounded and monotonic when s tends to infinity, we
know that both lims→−∞ ϖ(s) and lims→+∞ ϖ(s) exist and (3.24) holds. This is impossible
because dϖ(s)/ds is a strictly monotone decreasing function of s. Therefore, we know that
the case t ∈ (Hk, t0] does not occur and we conclude that t ∈ (t0, t2].
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If t ∈ (t0, t2], from Lemma 3.1, Lemma 3.2 and (3.23), we have |h|2(t) ≤ (n− 1)t2/k
2 +

t−2/k
2 if and only if t ≤ t2 if and only if PHk(t) ≥ 0 and if and only if d2ϖ/ds2 ≤ 0. Thus

dϖ/ds is a monotonic function of s ∈ (−∞,+∞). By the same assertion in the proof of sub-
case (i), we know that Mn is isometric to the Riemannian product S1(

√
1−a2)×Sn−1(a).

Case (ii). If t < Hk, we may also consider two subcases Hk ≥ t0 and Hk ≤ t0.

Subcase (i). If Hk ≥ t0, since t < Hk, we have t ∈ (0, t0]∪ (t0,Hk).
If t ∈ (0, t0], from Lemma 3.1, we have PHk(t) > 0. From (3.23), we have d2ϖ/ds2 < 0.

This implies that dϖ(s)/ds is a strictly monotone decreasing function of s and thus it has at
most one zero point for s ∈ (−∞,+∞). By the same assertion in the proof of subcase (ii) in
case (i), we know that the case t ∈ (0, t0] does not occur and we conclude that t ∈ (t0,Hk).
If t ∈ (t0,Hk), from Lemma 3.1, we also have PHk(t) > 0. By the same assertion above, we
also know that t ∈ (t0,Hk) does not occur.

Subcase (ii). If Hk ≤ t0, since t < Hk, from Lemma 3.1 and (3.23), we have PHk(t) > 0 and
d2ϖ/ds2 < 0. By the same assertion above, we may know that this subcase does not occur.
This completes the proof of Theorem 1.5.
Proof of Theorem 1.7. Putting c = 0 and t = λ k in (3.18), we have

(3.25)
d2ϖ

ds2 +ϖ
nHk− (n− k)t

kt(k−2)/k
= 0.

Since

λ −µ = n
λ k−Hk

kλ k−1 6= 0,

we know that λ k−Hk 6= 0. If λ k−Hk < 0, we have λ 2−λ µ < 0, then λ 2 < λ µ , from the
Gauss equation (2.9), we know that the sectional curvature of Mn is not less than λ 2 > 0.
From the result of Hartman [5], we have Mn is isometric to a totally umbilical hypersurface.
This is impossible because Mn has two distint principal curvatures. Thus, λ k−Hk > 0, that
is, t = λ k > Hk

Since |h|2 = |h|2(t), from the assumption of Theorem 1.7, we have

1
k2t(2k−2)/k

{(n−1)k2t2 +[nHk− (n− k)t]2} ≤ (n−1)
(

nHk

n− k

) 2
k
,

that is
1

k2t(2k−2)/k
[nHk− (n− k)t]2 ≤ n−1

(n− k)
2
k

[
(nHk)

2
k − (n− k)

2
k t

2
k

]
.

Therefore, we have (nHk)2/k− (n− k)2/kt2/k ≥ 0, that is, nHk ≥ (n− k)t because of t > 0.
From (3.25), we have d2ϖ/ds2 ≤ 0. By the same assertion in the proof of Theorem 1.5,
we have λ and µ are constant. Therefore, we know that Mn is isometric to the Riemannian
product Sn−1(a)×R. This completes the proof of Theorem 1.7.
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