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Abstract. We continue the study of the topological Rees congruences on a topological
semigroup. First, we give some necessary and sufficient conditions for the question “when
the quotient space of S over one of its ideal I is a kω -space?”, then we use it to generalize the
Rees version of Lawson and Madison’s well-known theorem about topological congruences
on S.
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1. Introduction and preliminaries

In this paper all spaces are assumed to be Hausdorff. Let S be a topological semigroup and
θ be a closed congruence on it. It is a famous problem that “When the quotient semigroup
S/θ with the quotient topology is a topological semigroup?”. This problem was studied
by Wallace in [14] and in fact, he was one of the first mathematicians who worked on this
problem. Latter Lawson and Madison in [9] studied this question and more specially they
raised and studied the Rees version of this question “When the quotient semigroup S/I with
the quotient topology is a topological semigroup?” (they also studied this question for a
locally compact topological semigroup). In the following, we mention some of the earlier
works about this question (for other similar results see [8, 10, 11, 12]). Wallace in [14]
proved that if S is a compact topological semigroup and ρ is a closed congruence on it,
then S/ρ is a compact topological semigroup. This result was generalized by Lawson and
Madison in [9] and they proved the following theorem.

Lawson and Madison’s Theorem. Let S be a locally compact, σ -compact Hausdorff topo-
logical semigroup and θ be a closed congruence on S. Then S/θ is a topological semigroup.

Later, Gonzalez studied σ -compact locally compact spaces and he presented a new proof
for Lawson and Madison’s theorem in [5]. Gutik and Pavlyk in [6] showed that if S is a
topological semigroup and I is a compact ideal of S, then S/I is a topological semigroup. It
is a known fact that a closed Rees congruences on a topological semigroup is not necessarily
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topological and there are examples of H-closed metrizable topological semigroups which
have Rees congruences that are not topological (see [6, 7]). Almost all the works about
this question use some strong topological assumption and they used rarely the algebraic
structures of topological semigroups (see [6, 9]). However, we need to consider both of these
structures for a complete answer. In this paper, we investigate conditions which are closely
related to ideals and topological structures of S. First, we give necessary and sufficient
condition on S and a closed ideal I of S such that S/I is a kw-space, then we use this result
to generalize Lawson and Madison’s well known theorem. As a consequence of our results,
we show that for a topological semigroup S and a closed ideal I, if S\ I◦ is σ -compact, then
for every closed ideal J in S such that I ⊆ J, S/J is a topological semigroup.

We recall that a semigroup S with a topology τS is a topological semigroup if the mul-
tiplication λ : S× S→ S is jointly continuous, where S× S has the product topology. A
Hausdorff space X is called a k-space, if it has the weak topology determined by the family
of its compact subsets. A locally compact space is σ -compact, if it can be expressed as
the union of at most countably many compact spaces Kn (so that a subset A ⊆ X is closed
whenever A∩Kn is closed in Kn for all n). A space X is a kw-space, if it is the union of
a countable collection {Kn} of compact subsets so that a subset A ⊆ X is closed whenever
A∩Kn is closed in Kn for all n (therefore, any σ -compact space is kw-space). For an ideal
I in S, the Rees congruence ρI is equal to ∆S ∪ (I× I), where ∆S = {(s,s) : s ∈ S}. For
a congruence θ on S, if we consider the set of equivalence classes of θ , {[t] : t ∈ S}, and
define [t][s] := [ts], then {[t] : t ∈ S} with this multiplication is a semigroup denoted by S/θ .
For simplicity, we denote S/ρI by S/I. If ρ is a congruence in S, which is closed in S×S,
it is called a closed congruence (see [5]). A closed ideal I of S is called regular, if for
any s ∈ S \ I, there exist open neighborhoods Vs and WI of s and I, respectively, such that
Vs ∩WI = /0. A topological congruence on a topological semigroup S is a semigroup con-
gruence θ (that is, if sθs′ where s,s′ ∈ S, then for any t ∈ S, tsθ ts′ and stθs′t) such that the
semigroup S/θ with the quotient topology is a topological semigroup (Note that we assume
that topological semigroups are Hausdorff). A closed congruence which is topological, is
called a closed topological congruence. It is a known fact that for a closed ideal I of S, the
quotient space S/I is Hausdorff if and only if I is regular in S. For a closed subset A of
S, we denote the boundary of A in S by ∂ (A). Finally, we recall the Second Isomorphism
Theorem for topological semigroups (we can find the general form of this theorem for any
congruence in [2, Theorem 2.1]).

Theorem 1.1 (Second Isomorphism Theorem for Rees Congruences). Let S be a topologi-
cal semigroup and let I be a closed ideal of S. Then every topological Rees congruences on
S/I has the form J/I, where J is a closed ideal of S such that ρJ is a topological congruence
on S and I ⊆ J.

2. Topological Rees congruences

Before we begin our investigation, we invite the reader to the following remark which gives
the structure of open sets in S/I for some closed ideal I of S. Furthermore, we present the
following notations needed in the sequel.

Remark 2.1. Let S be a topological semigroup, I be a closed ideal of S and πI be the natural
quotient map from S to S/I. It is straightforward to see that the family of open sets in S/I is
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equal to

τI := {πI(O) : O is an open set in S such that either O∩ I = /0 or I ⊆ O.}

(Recall that a set O is open in the quotient topology, if the inverse image of O under πI is
open in S.)

Notation 1.
(i) Let X be a topological space and {Yα}α∈J be a family of its subspaces. If X has

the weak topology induced by {Yα}α∈J , then we denote it by X = Σα∈JYα (if X
has the weak topology induced by two subspaces Z and Y , then we denote it by
X = Z⊕Y ). Recall that if X has the weak topology induced by a family {Yα}α∈J
of its subspaces, then a set O is open in X if and only if O∩Yα is open in Yα for any
α ∈ J (for more details about the weak topology, see [3]).

(ii) Let S be a topological semigroup and I be a closed ideal of S. Let τ be the following
topology on S\ I◦ which is defined by

τ := {O| O is open in S and either O∩ I = /0, or I ⊆ O}.

From now on, we denote the underlying set of S\ I◦ with the topology τ by SI .

Theorem 2.1. Let S be a topological semigroup and I be a closed ideal of S. The following
conditions are equivalent

(i) S/I is a Hausdorff kω -space;
(ii) I is regular in S and S = I⊕ (Σn∈JK′n), where J ⊆ N and either K′n ∩ I = /0 and K′n

is compact in S, or K′n = I∪Kn, where Kn is compact in SI .

Proof. (i)⇒ (ii) Let S/I be a Hausdorff kω -space and π be the natural quotient map from S
to S/I. Since I = S is a trivial case, suppose that I 6= S. Since S/I is a kω -space, it is equal
to the weak topology induced by a family of its compact subsets {K̃n}n∈J , where J ⊆ N.
Clearly, since S/I is Hausdorff, I is regular in S. Define K′n := π−1(K̃n). Note that clearly
for any n ∈ J, K′n is closed in S and if [y] /∈ K̃n, where y ∈ I, then K′n is compact in S. We
show that S = I⊕ (Σn∈JK′n). Let A be a subset of S such that A∩K′n is closed in K′n for any
n ∈ J and A∩ I is closed in I. First, we show that π(A) is closed in S/I, then we show that
A is closed in S.

Case (i): If A∩ I = /0, then since for any n ∈ J, π(A)∩ K̃n = π(A)∩π(K′n) = π(A∩K′n),
π(A)∩ K̃n is closed in K̃n, for any n ∈ J. Hence π(A) is closed in S/I. Since π|A is one-one
and π is a quotient map, A is a closed subset of S.

Case (ii): Let A∩ I 6= /0 and consider an arbitrary K′n and fix it. If K′n∩ I = /0, then π(A∩K′n)
is closed in K̃n, because A∩K′n is compact in S and π is continuous.

If K′n∩ I 6= /0, then A∩ I 6= /0 and I ⊆ K′n. Clearly, since π−1(π(A)∩ K̃n) = (A∪ I)∩K′n =
I ∪ (A∩K′n), and since π is a quotient map, π(A)∩ K̃n is closed in K̃n. Therefore, by the
first and the second part of the proof in Case (ii), since K′n is arbitrary, π(A) is closed
in S/I. Hence A∪ I is closed in S. Clearly (A∪ I) \ I◦ is closed in S. Since we know
that A∩ I is closed, to prove our assertion, we show that A \ (A∩ I◦) is closed in S (since
A = (A∩ I)∪(A\(A∩ I◦))). Note that (A\ (A∩ I◦))⊆ (A∪ I)\ I◦ = (A\ I◦)∪∂ I. Therefore,
if x ∈ ∂ ((A\ (A∩ I◦))), then x ∈ A\ I◦ or x ∈ ∂ I. For the nontrivial case, let x ∈ ∂ I. Since
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S/I is Hausdorff, there exists a nontrivial open set O in S which contains I, and since S/I
is a kω -space, π(O)∩ K̃n is open in any K̃n. Therefore, x belongs to π−1(K̃◦n )⊆ (K′n)

◦. Let
(aα)α∈D be a net in A \ (A∩ I◦) which converges to x. Since aα → x, there exists a β ∈ D
such that for any α ≥ β , aα ∈ K′n∩A. Since K′n∩A is closed in K′n, x belongs to K′n∩A⊆ A.
Therefore A is a closed subset of S.

(ii)⇒ (i) Let S = I⊕(Σn∈JK′n), for some subset J⊆N and {K′n}n∈J which fulfil the condition
in (ii). Define K̃n := π(K′n). Clearly, by Remark 2.1, K̃n is compact for any n ∈ J. Let Õ
be a subset of S/I such that Õ∩ K̃n is open in K̃n for any n ∈ J. Therefore, for any n ∈ J,
π−1(Õ∩ K̃n) ⊆ K′n and π−1(Õ) is open in K′n. Hence since π−1(Õ)∩K′n = π−1(Õ∩ K̃n),
π−1(Õ) is open in S. Therefore Õ is open in S/I. Hence S/I is a kω -space.

Remark 2.2. Note that the above theorem is true for the equivalence relation generated by
the closed subset I of a topological space.

Proposition 2.1. Let S be a topological semigroup and I be a regular closed ideal of S. If
S = I⊕(Σn∈Y K′n) where Y ⊆N and either K′n∩ I = /0 and K′n is compact in S, or K′n = I∪Kn,
where Kn is compact in SI , then S/I is a topological semigroup.

Proof. By Theorem 2.1, S/I is a Hausdorff kw-space. Therefore by [9, Proposition 2.3 (a)],
S/I× S/I is a Hausdorff kw-space. Therefore by [9, Proposition 2.2], πI ×πI is a quotient
map. Now by [9, Proposition 2.1], S/I is a topological semigroup.

Finally, to show an application of our results in this note, we prove the following theorem
which is a generalization of Lawson and Madison’s Theorem.

Theorem 2.2. Let S be a topological semigroup which is a k-space and I be a regular closed
ideal of S.

(i) If S\ I◦ is a kω -space, then S/I is topological.
(ii) If S\ I◦ is σ -compact,

then for any closed ideal J in S where I ⊆ J, S/J is a topological semigroup.

Proof. First we prove (i). Let S be a topological semigroup and I be a closed ideal of S such
that S\ I◦ is a kω -space. Therefore, there exists a countable family of compact sets in S\ I◦

like, {Xn}n∈Y , where Y ⊆ N, such that S\ I◦ = Σn∈Y Xn. Define

X ′n :=
{

Xn, if Xn∩ I = /0
Xn∪ I, otherwise

It is straightforward to see that S = I⊕ (Σn∈Y X ′n) and X ′n satisfies the conditions in Theorem
2.1. Therefore S/I is a kω -space. Since S and S/I×S/I are both Hausdorff k-spaces, then
by [9, Proposition 2.2], πI×πI is a quotient map. Now by [9, Proposition 2.1], the induced
multiplication on S/I is continuous and ρI is a topological congruence.

To prove part (ii), first note that since S \ I◦ is σ -compact, S/I is a Hausdorff kw-space.
On the other hand, by part (i), S/I is a topological semigroup. Therefore by [9, Corollary
2.4] for every ideal I ⊆ J, (S/I)/(J/I) is a topological semigroup. Now by the Second
Isomorphism Theorem, the result is obvious.

To illustrate better the application of the above theorem, we apply it in the next example.
Before we state our next result, we recall that an element z is called zero in a semigroup

S, if for any s ∈ S we have zs = sz = z.
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Example 2.1. Let S = S0 be a locally compact σ -compact topological semigroup with an
adjoined zero 0S as an isolated point. Let T = T 0 be a σ -compact non-locally compact
topological semigroup with an adjoined zero 0T as an isolated point. Define the equivalence
relation ρ on the discrete sum of S0 and T 0 as follows

ρ := {(0S,0T )}∪∆S∪∆T ∪{(0T ,0S)}.
It is straightforward to see that

S′ := (S0⊕T 0)/ρ

with multiplication λ : S′×S′→ S′ defined by

λ (x,y) :=

 [x ·S y] ,(x,y ∈ S)
[x ·T y] ,(x,y ∈ T )

[0] ,otherwise

is a topological semigroup. Now clearly S′ is Hausdorff locally compact, but it is not σ -
compact. Let I be a closed ideal of S. Clearly, I∪{0S} is an ideal of S0. It is straightforward
to see that π(I∪{0S}∪T 0) is a closed ideal of S′, where π is the natural quotient map from
S0⊕T 0 to (S0⊕T 0)/ρ . Now by Theorem 2.2, the corresponding Rees congruence of ideal
π(I ∪{0S}∪ T 0) is topological and for any Rees congruence ρJ , where I ⊆ J and J is a
closed ideal of S, ρJ is topological.

As another consequence of the results in this note, we have

Corollary 2.1. Let S be a topological semigroup which is a k-space and let I be a minimal
ideal of S and S \ I◦ be σ -compact. If S = I⊕ (Σn∈JK′n) where J ⊆ N and either K′n∩ I = /0
and K′n is compact in S, or K′n = I∪Kn, where Kn is compact in SI , then all the closed Rees
congruences on S are topological.

Proof. By Theorem 2.2 part (ii), S/I is a topological semigroup and all the closed Rees
congruences of S which contain ρI are topological congruences. But since I is a minimal
ideal of S, all the Rees congruences of S are topological congruences.

Finally in this note, we continue Lawson and Madison’s study of the relation between
separation axioms on S/I and the continuity of its multiplication (see the question on page
20 of [9]).

Let A be a class of topological semigroups. A semigroup S ∈ A is called H-closed in
A , if S is a closed subsemigroup of any topological semigroup T ∈ A which contains S
as a subsemigroup. If A coincides with the class of all topological semigroups, then the
semigroup S is called H-closed. A topological semigroup S ∈ A is called absolutely H-
closed in the class A , if any continuous homomorphic image of S into T ∈A is H-closed
in A . Let {Aα |α ∈A } and {Bβ |β ∈B} be two covers of a space Y . {Aα} is said to refine
(or be a refinement of) {Bβ} if for each Aα there is some Bβ with Aα ⊆ Bβ . A Hausdorff
topological space X is called paracompact if every open cover of X has a locally finite open
refinement.

Remark 2.3. Hryniv in [7] showed that there is a locally compact topological semigroup
with a closed ideal I such that S/I is not a topological semigroup. Later, Gutik and Pavlyk
in [6] presented another example and showed that there exists an absolutely H-closed ideal I
of an absolutely H-closed countable metrizable topological semigroup S such that S/I is not
a topological semigroup. We use Hryniv’s example to study the relation between separation
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axioms and the continuity of the multiplication of S/I. This relation was studied by Lawson
and Madison in [9]. By Hryniv’s example (or similarly by Gutik and Pavlyk’s example [6,
Theorem 15]) we know that there exists a locally compact metrizable topological semigroup
S and a closed ideal I ≤ S such that S/I is not topological. Since by [3, Theorem IX.5.3],
every metric space is paracompact, and since by [3, Theorem VIII.2.2], every paracompact
space is normal, S/I is a normal space; however, we know that S/I is not a topological
semigroup. Therefore the continuity of the multiplication of S/I is independent from the
normality of the space S/I.

Acknowledgement. The author is highly grateful to the referees for the valuable sugges-
tions and corrections that help improved the manuscript. The author is also highly grateful to
Professor Lawson and Professor Gutik for their insightful communications and assistance.

References
[1] J. F. Berglund, H. D. Junghenn and P. Milnes, Analysis on semigroups, Canadian Mathematical Society Series

of Monographs and Advanced Texts, Wiley, New York, 1989.
[2] J. H. Carruth, J. A. Hildebrant and R. J. Koch, The theory of topological semigroups, Monographs and

Textbooks in Pure and Applied Mathematics, 75, Dekker, New York, 1983.
[3] J. Dugundji, Topology, Allyn & Bacon, Boston, MA, 1978.
[4] R. Engelking, General topology, translated from the Polish by the author, second edition, Sigma Series in

Pure Mathematics, 6, Heldermann, Berlin, 1989.
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