On Meromorphic Starlike Functions of Reciprocal Order α

${ }^{1}$ Yong Sun, ${ }^{2}$ Wei-Ping Kuang and ${ }^{3}$ Zhi-Gang Wang
${ }^{1,2}$ Department of Mathematics, Huaihua University, Huaihua 418008, Hunan, People's Republic of China
${ }^{3}$ School of Mathematics and Statistics, Anyang Normal University, Anyang 455002, Henan, People's Republic of China
${ }^{1}$ yongsun2008@foxmail.com, ${ }^{2}$ kuangweipingppp@ $163 . c o m,{ }^{3}$ zhigangwang@foxmail.com

Abstract

In the present paper, we introduce the concept of meromorphic starlike functions of reciprocal order α. Some sufficient conditions for functions belonging to this class are derived.

2010 Mathematics Subject Classification: 30C45
Keywords and phrases: Analytic functions, meromorphic functions, starlike functions, starlike of reciprocal order, differential subordination.

1. Introduction

Let Σ denote the class of functions f of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{k=0}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the punctured open unit disk

$$
\mathbb{U}^{*}:=\{z: z \in \mathbb{C} \quad \text { and } \quad 0<|z|<1\}=: \mathbb{U} \backslash\{0\} .
$$

A function $f \in \Sigma$ is said to be in the class $\mathscr{M} \mathscr{S}^{*}(\alpha)$ of meromorphic starlike functions of order α if it satisfies the inequality

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)<-\alpha \quad(0 \leq \alpha<1 ; z \in \mathbb{U}) \tag{1.2}
\end{equation*}
$$

As usual, let $\mathscr{M} \mathscr{S}^{*}(0) \equiv \mathscr{M} \mathscr{S}^{*}$. Furthermore, a function $f \in \mathscr{M} \mathscr{S}^{*}$ is said to be in the class $\mathscr{N} \mathscr{S}^{*}(\alpha)$ of meromorphic starlike of reciprocal order α if and only if

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f(z)}{z f^{\prime}(z)}\right)<-\alpha \quad(0 \leq \alpha<1 ; z \in \mathbb{U}) \tag{1.3}
\end{equation*}
$$

In the following, we give several examples of functions belonging to the class of meromorphic starlike of reciprocal order.

Example 1.1. In view of the fact that

$$
\operatorname{Re}(p(z))<0 \Rightarrow \operatorname{Re}\left(\frac{1}{p(z)}\right)=\operatorname{Re}\left(\frac{p(z)}{|p(z)|^{2}}\right)<0
$$

it follows that a meromorphic starlike function of reciprocal order 0 is same as a meromorphic starlike function. When $0<\alpha<1$, the function $f \in \Sigma$ is meromorphic starlike of reciprocal order α if and only if

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}+\frac{1}{2 \alpha}\right|<\frac{1}{2 \alpha} \quad(z \in \mathbb{U}) \tag{1.4}
\end{equation*}
$$

Example 1.2. Let $f \in \Sigma$ satisfy the inequality

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}+1\right|<1-\alpha \quad(0 \leq \alpha<1 ; z \in \mathbb{U}) . \tag{1.5}
\end{equation*}
$$

Then

$$
\left|\frac{z f^{\prime}(z)}{f(z)}+\frac{2-\alpha}{2}\right| \leq\left|\frac{z f^{\prime}(z)}{f(z)}+1\right|+\frac{\alpha}{2}<1-\alpha+\frac{\alpha}{2}=\frac{2-\alpha}{2}
$$

and therefore such functions are meromorphic starlike of reciprocal order $1 /(2-\alpha)$.
Example 1.3. Let us define the function $f(z)$ by

$$
f(z)=\frac{e^{(1-\alpha) z}}{z} \quad(0<\alpha<1 ; z \in \mathbb{U})
$$

This gives us that

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)=\operatorname{Re}(-1+(1-\alpha) z)<-\alpha \quad(0<\alpha<1 ; z \in \mathbb{U})
$$

Therefore, we see that $f \in \mathscr{M} \mathscr{S}^{*}(\alpha)$.
Moreover, we have

$$
\frac{f(z)}{z f^{\prime}(z)}=\frac{1}{-1+(1-\alpha) z}
$$

It follows that

$$
\frac{f(z)}{z f^{\prime}(z)}=-1 \quad(z=0)
$$

and

$$
\operatorname{Re}\left(\frac{f(z)}{z f^{\prime}(z)}\right)=\operatorname{Re}\left(\frac{1}{-1+(1-\alpha) e^{i \theta}}\right)<-\frac{1}{2-\alpha} \quad\left(z=e^{i \theta}\right) .
$$

Therefore, we conclude that $f \in \mathscr{N} \mathscr{S}^{*}(1 /(2-\alpha))$.
In order to establish our main results, we need the following lemmas.
Lemma 1.1. (Jack's lemma [7]) Let φ be a non-constant regular function in \mathbb{U}. If $|\varphi|$ attains its maximum value on the circle $|z|=r<1$ at z_{0}, then

$$
z_{0} \varphi^{\prime}\left(z_{0}\right)=k \varphi\left(z_{0}\right),
$$

where $k \geq 1$ is a real number.

Lemma 1.2. [9] Let Ω be a set in the complex plane \mathbb{C} and suppose that Φ is a mapping from $\mathbb{C}^{2} \times \mathbb{U}$ to \mathbb{C} which satisfies $\Phi(i x, y ; z) \notin \Omega$ for $z \in \mathbb{U}$, and for all real x, y such that $y \leq-\left(1+x^{2}\right) / 2$. If the function $p(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ is analytic in \mathbb{U} and $\Phi\left(p(z), z p^{\prime}(z) ; z\right) \in \Omega$ for all $z \in \mathbb{U}$, then $\operatorname{Re}(p(z))>0$.
Lemma 1.3. [23] Let $\rho(z)=1+b_{1} z+b_{2} z^{2}+\cdots$ be analytic in \mathbb{U} and η be analytic and starlike (with respect to the origin) univalent in \mathbb{U} with $\eta(0)=0$. If

$$
z \rho^{\prime}(z) \prec \eta(z)
$$

then

$$
\rho(z) \prec 1+\int_{0}^{z} \frac{\eta(t)}{t} d t .
$$

In recent years, several authors studied meromorphic starlike functions and starlike functions of reciprocal order (see details, [1-6, 8, 10-12, 14-22, 24]). Nunokawa et al. [13] obtained some argument properties of starlike functions of reciprocal order. In the present investigation, we give some sufficient conditions for the functions belonging to the class $\mathscr{N} \mathscr{S}^{*}(\alpha)$.

2. Main results

We begin by presenting the following coefficient sufficient condition for functions belonging to the class $\mathscr{N} \mathscr{S}^{*}(\alpha)$.

Theorem 2.1. If $f \in \Sigma$ satisfies

$$
\begin{equation*}
\sum_{k=0}^{\infty}(1+k \alpha)\left|a_{k}\right| \leq \frac{1}{2}(1-|1-2 \alpha|) \tag{2.1}
\end{equation*}
$$

then $f \in \mathscr{N} \mathscr{S}^{*}(\alpha)$, for $0<\alpha<1$.
Proof. By virtue of the condition (1.4), we only need to show that

$$
\begin{equation*}
\left|\frac{2 \alpha z f^{\prime}(z)}{f(z)}+1\right|<1 \quad(z \in \mathbb{U}) \tag{2.2}
\end{equation*}
$$

We first observe that

$$
\begin{aligned}
\left|\frac{2 \alpha z f^{\prime}(z)+f(z)}{f(z)}\right| & =\left|\frac{(1-2 \alpha)+\sum_{k=0}^{\infty}(1+2 k \alpha) a_{k} z^{k+1}}{1+\sum_{k=0}^{\infty} a_{k} z^{k+1}}\right| \\
& \leq \frac{|1-2 \alpha|+\sum_{k=0}^{\infty}(1+2 k \alpha)\left|a_{k}\right||z|^{k+1}}{1-\sum_{k=0}^{\infty}\left|a_{k}\right||z|^{k+1}} \\
& <\frac{|1-2 \alpha|+\sum_{k=0}^{\infty}(1+2 k \alpha)\left|a_{k}\right|}{1-\sum_{k=0}^{\infty}\left|a_{k}\right|}
\end{aligned}
$$

Now, by using the inequality (2.1), we have

$$
\begin{equation*}
\frac{|1-2 \alpha|+\sum_{k=0}^{\infty}(1+2 k \alpha)\left|a_{k}\right|}{1-\sum_{k=0}^{\infty}\left|a_{k}\right|}<1 \tag{2.3}
\end{equation*}
$$

which, in conjunction with (2.2), completes the proof of Theorem 2.1.

Example 2.1. The function $f(z)$ given by

$$
f(z)=\frac{1}{z}+\sum_{k=2}^{\infty} \frac{1-|1-2 \alpha|}{k(k+1)(1+k \alpha)} z^{k}
$$

belongs to the class $\mathscr{N} \mathscr{S}^{*}(\alpha)$.
By using Jack's lemma, we now derive the following result for the class $\mathscr{N} \mathscr{S}^{*}(\alpha)$.
Theorem 2.2. If $f \in \Sigma$ satisfies

$$
\begin{equation*}
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right|<1-\alpha \tag{2.4}
\end{equation*}
$$

then $f \in \mathscr{N} \mathscr{S}^{*}(\alpha)$, for $1 / 2 \leq \alpha<1$.
Proof. Let

$$
\begin{equation*}
\omega(z)=\frac{1+\frac{\alpha z f^{\prime}(z)}{f(z)}}{1-\alpha}-1 \quad\left(\frac{1}{2} \leq \alpha<1 ; z \in \mathbb{U}\right) \tag{2.5}
\end{equation*}
$$

Then the function ω is analytic in \mathbb{U} with $\omega(0)=0$. We easily find from (2.5) that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\frac{(1-\alpha) \omega(z)-\alpha}{\alpha} \quad(z \in \mathbb{U}) \tag{2.6}
\end{equation*}
$$

Differentiating both sides of (2.6) logarithmically, we obtain

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}=\frac{(1-\alpha) z \omega^{\prime}(z)}{(1-\alpha) \omega(z)-\alpha} \tag{2.7}
\end{equation*}
$$

by virtue of (2.4) and (2.7), we find that

$$
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right|=|1-\alpha|\left|\frac{z \omega^{\prime}(z)}{(1-\alpha) \omega(z)-\alpha}\right|<1-\alpha .
$$

Next, we claim that $|\omega(z)|<1$. Indeed, if not, there exists a point $z_{0} \in \mathbb{U}$ such that

$$
\begin{equation*}
\max _{|z| \leq\left|z_{0}\right|}=\left|\omega\left(z_{0}\right)\right|=1 \tag{2.8}
\end{equation*}
$$

Applying Jack's lemma to $\omega(z)$ at the point z_{0}, we have

$$
\omega\left(z_{0}\right)=e^{i \theta} \quad \text { and } \quad \frac{z_{0} \omega^{\prime}\left(z_{0}\right)}{\omega\left(z_{0}\right)}=k \quad(k \geq 1) .
$$

This gives us that

$$
\left.\left|1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}-\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right|=|1-\alpha|\left|\frac{k}{(1-\alpha)-\alpha e^{-i \theta}}\right| \geq|1-\alpha| \frac{1}{(1-\alpha)-\alpha e^{-i \theta}} \right\rvert\, .
$$

This implies that

$$
\begin{equation*}
\left|1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}-\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right|^{2} \geq \frac{(1-\alpha)^{2}}{(1-\alpha)^{2}+\alpha^{2}-2 \alpha(1-\alpha) \cos \theta} \tag{2.9}
\end{equation*}
$$

Since the right hand side of (2.9) takes it minimum value for $\cos \theta=-1$, we have that

$$
\left|1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}-\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right|^{2} \geq \frac{(1-\alpha)^{2}}{(1-\alpha+\alpha)^{2}}=(1-\alpha)^{2}
$$

This contradicts our condition (2.4) of Theorem 2.2. Therefore, we conclude that $|\omega(z)|<1$, which shows that

$$
\left|\frac{1+\frac{\alpha z f^{\prime}(z)}{f(z)}}{1-\alpha}-1\right|<1 \quad\left(\frac{1}{2} \leq \alpha<1 ; z \in \mathbb{U}\right)
$$

This implies that

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}+1\right|<\frac{1}{\alpha}-1 \quad\left(\frac{1}{2} \leq \alpha<1 ; z \in \mathbb{U}\right) \tag{2.10}
\end{equation*}
$$

then, we have
$\left|\frac{z f^{\prime}(z)}{f(z)}+\frac{1}{2 \alpha}\right| \leq\left|\frac{z f^{\prime}(z)}{f(z)}+1\right|+\left|\frac{1}{2 \alpha}-1\right|<\frac{1}{\alpha}-1+1-\frac{1}{2 \alpha}=\frac{1}{2 \alpha} \quad\left(\frac{1}{2} \leq \alpha<1 ; z \in \mathbb{U}\right)$,
Therefore, we conclude that $f \in \mathscr{N} \mathscr{S}^{*}(\alpha)$.
Example 2.2. Let us consider the function $f \in \Sigma$ given by

$$
f(z)=\frac{1}{z}+a_{0} \quad\left(z \in \mathbb{U}^{*}\right)
$$

with

$$
a_{0}=\frac{1-\alpha}{2-\alpha}
$$

for some $\alpha(1 / 2 \leq \alpha<1)$, then we see that $0<a_{0} \leq 1 / 3$.
Note that

$$
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right|=\left|\frac{-a_{0} z}{1+a_{0} z}\right|<\frac{a_{0}}{1-a_{0}}=1-\alpha
$$

Moreover

$$
\operatorname{Re}\left(\frac{f(z)}{z f^{\prime}(z)}\right)=\operatorname{Re}\left(-1-a_{0} z\right) \leq a_{0}-1=\frac{1}{\alpha-2}<-\alpha \quad\left(\frac{1}{2} \leq \alpha<1 ; z \in \mathbb{U}\right)
$$

Therefore, $f \in \mathscr{N} \mathscr{S}^{*}(\alpha)$.
Theorem 2.3. If $f \in \Sigma$ satisfies

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right)<\left\{\begin{array}{cl}
\frac{\alpha}{2(1-\alpha)} & \left(0 \leq \alpha \leq \frac{1}{2}\right) \tag{2.11}\\
\frac{1-\alpha}{2 \alpha} & \left(\frac{1}{2} \leq \alpha<1\right)
\end{array}\right.
$$

then $f \in \mathscr{N} \mathscr{S}^{*}(\alpha)$, for $0 \leq \alpha<1$.
Proof. Suppose that

$$
\begin{equation*}
g(z):=\frac{-\frac{f(z)}{z f^{\prime}(z)}-\alpha}{1-\alpha} \quad(0 \leq \alpha<1 ; z \in \mathbb{U}) . \tag{2.12}
\end{equation*}
$$

Then g is analytic in \mathbb{U}. It follows from (2.12) that

$$
\begin{equation*}
-1-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{z f^{\prime}(z)}{f(z)}=\frac{(1-\alpha) z g^{\prime}(z)}{\alpha+(1-\alpha) g(z)}=\Phi\left(g(z), z g^{\prime}(z) ; z\right) \tag{2.13}
\end{equation*}
$$

where

$$
\Phi(r, s ; t)=\frac{(1-\alpha) s}{\alpha+(1-\alpha) r}
$$

For all real x and y satisfying $y \leq-\left(1+x^{2}\right) / 2$, we have

$$
\begin{aligned}
\operatorname{Re}\left(\Phi\left(g(z), z g^{\prime}(z) ; z\right)\right)=\frac{(1-\alpha) \alpha y}{\alpha^{2}+(1-\alpha)^{2} x^{2}} & \leq-\frac{(1-\alpha) \alpha}{2} \cdot \frac{1+x^{2}}{\alpha^{2}+(1-\alpha)^{2} x^{2}} \\
& \leq\left\{\begin{array}{cc}
-\frac{(1-\alpha) \alpha}{2} \cdot \frac{1}{(1-\alpha)^{2}} & \left(0 \leq \alpha \leq \frac{1}{2}\right) \\
-\frac{(1-\alpha) \alpha}{2} \cdot \frac{1}{\alpha^{2}} \quad\left(\frac{1}{2} \leq \alpha<1\right)
\end{array}\right.
\end{aligned}
$$

We now put

$$
\Omega=\left\{\xi: \operatorname{Re}(\xi)>\left\{\begin{array}{cc}
\frac{\alpha}{2(\alpha-1)} & \left(0 \leq \alpha \leq \frac{1}{2}\right) \\
\frac{\alpha-1}{2 \alpha} & \left(\frac{1}{2} \leq \alpha<1\right)
\end{array}\right\}\right.
$$

then $\Phi(i x, y ; z) \notin \Omega$ for all real x, y such that $y \leq-\left(1+x^{2}\right) / 2$. Moreover, in view of (2.11), we know that $\Phi\left(g(z), z g^{\prime}(z) ; z\right) \in \Omega$. Thus, by Lemma 1.2, we deduce that

$$
\operatorname{Re}(g(z))>0 \quad(z \in \mathbb{U})
$$

which shows that the desired assertion of Theorem 2.3 holds.
Theorem 2.4. If $f \in \Sigma$ satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f(z)}{z f^{\prime}(z)}\left(1+\beta \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right)<\frac{1}{2} \beta(\alpha+3)-\alpha \tag{2.14}
\end{equation*}
$$

then $f \in \mathscr{N} \mathscr{S}^{*}(\alpha)$, for $0 \leq \alpha<1$ and $\beta \geq 0$.
Proof. We define the function $h(z)$ by

$$
\begin{equation*}
h(z):=\frac{-\frac{f(z)}{z f^{\prime}(z)}-\alpha}{1-\alpha} \quad(0 \leq \alpha<1 ; z \in \mathbb{U}) \tag{2.15}
\end{equation*}
$$

Then h is analytic in \mathbb{U}. It follows from (2.15) that

$$
\begin{equation*}
1+\beta \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{\beta\left[(1-\alpha) z h^{\prime}(z)-1\right]}{(1-\alpha) h(z)+\alpha}+1-\beta \tag{2.16}
\end{equation*}
$$

Combining (2.15) and (2.16), we get

$$
\begin{aligned}
-\frac{f(z)}{z f^{\prime}(z)}\left(1+\beta \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) & =\beta(1-\alpha) z h^{\prime}(z)+(1-\beta)(1-\alpha) h(z)+(1-\beta) \alpha-\beta \\
& =\Phi\left(h(z), z h^{\prime}(z) ; z\right)
\end{aligned}
$$

where

$$
\Phi(r, s ; t)=\beta(1-\alpha) s+(1-\beta)(1-\alpha) r+(1-\beta) \alpha-\beta
$$

For all real x and y satisfying $y \leq-\left(1+x^{2}\right) / 2$, we have

$$
\begin{aligned}
\operatorname{Re}(\Phi(i x, y ; z)) & =\beta(1-\alpha) y+(1-\beta) \alpha-\beta \\
& \leq-\frac{\beta(1-\alpha)}{2}\left(1+x^{2}\right)+(1-\beta) \alpha-\beta \\
& \leq-\frac{\beta(1-\alpha)}{2}+(1-\beta) \alpha-\beta
\end{aligned}
$$

$$
=\alpha-\frac{1}{2} \beta(\alpha+3) \quad(0 \leq \alpha<1)
$$

If we set

$$
\Omega=\left\{\xi: \operatorname{Re}(\xi)>\alpha-\frac{1}{2} \beta(\alpha+3)\right\}
$$

then $\Phi(i x, y ; z) \notin \Omega$ for all real x, y such that $y \leq-\left(1+x^{2}\right) / 2$. Furthermore, by virtue of (2.14), we know that $\Phi\left(h(z), z h^{\prime}(z) ; z\right) \in \Omega$. Thus, by Lemma 1.2, we conclude that

$$
\operatorname{Re}(h(z))>0 \quad(z \in \mathbb{U}),
$$

which implies that the assertion of Theorem 2.4 holds true.
Theorem 2.5. If $f \in \Sigma$ satisfies

$$
\begin{equation*}
\left|\left(1+\frac{2 \alpha z f^{\prime}(z)}{f(z)}\right)^{\prime}\right| \leq \beta|z|^{\gamma} \tag{2.17}
\end{equation*}
$$

then $f \in \mathscr{N} \mathscr{S}^{*}(\alpha)$, for $0<\alpha<1,0<\beta \leq \gamma+1$ and $\gamma \geq 0$.
Proof. For $f \in \Sigma$, we define the function $\psi(z)$ by

$$
\psi(z)=z\left(1+\frac{2 \alpha z f^{\prime}(z)}{f(z)}\right) \quad(z \in \mathbb{U}) .
$$

Then $\psi(z)$ is regular in \mathbb{U} and $\psi(0)=0$. The condition of the theorem gives us that

$$
\left|\left(1+\frac{2 \alpha z f^{\prime}(z)}{f(z)}\right)^{\prime}\right|=\left|\left(\frac{\psi(z)}{z}\right)^{\prime}\right| \leq \beta|z|^{\gamma} \quad(z \in \mathbb{U})
$$

It follows that

$$
\left|\left(\frac{\psi(z)}{z}\right)^{\prime}\right|=\left|\int_{0}^{z}\left(\frac{\psi(t)}{t}\right)^{\prime} d t\right| \leq \int_{0}^{|z|} \beta|t|^{\gamma} d|t|=\frac{\beta}{\gamma+1}|z|^{\gamma+1} \quad(z \in \mathbb{U}) .
$$

This implies that

$$
\left|\left(\frac{\psi(z)}{z}\right)^{\prime}\right| \leq \frac{\beta}{\gamma+1}|z|^{\gamma+1}<1 \quad(0<\beta \leq \gamma+1, \gamma \geq 0 ; z \in \mathbb{U})
$$

Therefore, by the definition of $\psi(z)$, we conclude that

$$
\left|\frac{2 \alpha z f^{\prime}(z)}{f(z)}+1\right|<1 \quad(0<\alpha<1 ; z \in \mathbb{U})
$$

which is equivalent to

$$
\left|\frac{z f^{\prime}(z)}{f(z)}+\frac{1}{2 \alpha}\right|<\frac{1}{2 \alpha} \quad(0<\alpha<1 ; z \in \mathbb{U})
$$

Theorem 2.6. If $f \in \Sigma$ satisfies

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{1}{\alpha}-1 \tag{2.18}
\end{equation*}
$$

then $f \in \mathscr{N} \mathscr{S}^{*}(\alpha)$, for $1 / 2<\alpha<1$.

Proof. Let

$$
\begin{equation*}
q(z):=-\frac{f(z)}{z f^{\prime}(z)} \quad(z \in \mathbb{U}) \tag{2.19}
\end{equation*}
$$

Then the function $q(z)$ is analytic in \mathbb{U}. It follows from (2.19) that

$$
\begin{equation*}
z\left(\frac{1}{q(z)}\right)^{\prime}=-\frac{z f^{\prime}(z)}{f(z)}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \quad(z \in \mathbb{U}) \tag{2.20}
\end{equation*}
$$

Combining (2.18) and (2.20), we find that

$$
\begin{equation*}
z\left(\frac{1}{q(z)}\right)^{\prime} \prec \frac{(1-\alpha) z}{\alpha} \quad(z \in \mathbb{U}) \tag{2.21}
\end{equation*}
$$

An application of Lemma 1.3 to (2.21) yields

$$
\begin{equation*}
q(z) \prec \frac{\alpha}{\alpha+(1-\alpha) z}=: \digamma(z) \quad(z \in \mathbb{U}) . \tag{2.22}
\end{equation*}
$$

By noting that

$$
\operatorname{Re}\left(1+\frac{z \digamma^{\prime \prime}(z)}{\digamma^{\prime}(z)}\right)=\operatorname{Re}\left(\frac{\alpha-(1-\alpha) z}{\alpha+(1-\alpha) z}\right) \geq \frac{\alpha-(1-\alpha)}{\alpha+(1-\alpha)}>0 \quad\left(\frac{1}{2}<\alpha<1 ; z \in \mathbb{U}\right)
$$

which implies that the region $\digamma(\mathbb{U})$ is symmetric with respect to the real axis and \digamma is convex univalent in \mathbb{U}. Therefore, we have

$$
\begin{equation*}
\operatorname{Re}(\digamma(z)) \geq \digamma(1) \geq 0 \quad(z \in \mathbb{U}) \tag{2.23}
\end{equation*}
$$

Combining (2.19), (2.22) and (2.23), we deduce that

$$
\operatorname{Re}\left(\frac{f(z)}{z f^{\prime}(z)}\right)<-\alpha \quad\left(\frac{1}{2}<\alpha<1 ; z \in \mathbb{U}\right) .
$$

This evidently completes the proof of Theorem 2.6.
Acknowledgement. The authors would like to express their gratitude to the referees for the comments and suggestions.

References

[1] R. M. Ali and V. Ravichandran, Classes of meromorphic α-convex functions, Taiwanese J. Math. 14 (2010), no. 4, 1479-1490.
[2] R. M. Ali, V. Ravichandran and N. Seenivasagan, Subordination and superordination of the Liu-Srivastava linear operator on meromorphic functions, Bull. Malays. Math. Sci. Soc. (2) 31 (2008), no. 2, 193-207.
[3] R. M. Ali, V. Ravichandran and N. Seenivasagan, On subordination and superordination of the multiplier transformation for meromorphic functions, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 2, 311-324.
[4] M. K. Aouf, Argument estimates of certain meromorphically multivalent functions associated with generalized hypergeometric function, Appl. Math. Comput. 206 (2008), no. 2, 772-780.
[5] N. E. Cho, Argument estimates of certain meromorphic functions, Commun. Korean Math. Soc. 15 (2000), no. 2, 263-274.
[6] N. E. Cho and O. S. Kwon, A class of integral operators preserving subordination and superordination, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 3, 429-437.
[7] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. (2) 3 (1971), 469-474.
[8] J.-L. Liu and H. M. Srivastava, Some convolution conditions for starlikeness and convexity of meromorphically multivalent functions, Appl. Math. Lett. 16 (2003), no. 1, 13-16.
[9] S. S. Miller and P. T. Mocanu, Differential subordinations and inequalities in the complex plane, J. Differential Equations 67 (1987), no. 2, 199-211.
[10] M. H. Mohd, R. M. Ali, L. S. Keong and V. Ravichandran, Subclasses of meromorphic functions associated with convolution, J. Inequal. Appl. 2009, Art. ID 190291, 9 pp.
[11] S. R. Mondal and A. Swaminathan, Geometric properties of generalized Bessel functions, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 1, 179-194.
[12] M. Nunokawa and O. P. Ahuja, On meromorphic starlike and convex functions, Indian J. Pure Appl. Math. 32 (2001), no. 7, 1027-1032.
[13] M. Nunokawa, S. Owa, J. Nishiwaki, K. Kuroki and T. Hayami, Differential subordination and argumental property, Comput. Math. Appl. 56 (2008), no. 10, 2733-2736.
[14] H. Silverman, K. Suchithra, B. A. Stephen and A. Gangadharan, Coefficient bounds for certain classes of meromorphic functions, J. Inequal. Appl. 2008, Art. ID 931981, 9 pp.
[15] H. M. Srivastava, D.-G. Yang and N.-E. Xu, Some subclasses of meromorphically multivalent functions associated with a linear operator, Appl. Math. Comput. 195 (2008), no. 1, 11-23.
[16] S. Supramaniam, R. M. Ali, S. K. Lee and V. Ravichandran, Convolution and differential subordination for multivalent functions, Bull. Malays. Math. Sci. Soc. (2) 32 (2009), no. 3, 351-360.
[17] Z.-G. Wang, Y.-P. Jiang and H. M. Srivastava, Some subclasses of meromorphically multivalent functions associated with the generalized hypergeometric function, Comput. Math. Appl. 57 (2009), no. 4, 571-586.
[18] Z.-G. Wang, Z.-H. Liu and Y. Sun, Some subclasses of meromorphic functions associated with a family of integral operators, J. Inequal. Appl. 2009, Art. ID 931230, 18 pp.
[19] Z.-G. Wang, Z.-H. Liu and R.-G. Xiang, Some criteria for meromorphic multivalent starlike functions, Appl. Math. Comput. 218 (2011), no. 3, 1107-1111.
[20] Z.-G. Wang, Y. Sun and Z.-H. Zhang, Certain classes of meromorphic multivalent functions, Comput. Math. Appl. 58 (2009), no. 7, 1408-1417.
[21] Z.-G. Wang, Z.-H. Liu and A. Cǎtaş, On neighborhoods and partial sums of certain meromorphic multivalent functions, Appl. Math. Lett. 24 (2011), no. 6, 864-868.
[22] R.-G. Xiang, Z.-G. Wang and M. Darus, A family of integral operators preserving subordination and superordination, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 1, 121-131.
[23] D.-G. Yang, Some criteria for multivalently starlikeness, Southeast Asian Bull. Math. 24 (2000), no. 3, 491497.
[24] S.-M. Yuan, Z.-M. Liu and H. M. Srivastava, Some inclusion relationships and integral-preserving properties of certain subclasses of meromorphic functions associated with a family of integral operators, J. Math. Anal. Appl. 337 (2008), no. 1, 505-515.

