Cohomology and Stability of Generalized Sasakian Space-Forms

MARIA CÎrnu
Department of Mathematics and Informatics, University Transilvania of Braşov Iuliu Maniu str., 50, Braşov, Romania
maria.cirnu@yahoo.com

Abstract

In this paper we study the geometry of distributions of semi-slant submanifolds of (α, β) trans-Sasakian manifolds, some problems concerning the stability of slant submanifolds of generalized Sasakian space-forms and we also investigate the first normal Chern class for integral submanifolds of (α, β) trans-Sasakian generalized Sasakian space-forms.

2010 Mathematics Subject Classification: 53C25, 53D15, 53C40
Keywords and phrases: Trans-Sasakian manifold, semi-slant submanifold, generalized Sasakian space-form, Chern class, Bott connection.

1. Introduction

The geometry of distributions of slant and semi-slant submanifolds was studied by Cabrerizo, Carriazo, Fernández and Fernández [7, 8] in the case of K-contact and Sasakian manifolds. In this paper we study the geometry of distributions for semi-slant submanifolds of (α, β) trans-Sasakian manifolds. We obtain some results for cohomology groups and study remarkable forms associated to the Bott connection for semi-slant submanifolds in (α, β) trans-Sasakian manifolds. Ours results generalize those in [20] and [13]. Secondly, we study some aspects concerning variational problems for slant submanifolds in generalized Sasakian space-forms. Finally, studying the structure equations for integral submanifolds of (α, β) trans-Sasakian generalized Sasakian space-forms, we find certain conditions so that the first normal Chern class be trivial.

2. Preliminaries

Let \widetilde{M} be an almost contact manifold, C^{∞}-differentiable with dimension $2 m+1$. Let (F, ξ, η, g) be its almost contact structure, where F is a tensor field of type $(1,1), \xi$ is the Reeb vector field, η is a 1 -form and g is a Riemannian metric on \widetilde{M}, all these tensors satisfying the following conditions:

$$
\begin{equation*}
F^{2}=-I+\eta \otimes \xi ; \quad \eta(\xi)=1 ; \quad g(F X, F Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.1}
\end{equation*}
$$

for all $X, Y \in \chi(\widetilde{M})$. Here $\chi(\widetilde{M})$ is the set of all vector fields on \widetilde{M}. We denote by Ω the fundamental (or the Sasaki) 2-form of \widetilde{M}, given by $\Omega(X, Y)=g(X, F Y)$.

In [17], Oubina introduced the notion of a trans-Sasakian manifold. An almost contact metric manifold \widetilde{M} is a trans-Sasakian manifold if there exist two functions α and β on \widetilde{M} such that

$$
\begin{equation*}
\left(\widetilde{\nabla}_{X} F\right) Y=\alpha[g(X, Y) \xi-\eta(Y) X]+\beta[g(F X, Y) \xi-\eta(Y) F X], \tag{2.2}
\end{equation*}
$$

for any $X, Y \in \chi(\widetilde{M})$. In particular, from (2.2) it is easy to see that the following equations hold on a trans-Sasakian manifold

$$
\begin{equation*}
\widetilde{\nabla}_{X} \xi=-\alpha F X+\beta[X-\eta(X) \xi] ; \quad d \eta=\alpha \Omega \tag{2.3}
\end{equation*}
$$

Moreover, if $\beta=0$ then \widetilde{M} is to said to be an α-Sasakian manifold. Sasakian manifolds appear as examples of α-Sasakian manifolds, with $\alpha=1$, and Kenmotsu manifolds appear as examples of β-Kenmotsu manifolds, with $\beta=1$. Another important kind of trans-Sasakian manifolds is that of cosymplectic manifolds, obtained for $\alpha=\beta=0$. Marrero showed in [16] that a trans-Sasakian manifold of dimension greater than or equal to 5 is either α Sasakian, β-Kenmotsu or cosymplectic manifold.

Given an almost contact metric manifold \widetilde{M}, we say that \widetilde{M} is a generalized Sasakian-space-form, [1], if there exit three functions f_{1}, f_{2}, f_{3} on \widetilde{M} such that

$$
\begin{align*}
\widetilde{R}(X, Y) Z= & f_{1}[g(Y, Z) X-g(X, Z) Y] \\
& +f_{2}[g(X, F Z) F Y-g(Y, F Z) F X+2 g(X, F Y) F Z] \\
& +f_{3}[\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X \\
& +g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi] \tag{2.4}
\end{align*}
$$

for any vector fields X, Y, Z on \widetilde{M}, where \widetilde{R} denotes the curvature tensor of \widetilde{M}. In such a case, we will write $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$.

We also observe that this kind of manifold appears as a natural generalization of the well known Sasakian space-forms $\widetilde{M}(c)$, which can be obtained as particular cases of generalized Sasakian space-forms, by taking $f_{1}=(c+3) / 4$ and $f_{2}=f_{3}=(c-1) / 4$ and as a generalization of Kenmotsu space-forms, by taking $f_{1}=(c-3) / 4$ and $f_{2}=f_{3}=(c+1) / 4$.

Let M be a submanifold of the Riemannian manifold \widetilde{M}, ∇ the Levi-Civita connection induced by $\widetilde{\nabla}$ on M, ∇^{\perp} the connection in the normal bundle $T^{\perp}(M), h$ the second fundamental form of M and $A_{\vec{n}}$ the Weingarten operator. We recall the Gauss-Weingarten formulas on M

$$
\begin{equation*}
\widetilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) ; \quad \widetilde{\nabla}_{X} \vec{n}=-A_{\vec{n}} X+\nabla_{X} \frac{1}{n} \tag{2.5}
\end{equation*}
$$

for all $X, Y \in \chi(M)$ and $\vec{n} \in \chi^{\perp}(M)$.
A submanifold M of an almost contact metric manifold \widetilde{M} is totally contact geodesic, [3], if

$$
\begin{equation*}
h(X, Y)=\eta(X) h(Y, \xi)+\eta(Y) h(X, \xi), \tag{2.6}
\end{equation*}
$$

for all X, Y vector fields on M. From (2.6) it results that on a totally contact geodesic submanifold $M, h(\xi, \xi)=0$.

A submanifold M of an almost contact metric manifold \widetilde{M} is parallel if

$$
\begin{equation*}
\left(\widetilde{\nabla}_{X} h\right)(Y, Z)=0 \tag{2.7}
\end{equation*}
$$

where $\left(\widetilde{\nabla}_{X} h\right)(Y, Z)=\nabla_{X}^{\perp}(h(Y, Z))-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right)$ and X, Y, Z are vector fields on M.

An integral submanifold M of the contact distribution $\mathscr{D}=\operatorname{ker} \eta$ is an integral manifold and such a submanifold is characterized by any of
(1) $\eta=0, \quad d \eta=0$;
(2) $F X \in \chi^{\perp}(M)$ for all X in $\chi(M)$.

The submanifold M of \tilde{M}, tangent to ξ, is a slant submanifold, [15], if

$$
\theta=\angle\left(F X_{x}, T_{x} M\right)=\text { constant }
$$

for all $x \in M, X_{x} \in T_{x} M, X_{x}$ non-collinear with ξ. Taking into account the definition of the angle between a vector and a subspace in the Euclidean space, this is equivalent with

$$
\cos \theta=\frac{g(F X, Y)}{\|F X\|\|Y\|}=\text { constant }
$$

for all $Y \in \chi(M), X \in D, X, Y$ nowhere zero, where D is the orthogonal distribution of ξ in $\chi(M)$. In this case, θ is the slant angle of the submanifold M and the distribution D is the slant distribution of M.

The submanifold M of a Riemannian manifold \widetilde{M} is a semi-slant submanifold, [8], if there are D_{1}, D_{2} two distributions on M so that
(i) $\chi(M)=D_{1} \oplus D_{2} \oplus\langle\xi\rangle$;
(ii) D_{1} is invariant, i.e. $F D_{1}=D_{1}$;
(iii) D_{2} is slant with the slant angle θ.

For M a slant or semi-slant submanifold in a Riemannian manifold \widetilde{M}, we consider the decompositions

$$
\begin{equation*}
F X=T X+N X ; \quad F \vec{n}=t \vec{n}+n \vec{n}, \tag{2.8}
\end{equation*}
$$

for all $X \in \chi(M), \vec{n} \in \chi^{\perp}(M)$, where $T X$ is the tangent component and $N X$ the normal component of $F X$ and $t \vec{n}$ is the tangent component and $n \vec{n}$ is the normal component of $F \vec{n}$ in $\chi(\widetilde{M})$.

Moreover, if M is a semi-slant submanifold of a Riemannian manifold \widetilde{M}, then we consider

$$
\begin{equation*}
X=P_{1} X+P_{2} X+\eta(X) \xi \tag{2.9}
\end{equation*}
$$

for all $X \in \chi(M)$, where P_{1} is the projection on D_{1} and P_{2} is the projection on D_{2}.
We recall some known results for slant and semi-slant submanifolds, [7, 8]:
Proposition 2.1. Let M be a submanifold of the almost contact manifold \widetilde{M} tangent to the Reeb vector field $\xi \in \chi(M)$. Then M is slant if and only if there is $\lambda \in[0,1]$ so that

$$
T^{2}=-\lambda(I-\eta \otimes \xi)
$$

Moreover, in this case, the slant angle θ of M satisfies the condition $\lambda=\cos ^{2} \theta$.
Proposition 2.2. Let M be a slant submanifold in an almost contact manifold \widetilde{M} with the slant angle θ. Then

$$
g(T X, T Y)=\cos ^{2} \theta[g(X, Y)-\eta(X) \eta(Y)]
$$

and

$$
g(N X, N Y)=\sin ^{2} \theta[g(X, Y)-\eta(X) \eta(Y)],
$$

for all $X, Y \in \chi(M)$.
Proposition 2.3. Let M be a semi-slant submanifold of the almost contact manifold \widetilde{M} with the slant angle θ. Then

$$
g\left(T X, T P_{2} Y\right)=\cos ^{2} \theta g\left(X, P_{2} Y\right) ; \quad g\left(N X, N P_{2} Y\right)=\sin ^{2} \theta g\left(X, P_{2} Y\right)
$$

for all $X, Y \in \chi(M)$.

3. Geometry of distributions on semi-slant submanifolds in (α, β) trans-Sasakian manifolds

Let M be a semi-slant submanifold of the (α, β) trans-Sasakian manifold \widetilde{M}. Denote by $T_{i}=P_{i} \circ T, i=1,2$ and taking into account (2.9) and the fact that D_{1} is invariant we have

$$
F P_{1} X=T P_{1} X ; \quad N P_{1} X=0 ; \quad T P_{2} X \in D_{2}
$$

for all X vector fields on M. Using (2.2), (2.5), the definition of slant angle and these last equalities, we have

$$
\begin{align*}
h\left(X, F P_{1} Y\right)+h\left(X, T P_{2} Y\right)+\nabla_{X}^{\perp}\left(N P_{2} Y\right)= & N P_{2} \nabla_{X} Y+[F h(X, Y)]^{\perp} \\
& -\beta \eta(Y) N P_{2} X, \tag{3.1}
\end{align*}
$$

where X, Y are vector fields on $\mathrm{M},[F h(X, Y)]^{\perp}$ is the normal component of $F h(X, Y)$ in $\chi(\widetilde{M})$.

Now, let M be a p-dimensional semi-slant submanifold of (α, β) trans-Sasakian manifold \widetilde{M} so that

$$
\begin{align*}
\left(\nabla_{X} T\right) Y= & \alpha\left[g\left(P_{1} X, Y\right) \xi-\eta(Y) P_{1} X\right] \\
& +\alpha \cos ^{2} \theta\left[g\left(P_{2} X, Y\right) \xi-\eta(Y) P_{2} X\right] \\
& +\beta[g(T X, Y) \xi-\eta(Y) T X], \tag{3.2}
\end{align*}
$$

for all X, Y vector fields on M. Because D_{1} is invariant, using (2.2) and (2.5) it results that

$$
\begin{aligned}
\left(\nabla_{X} T\right) Y= & \alpha[g(X, Y) \xi-\eta(Y) X]+\beta[g(T X, Y) \xi-\eta(Y) T X] \\
& +A_{N P_{2} Y} X+[F h(X, Y)]^{T}
\end{aligned}
$$

Taking into account (3.2) we obtain

$$
A_{N P_{2} Y} X=-[F h(X, Y)]^{T}-\alpha \sin ^{2} \theta\left[g\left(P_{2} X, Y\right) \xi-\eta(Y) P_{2} X\right],
$$

$P_{1} A_{N P_{2} Y} X=0$, for all $X, Y \in \chi(M)$ and $[F h(X, Y)]^{T}=\alpha \sin ^{2} \theta \eta(Y) P_{2} X$, for all $X \in \chi(M)$, $Y \in D_{1} \oplus\langle\xi\rangle$. From these last relations, (3.1) and the fact that $T P_{2} X \in D_{2}$, we have that $g\left(N P_{2} \nabla_{X} Y, F h(X, Y)\right)=g\left(A_{N P_{2} \nabla_{X} Y} X, Y\right)$
$=0$ and then

$$
\begin{equation*}
\nabla_{X} Y \in D_{1} \oplus\langle\xi\rangle ; \quad \nabla_{X} Z \in D_{2} \oplus\langle\xi\rangle \tag{3.3}
\end{equation*}
$$

for all $X \in \chi(M), Y \in D_{1}$ and $Z \in D_{2}$.
We also have the following results:

Proposition 3.1. Let M be a p-dimensional semi-slant submanifold of a $2 m+1$-dimensional α-Sasakian manifold or β-Kenmotsu manifold \widetilde{M}, with $m \geq 2$ so that

$$
\left(\nabla_{X} T\right) Y=\alpha\left[g\left(P_{1} X, Y\right)-\eta(Y) P_{1} X\right]+\alpha \cos ^{2} \theta\left[g\left(P_{1} X, Y\right) \xi-\eta(Y) P_{2} X\right]
$$

in α-Sasakian case and

$$
\left(\nabla_{X} T\right) Y=\beta[g(T X, Y) \xi-\eta(Y) T X]
$$

in β-Kenmotsu case.
Then the invariant distribution D_{1} is minimal for α-Sasakian case and is not minimal for β-Kenmotsu case.
Proof. We consider $\left\{X_{i}, F X_{i}\right\}, i=1, \ldots, q$, an orthonormal basis of the invariant distribution D_{1} so that $2 q<p$. The mean curvature vector of the distribution D_{1} is

$$
H_{D_{1}}=\frac{1}{2 q} \sum_{i=1}^{q}\left(\nabla_{X_{i}} X_{i}+\nabla_{F X_{i}} F X_{i}\right)^{\perp}
$$

where $\left(\nabla_{X_{i}} X_{i}+\nabla_{F X_{i}} F X_{i}\right)^{\perp}$ represents the orthogonal complement of $\left(\nabla_{X_{i}} X_{i}+\nabla_{F X_{i}} F X_{i}\right)$ in $D_{2} \oplus\langle\xi\rangle$. For α-Sasakian case we obtain that $g\left(\nabla_{X_{i}} X_{i}, Z\right)=g\left(\nabla_{F X_{i}} F X_{i}, Z\right)=g\left(\nabla_{X_{i}} X_{i}, \xi\right)$ $=g\left(\nabla_{F X_{i}} F X_{i}, \xi\right)=0$ and for β-Kenmotsu case $g\left(\nabla_{X_{i}} X_{i}, \xi\right)=g\left(\nabla_{F X_{i}} F X_{i} \xi\right)=-\beta$ and $g\left(\nabla_{X_{i}}\right.$ $\left.X_{i}, Z\right)=g\left(\nabla_{F X_{i}} F X_{i}, Z\right)=0$, where $Z \in D_{2}$.

Denote by $\stackrel{o}{\nabla}: D_{2} \times D_{1} \rightarrow D_{1}$ the Bott connection defined by

$$
\stackrel{o}{\nabla}_{X} U=P_{1}([X, U])
$$

for all $X \in D_{2}$ and $U \in D_{1}$. Let $S_{D_{1}}: D_{1} \times D_{1} \rightarrow D_{2}$ be defined by

$$
S_{D_{1}}=P_{2}\left(\nabla_{X} Y+\nabla_{Y} X\right)
$$

for $X, Y \in D_{1}$. If $S_{D_{1}}=0$ then D_{1} is a totally geodesic plane field, [22]. Let $\left\{\omega^{1}, \ldots, \omega^{2 q}\right\}$ be the dual basis of the local orthonormal basis $\left\{X_{1}, \ldots, X_{q}, F X_{1}=X_{q+1}, \ldots, F X_{q}=X_{2 q}\right\}$ of D_{1} and we extend it to whole $\chi(M)$. This means that

$$
\omega^{i}\left(X_{j}\right)=\delta_{j}^{i} ; \quad \omega_{/ D_{2}}^{i}=0 ; \quad \omega^{i}(\xi)=0, \quad i, j=\overline{1,2 q}
$$

We obtain the global defined $2 q$-form $\omega=\omega^{1} \wedge \ldots \wedge \omega^{2 q}$ and it is a volume form of the distribution D_{1}.

Theorem 3.1. Let M be a p-dimensional semi-slant submanifold of the (α, β) trans-Sasakian manifold \widetilde{M}. Then
(i) the metric g of submanifold M is parallel with $\stackrel{o}{\nabla}$ if and only if D_{1} is a totally geodesic plane field.
(ii) if M is compact and (3.2) holds for all $X, Y \in \chi(M)$, then ω is parallel with $\stackrel{o}{\nabla}$.

Proof.

(i) We consider $X \in D_{2}$ and $Y, Z \in D_{1}$. Taking into account the definition of $\stackrel{o}{\nabla}$, the properties of Levi-Civita connection, we obtain

$$
\left(\stackrel{o}{\nabla_{X}} g\right)(Y, Z)=-g\left(X, S_{D_{1}}(Y, Z)\right)
$$

for all $X \in D_{2}, Y, Z \in D_{1}$ and then i.
(ii) We have to prove that $\left({ }^{o}{ }_{X} \omega\right)\left(X_{1}, \ldots, X_{2 q}\right)=0$ for all $X \in D_{2}$. We have $\omega\left(X_{1}, X_{2}, . ., X_{2 q}\right)$ $=1$. From the definitions of $\stackrel{o}{\nabla}_{X} \omega, 1$-forms ω^{i} and (3.3) we have that $\left({ }^{0} \nabla_{X} \omega\right)\left(X_{1}, \ldots\right.$, $\left.X_{2 q}\right)=0$.
We denote by $\left\{X_{2 q+1}, \ldots, X_{p-1}\right\}$ a local orthonormal basis in D_{2} with its dual basis $\left\{\theta^{2 q+1}, \ldots, \theta^{p-1}\right\}$ so that

$$
\left\{X_{1}, \ldots, X_{q}, X_{q+1}=F X_{1}, \ldots, X_{2 q}=F X_{q}, X_{2 q+1}, \ldots, X_{p-1}, \xi\right\}
$$

is a local orthonormal basis in $\chi(M)$. Let $\theta=\theta^{2 q+1} \wedge \ldots \wedge \theta^{p-1} \wedge \theta^{p}$ be a $(p-2 q)$-form, where $\theta^{p}=\eta$. We extend $\theta^{\alpha}, \alpha=\overline{2 q+1, p-1}$ at $\chi(M)$ so that $\theta^{\alpha}\left(X_{\beta}\right)=\delta_{\beta}^{\alpha} ; \quad \theta^{\alpha}(\xi)=0 ; \quad \theta_{/ D_{1}}^{\alpha}=0, \quad \alpha, \beta=\overline{2 q+1, p-1}$.
Proposition 3.2. Let M be a p-dimensional semi-slant submanifold of the (α, β) transSasakian manifold \widetilde{M} so that (3.2) holds for all X, Y vector fields on M. Then
(i) the $2 q$-form $\omega=\omega^{1} \wedge \ldots \wedge \omega^{2 q}$ is closed;
(ii) θ is closed;
(iii) $* \omega=\theta$.

Proof.
(i) We have $d \omega=0$ if and only if

$$
\begin{array}{ll}
(d \omega)\left(Y_{1}, X_{1}, \ldots, X_{2 q}\right)=0 ; & (d \omega)\left(Y_{1}, Y_{2}, X_{1}, \ldots, X_{2 q-1}\right)=0 \\
(d \omega)\left(\xi, X_{1}, \ldots, X_{2 q}\right)=0 ; & (d \omega)\left(\xi, Y_{1}, X_{1}, \ldots, X_{2 q-1}\right)=0,
\end{array}
$$

for all $Y_{1}, Y_{2} \in D_{2}$. But these equalities follow by a straightforward computation using the definition of $d \omega, \omega^{i}$, the property of Levi-Civita connection and (3.3).
(ii) Now, let $\left\{Y_{2 q+1}, Y_{2 q+2}, \ldots, Y_{p-1}, Y_{p}=\xi\right\}$ be a local orthonormal frame in $D_{2} \oplus\langle\xi\rangle$. Then $d \theta=0$ if and only if

$$
(d \theta)\left(X_{1}, Y_{2 q+1}, \ldots, Y_{p}\right)=0 ; \quad(d \theta)\left(X_{1}, X_{2}, Y_{2 q+1}, \ldots, Y_{p-1}\right)=0,
$$

for all $X_{1}, X_{2} \in D_{1}$.
These two last equalities result from an analogous computation as that used at i), using the definitions of θ, θ^{α}, the property of Levi-Civita connection.
(iii) Results from the definition and the properties of the Hodge operator *.

Theorem 3.2. Let M be a compact semi-slant submanifold of the (α, β) trans-Sasakian manifold \widetilde{M} so that (3.2) holds for all X, Y vector fields on M. Then

$$
b_{2 k}(M) \geq 1
$$

where $k=\overline{1, q}, \operatorname{dim} D_{1}=2 q$ and $b_{2 k}(M)$ is the $2 k^{\text {th }}$ Betti number of the submanifold M.
Proof. From the definition of Ω we consider $\Omega_{M}(X, Y)=g(X, F Y)$, for all $X, Y \in \chi(M)$. It is easy to see that

$$
\Omega_{M}^{r}\left(X_{1}, \ldots, X_{r}\right)=(-1)^{r} r!; \quad \Omega_{M}^{r}=0
$$

in other cases, where $r=\overline{1, q}, \Omega_{M}^{r}=\Omega_{M} \wedge \ldots \wedge \Omega_{M}$ and \wedge is the exterior product. Moreover, $\Omega_{M}^{q}\left(X_{1}, \ldots, X_{q}, F X_{1}, \ldots, F X_{q}\right)=(-1)^{q} q!\omega$ and $\Omega_{M}^{q}=0$, in other cases. From these last equalities, Proposition 3.1, the properties of the operators $\delta, *$ and the Hodge-de Rham decomposition, we have $b_{2 q}(M) \geq 1$.

4. Stability of slant submanifolds in generalized Sasakian space-forms

If M is a slant submanifold of the generalized Sasakian space-form $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$, with D the slant distribution with slant angle θ, then we consider $\left\{e_{1}, \ldots, e_{n-1}\right\}$ an orthonormal basis in D and

$$
e_{n+1}=\frac{N e_{1}}{\sin \theta}, \ldots, e_{2 n-1}=\frac{N e_{n-1}}{\sin \theta}
$$

Taking into account Proposition 2.2, we deduce that $\left\{e_{n+1}, \ldots, e_{2 n-1}\right\}$ are orthonormal vectors. Let $\Gamma N F D$ be the subspace spanned by $\left\{e_{n+1}, \ldots, e_{2 n-1}\right\}$ and $\Gamma(\tau(M))$ the orthogonal complement of $\Gamma N F D$ in $\chi^{\perp}(M)$, so that
$\left\{e_{2 n}, \ldots, e_{2 m+1}\right\}$ is an orthonormal basis in $\Gamma(\tau(M))$. We consider the dual 1-form to the vector $\vec{n} \in \chi^{\perp}(M)$, defined by

$$
\begin{equation*}
\alpha_{\vec{n}}: \chi(M) \rightarrow F(M), \quad \alpha_{\vec{n}}(X)=g(F \vec{n}, X), \tag{4.1}
\end{equation*}
$$

for all $X \in \chi(M)$ and we denote by $\mathbf{L}=\left\{\vec{n} \in \chi^{\perp}(M): d \alpha_{\vec{n}}=0\right\}$ the set of Legendre variations, by $\mathbf{E}=\left\{\vec{n} \in \chi^{\perp}(M):(\exists) f \in F(M): \alpha_{\vec{n}}=d f\right\}$ the set of Hamiltonian variations and by $\mathbf{H}=\left\{\vec{n} \in \chi^{\perp}(M): d \alpha_{\vec{n}}=\delta \alpha_{\vec{n}}=0\right\}$ the set of harmonic variations.

The first variation of the volume form of M, relative to the normal vector field \vec{n} (that is the value at $t=0$ of the first derivative of $V(\vec{n})$) can be expressed under the form [9]

$$
\begin{equation*}
V^{\prime}(\vec{n})=-n \int_{M} g(\vec{n}, H) d v \tag{4.2}
\end{equation*}
$$

where H is the mean curvature vector field of M. Then M is
(i) l-minimal if $V^{\prime}(\vec{n})=0$ for all $\vec{n} \in \mathbf{L}$
(ii) e-minimal if $V^{\prime}(\vec{n})=0$ for all $\vec{n} \in \mathbf{E}$
(iii) h-minimal if $V^{\prime}(\vec{n})=0$ for all $\vec{n} \in \mathbf{H}$.

We also observe that:
(a) If the slant submanifold M is minimal, then M is l, e and h-minimal.
(b) If the slant submanifold M is e-minimal or h-minimal, then M is l-minimal.

Using similar arguments like those in [20], we have the following results:
Proposition 4.1. Let M be a slant submanifold with slant angle θ of the generalized Sasakian space-form $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$. Then:
(i) $\Gamma(\tau(M)) \subset \mathbf{L}$;
(ii) $\mathbf{H} \subset \mathbf{L}$;
(iii) $\mathbf{E} \subset \mathbf{L}$;
(iv) $F(\operatorname{grad} f)_{\mid \Gamma N F D} \subset \mathbf{E}$.

Theorem 4.1. Let M be a compact slant submanifold of the generalized Sasakian spaceform $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$. Then:
(i) M is l-minimal if and only if $H \in \Gamma N F D$ and $\alpha_{H}=\sum_{\mu} f_{\mu} \Phi_{\mu}$, where $f_{\mu} \in F(M)$ and Φ_{μ} are co-exact 1-forms.
(ii) M is e-minimal if and only if $H \in \Gamma N F D$ and α_{H} is co-closed.
(iii) M is h-minimal if and only if $H \in \Gamma N F D$ and α_{H} is the sum of an exact 1-form and a co-exact 1-form.

Theorem 4.2. Let M be a compact slant submanifold of the generalized Sasakian spaceform $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$. Then
(i) M is l-minimal if and only if M is minimal
(ii) M is e-minimal if and only if H is an harmonic variation.
(iii) M is h-minimal if and only if H is a hamiltonian variation.

Let $V^{\prime \prime}(\vec{n})$ be the second variation of the volume form of a n-dimensional slant submanifold M in the (α, β) generalized Sasakian-space-form $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$. By [9] this is given by

$$
\begin{align*}
V^{\prime}(\vec{n})= & \int_{M}\left\{\left\|\nabla^{\perp} \vec{n}\right\|^{2}-\left\|A_{\vec{n}}\right\|^{2}\right\} d v \\
& +\int_{M}\left\{n^{2} g^{2}(H, \vec{n})-n g\left(H, \widetilde{\nabla}_{\vec{n}} \vec{n}\right)-\sum_{a=1}^{n} \widetilde{R}\left(\vec{n}, e_{a}, \vec{n}, e_{a}\right)\right\} d v \tag{4.3}
\end{align*}
$$

where $\vec{n} \in \chi^{\perp}(M)$ and \widetilde{R} is the Riemann Christoffel tensor of the manifold \widetilde{M}. Then:
(i) M is stable if $V^{"}(\vec{n}) \geq 0$ for all $\vec{n} \in \chi^{\perp}(M)$;
(ii) M is l-stable if $V^{\prime \prime}(\vec{n}) \geq 0$ for all $\vec{n} \in \mathbf{L}$;
(iii) M is e-stable if $V^{\prime \prime}(\vec{n}) \geq 0$ for all $\vec{n} \in \mathbf{E}$;
(iv) M is h-stable if $V^{\prime \prime}(\vec{n}) \geq 0$ for all $\vec{n} \in \mathbf{H}$.

Proposition 4.2. Let M be a n-dimensional slant submanifold with θ-the slant angle in the generalized Sasakian-space form $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$. If M is tangent to the Reeb vector field $\boldsymbol{\xi}$ then

$$
\begin{equation*}
\sum_{a=1}^{n} \widetilde{R}\left(\vec{n}, e_{a}, \vec{n}, e_{a}\right)=n f_{1}-f_{3} \tag{4.4}
\end{equation*}
$$

for all $\vec{n} \in \Gamma(\tau(M))$.
Proof. From (2.4) and the fact that

$$
\left\|\operatorname{proj}_{\Gamma N F D} \vec{n}\right\|^{2}=\frac{1}{\sin ^{2} \theta} \sum_{a=1}^{n-1} g^{2}\left(\vec{n}, N e_{a}\right)
$$

we have

$$
\begin{equation*}
\sum_{a=1}^{n} \widetilde{R}\left(\vec{n}, e_{a}, \vec{n}, e_{a}\right)=n f_{1}-f_{3}+3 f_{2} \sin ^{2} \theta\left\|\operatorname{proj}_{\Gamma N F D} \vec{n}\right\|^{2} \tag{4.5}
\end{equation*}
$$

where \vec{n} is a normal vector field on M and $\operatorname{proj}_{\Gamma N F D} \vec{n}$ is the projection of \vec{n} on $\Gamma N F D$ and then (4.4)

Proposition 4.3. Let M be a n-dimensional minimal slant totally contact geodesic submanifold with $\boldsymbol{\theta}$-the slant angle in the generalized Sasakian-space-form $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$ so that M is tangent to the Reeb vector field ξ and

$$
n f_{1}-f_{3}+3 f_{3} \sin ^{2} \theta\left\|\operatorname{pro}_{\Gamma N F D} \vec{n}\right\|^{2} \leq 0,
$$

for all \vec{n} normal vector fields on M. If \vec{n} is parallel with the Levi-Civita connection $\widetilde{\nabla}$, then

$$
V^{\prime \prime}(\vec{n}) \geq 0 .
$$

Proof. From (2.6), the properties of the Levi-Civita connection and the fact that \vec{n} is parallel with respect the Levi-Civita connection $\widetilde{\nabla}$, we obtain that

$$
\left\|A_{\vec{n}}\right\|^{2}=4 \sum_{b=1}^{n} g^{2}\left(\xi, \widetilde{\nabla}_{e_{b}} \vec{n}\right)=0 .
$$

From (4.3), the fact that M is minimal we have $V^{\prime \prime}(\vec{n}) \geq 0$.
Example 4.1. Let $\widetilde{M}=\mathbb{R}^{5}$ be with local coordinates $\left(x^{1}, x^{2}, y^{1}, y^{2}, z\right)$ and the Sasaki structure given by

$$
\begin{gathered}
\eta=\frac{1}{2}\left(d z-y^{1} d x^{1}-y^{2} d x^{2}\right) ; \quad \xi=2 \frac{\partial}{\partial z} \\
g=\eta \otimes \eta+\frac{1}{4}\left(d x^{1} \otimes d x^{1}+d x^{2} \otimes d x^{2}+d y^{1} \otimes d y^{1}+d y^{2} \otimes d y^{2}\right)
\end{gathered}
$$

and $F: \chi\left(R^{5}\right) \rightarrow \chi\left(R^{5}\right)$ a tensor field of type $(1,1)$ so that

$$
\begin{gathered}
F\left(\frac{\partial}{\partial x^{1}}\right)=-\frac{\partial}{\partial y^{1}} ; \quad F\left(\frac{\partial}{\partial x^{2}}\right)=-\frac{\partial}{\partial y^{2}} ; \quad F\left(\frac{\partial}{\partial z}\right)=0 ; \\
F\left(\frac{\partial}{\partial y^{1}}\right)=\frac{\partial}{\partial x^{1}}+y^{1} \frac{\partial}{\partial z} ; \quad F\left(\frac{\partial}{\partial y^{2}}\right)=\frac{\partial}{\partial x^{2}}+y^{2} \frac{\partial}{\partial z},
\end{gathered}
$$

where $\left\{\frac{\partial}{\partial x^{1}}, \frac{\partial}{\partial x^{2}}, \frac{\partial}{\partial y^{1}}, \frac{\partial}{\partial y^{2}}, \frac{\partial}{\partial z}\right\}$ is a basis of $\chi\left(R^{5}\right)$. We observe that \widetilde{M} is a generalized Sasakian space-form with $f_{2}=f_{3}=-1$ and $f_{1}=0$.

For $\theta \in\left[0, \frac{\pi}{2}\right]$ we consider the submanifold [3]

$$
M: x(u, v, t)=(2 u \cos \theta, 2 u \sin \theta, 2 v, 0,2 t)
$$

From [3] and [13], it results that M is a minimal totally contact geodesic slant submanifold with the slant angle θ and slant distribution D, with the orthonormal basis

$$
\left\{\overrightarrow{v_{1}}=\frac{\partial}{\partial v} ; \overrightarrow{v_{2}}=\frac{\partial}{\partial u}+2 v \cos \theta \frac{\partial}{\partial t}\right\}
$$

and

$$
\left\{\overrightarrow{n_{1}}=2 \frac{\partial}{\partial y^{2}} ; \overrightarrow{n_{2}}=2 \sin \theta \frac{\partial}{\partial x^{1}}-2 \cos \theta \frac{\partial}{\partial x^{2}}+4 v \sin \theta \frac{\partial}{\partial z}\right\}
$$

the orthonormal basis in $\chi^{\perp}(M), \vec{n}_{1}, \vec{n}_{2}$ in $\Gamma N F D$. We also have $\sum_{a=1}^{2} \widetilde{R}\left(\vec{n}_{1}, e_{a}, \vec{n}_{1}, e_{a}\right)=1-3 \sin ^{2} \theta$ and $V^{\prime \prime}\left(\vec{n}_{1}\right) \geq 0$, for $\theta \in\left[0, \arcsin \frac{1}{\sqrt{3}}\right]$.

5. Chern classes of integral submanifolds of (α, β) trans-Sasakian generalized spaceforms

In this section we give the structure equations of an integral submanifold M in an (α, β) trans-Sasakian generalized Sasakian space-form $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$ and we study the geometry of the maximal invariant normal subbundle $\tau(M)$. We also prove that the first Chern class of $\tau(M)$ is zero under certain conditions.

Taking into account Marrero's classification of the (α, β) trans-Sasakian manifolds with dimensions greater or equal with 5, [16], we recall some results obtained in [2] about this kind of manifolds.

Proposition 5.1. Let $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$ be an α-Sasakian generalized-space-form. Then α does not depend on the direction of ξ and the following equation holds

$$
f_{1}-f_{3}=\alpha^{2}
$$

Moreover, if M is connected or $\operatorname{dim} \widetilde{M}\left(f_{1}, f_{2}, f_{3}\right) \geq 5$ then α is constant, respectively, f_{1}, f_{2}, f_{3} are constant, related as follows
(i) If $\alpha=0$, then $f_{1}=f_{2}=f_{3}$ and M is a cosymplectic manifold of constant F sectional curvature.
(ii) If $\alpha \neq 0$, then $f_{1}-\alpha=f_{2}=f_{3}$.

Proposition 5.2. Let $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$ be a β-Kenmotsu generalized space-form. Then β does not depend on the direction of ξ and the following equation holds

$$
f_{1}-f_{3}+\xi(\beta)+\beta^{2}=0
$$

Moreover, if $\operatorname{dim} \tilde{M}\left(f_{1}, f_{2}, f_{3}\right) \geq 5$ then f_{1}, f_{2}, f_{3} depend only on the direction of ξ and the following equations hold

$$
\xi\left(f_{1}\right)+2 \beta f_{3}=0 ; \quad \xi\left(f_{2}\right)+2 \beta f_{2}=0
$$

Proposition 5.3. Let M be a 3 -dimensional (α, β) trans-Sasakian manifold such that α, β depend only the direction of ξ. Then M is a generalized Sasakian space-form $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$ with functions

$$
f_{1}=3 \rho-2\left(\alpha^{2}-\xi(\beta)-\beta^{2}\right) ; \quad f_{2}=0 ; \quad f_{3}=3 \rho-3\left(\alpha^{2}-\xi(\beta)-\beta^{2}\right)
$$

where ρ is the scalar curvature of M.
Now, let M be a n-dimensional integral submanifold of an (α, β) trans-Sasakian generalized Sasakian space-form $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$, with dimension $2 m+1$. From the properties of the integral submanifolds, [6], we have $n \leq m$ and we consider on $\widetilde{M}\left(f_{1}, f_{2} . f_{3}\right)$ a local orthonormal basis $B=\left\{e_{1}, \ldots, e_{n}, e_{n+1}, . ., e_{m}, e_{1^{*}}=F e_{1}, \ldots, e_{n^{*}}=F e_{n}, e_{(n+1)^{*}}=F e_{n+1}, \ldots, e_{m^{*}}=F e_{m}\right.$, $\xi\}$, so that $\left\{e_{1}, \ldots, e_{n}\right\}$ is a local orthonormal basis on M. Denote by $e_{(m+1)^{*}}=\xi$ and we will use the following convention on indices: $j=\overline{1, m} ; j^{*}=j+m ; a, b, c=\overline{1, n} ; a^{*}=a+m$; $b^{*}=b+m ; c^{*}=c+m ; \lambda, \mu, v=\overline{n+1, m} ; \lambda^{*}=\lambda+m ; \alpha, \beta, \gamma, \delta=\overline{1,2 m+1}$. If $B^{*}=\left\{\omega^{1}, \ldots, \omega^{n}, \omega^{n+1}, \ldots, \omega^{m}, \ldots, \omega^{1^{*}}, \ldots, \omega^{n^{*}}, \ldots, \omega^{(n+1)^{*}}, \ldots, \omega^{m^{*}}, \omega^{(m+1)^{*}}=\eta\right\}$ is the dual basis of B, then, at the points of M we locally have

$$
\begin{equation*}
\omega^{\lambda}=\omega^{j^{*}}=\omega^{(m+1)^{*}}=0 \tag{5.1}
\end{equation*}
$$

On the other hand, if we consider ω_{α}^{β} the connection forms of $\widetilde{\nabla}$, expressed with respect to B, on the submanifold M, we obtain:

$$
\begin{array}{cl}
\omega_{(m+1)^{*}}^{a}=\beta \omega^{a} ; \quad \omega_{(m+1)^{*}}^{\lambda}=\omega_{(m+1)^{*}}^{\lambda^{*}}=0 ; & \omega_{a^{*}}^{(m+1)^{*}}=\alpha \omega^{a} ; \\
\omega_{a}^{j^{*}}=\omega_{j}^{a^{*}} ; \quad \omega_{a^{*}}^{j^{*}}=\omega_{a}^{j} ; \quad \omega_{\lambda}^{j^{*}}=\omega_{j}^{\lambda^{*}} ; \quad \omega_{\lambda^{*}}^{j^{*}}=\omega_{\lambda}^{j} . \tag{5.3}
\end{array}
$$

The curvature forms of $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$ and M are, respectively,

$$
\begin{equation*}
\widetilde{\Omega}_{\beta}^{\alpha}=\frac{1}{2} \sum_{\alpha, \beta=1}^{2 m+1} \widetilde{R}_{\beta \gamma \delta}^{\alpha} \omega^{\gamma} \wedge \omega^{\delta} ; \quad \Omega_{b}^{a}=\frac{1}{2} \sum_{c, d=1}^{n} R_{b c d}^{a} \omega^{c} \wedge \omega^{d} \tag{5.4}
\end{equation*}
$$

where $\widetilde{R}_{\beta \gamma \delta}^{\alpha}$ and $R_{b c d}^{a}$ are the components with respect to B of the curvature tensors of $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$ and M, respectively. Then, at the points of M, we have

$$
\begin{gather*}
\Omega_{b}^{a}=\widetilde{\Omega}_{b}^{a}-\sum_{\lambda=n+1}^{m} \omega_{\lambda}^{a} \wedge \omega_{b}^{\lambda}-\sum_{j=1}^{m} \omega_{j^{*}}^{a} \wedge \omega_{b}^{j^{*}}, \tag{5.5}\\
\Omega_{\mu}^{\lambda}=\widetilde{\Omega}_{\mu}^{\lambda}-\sum_{a=1}^{n} \omega_{\alpha}^{\lambda} \wedge \omega_{\mu}^{a}=\frac{1}{2} \sum_{a, b=1}^{n} R_{\mu a b}^{\lambda} \omega^{a} \wedge \omega^{b}, \tag{5.6}
\end{gather*}
$$

where $R_{\mu a b}^{\lambda}$ are the components of the curvature tensor of ∇^{\perp}. From (5.1), (5.2), (5.3) and from the general form of the structure equations, [14], we have the following structure equations of the integral submanifold M, under the form

$$
\begin{align*}
& d \omega^{a}=-\sum_{b=1}^{n} \omega_{b}^{a} ; \quad d \omega_{b}^{a}=-\sum_{c=1}^{n} \omega_{c}^{a} \wedge \omega_{b}^{c}+\Omega_{b}^{a}, \tag{5.7}\\
& d \omega_{\mu}^{\lambda}=-\sum_{v=n+1}^{m} \omega_{v}^{\lambda} \wedge \omega_{\mu}^{v}-\sum_{j=1}^{m} \omega_{j^{*}}^{\lambda} \wedge \omega_{\mu}^{j^{*}}+\Omega_{\mu}^{\lambda} . \tag{5.8}
\end{align*}
$$

Let \vec{n} be a normal vector field to the integral submanifold M of the (α, β) trans-Sasakian generalized Sasakian space-form $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$. We consider 1-form $\alpha_{\tilde{n}}$ defined in (4.1) and 1 -form $\theta=\sum_{a=1}^{n} \omega_{a}^{a^{*}}$. We obtain, using similar technics as those in [21], the following results:

Proposition 5.4. The forms $\alpha_{\vec{n}}$ and θ have the following properties:
(i) $\alpha_{\xi}=0$ and $\theta=-n \alpha_{H}$, where H is the mean curvature vector of M
(ii) $\alpha_{\vec{n}}$ is closed if and only if

$$
g\left(\nabla_{X}^{\perp} \vec{n}, F Y\right)=g\left(\nabla_{Y}^{\perp} \vec{n}, F X\right),
$$

for all X, Y vector fields on M.
(iii) The exterior derivative of θ is given by

$$
d \theta=\sum_{b, c=1}^{n}\left(\widetilde{S}_{b c^{*}}-\sum_{\lambda} R_{\lambda b c}^{\lambda^{*}}-\frac{1}{2} \sum_{a=1}^{n} \widetilde{R}_{a b c}^{a^{*}}\right) \omega^{b} \wedge \omega^{c},
$$

where \widetilde{S} is the Ricci tensor of $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$.
The normal space $T_{x}^{\perp} M$ at each point x of M has the following orthogonal decomposition

$$
\begin{equation*}
T_{x}^{\perp} M=F\left(T_{x} M\right) \oplus \tau_{x}(M) \oplus\left\langle\xi_{x}\right\rangle, \tag{5.9}
\end{equation*}
$$

where $\left\langle\xi_{x}\right\rangle$ is the normal subspace generated by ξ_{x} and $\tau_{x}(M)$ is the $2(m-n)$-dimensional subspace of $T_{x} \widetilde{M}$, orthogonal to $F\left(T_{x} M\right) \oplus\left\langle\xi_{x}\right\rangle$. Then $\tau(M)=\cup_{x \in M} \tau_{x}(M)$ is the total space of the subbundle of $T^{\perp}(M)$ and $B_{\tau}=\left\{e_{n+1}, \ldots, e_{m}, e_{(n+1)^{*}}, \ldots, e_{m^{*}}\right\}$ is a local basis in the module $\Gamma(\tau)$ of its sections. We also denote this bundle by $\tau(M)$ and it is called the maximal invariant normal bundle of the integral submanifold M.
Proposition 5.5. Let M be an integral submanifold of the (α, β) trans-Sasakian generalized-space-form $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$. Then its maximal invariant normal bundle $\tau(M)$ has the following properties:
(i) $\tau(M)$ is invariant by F, that is, $F\left(T_{x}(M)\right)=\tau_{x}(M)$ for each point x of M.
(ii) $\tau(M)$ has a natural structure of complex vector bundle.

Proof.
(i) Follows from (5.9).
(ii) Let $B_{\tau}=\left\{e_{n+1}, \ldots, e_{m}, e_{(n+1)^{*}}, \ldots, e_{m^{*}}\right\}$ be an orthonormal basis on $\Gamma(\tau)$. For $\vec{n} \in$ $\Gamma(\tau)$ we consider $\left\{n^{\lambda}, n^{\lambda^{*}}\right\}$ the components of the vector \vec{n} relative to the basis B_{τ} and $P: \tau(M) \rightarrow M$ be the natural projection. Then, using the classical notations, the vector charts

$$
\Phi: P^{-1}(U) \rightarrow U \times \mathbf{C}^{m-n}, \Phi\left(\vec{n}_{x}\right)=\left(x,\left(n^{\lambda}+i n^{\lambda^{*}}\right)\right)
$$

for $x \in U$, define on $\tau(M)$ a complex vector bundle structure.
Because $g\left(\nabla \frac{\perp}{X} \vec{n}, \boldsymbol{\xi}\right)=0$, for all X vector fields on M and $\vec{n} \in \Gamma(\tau)$, the normal vector field $\nabla_{X} \vec{n} \vec{n}$ has the following decomposition

$$
\begin{equation*}
\nabla_{X}^{\frac{}{\prime}} \vec{n}=B_{\vec{n}} X+\nabla_{X}^{\tau} \vec{n}, \tag{5.10}
\end{equation*}
$$

where $B_{\vec{n}} X \in \Gamma(F T M)$ and $\nabla_{X}^{\tau} \vec{n} \in \Gamma(\tau)$. Moreover, the maps $B: \Gamma(\tau) \times \chi(M) \rightarrow \Gamma(F T M)$ and $\nabla^{\tau}: \chi(M) \times \Gamma(\tau) \rightarrow \Gamma(\tau)$ have the following properties:

Proposition 5.6.

(i) ∇^{τ} is an almost complex connection on the maximal invariant normal bundle of the integral submanifold M, that is, $\left(\nabla_{x}^{\tau} F\right) \vec{n}=0$.
(ii) $B_{\vec{n}} X=F A_{F \vec{n}} X$, for all $X \in \chi(M)$ and $\vec{n} \in \Gamma(\tau)$.

As a complex vector bundle, the basic characteristic classes of the maximal invariant normal bundle $\Gamma(\tau)$ are the Chern classes $\left[\gamma_{k}(\tau)\right]$, represented by Chern forms

$$
\begin{equation*}
\gamma_{k}=\frac{i^{k}}{(2 \pi)^{k} k!} \delta_{\lambda_{1} \ldots \lambda_{k}}^{\mu_{1} \ldots \mu_{k}} \Omega_{\mu_{1}}^{\tau \lambda_{1}} \wedge \ldots \wedge \Omega_{\mu_{k}}^{\tau \lambda_{k}} \tag{5.11}
\end{equation*}
$$

where $\Omega_{\mu}^{\tau \lambda}$ are the curvature forms of ∇^{τ} and $\delta_{\lambda_{1} \ldots \lambda_{k}}^{\mu_{1} \ldots \mu_{k}}$ are the multiindex Kronecker symbol. $\gamma_{k}(\tau)$ is called the kth normal Chern form of the submanifold M. From a similar argument as that used in [21], we have the following

Theorem 5.1. The first normal Chern of an n-dimensional integral submanifold in the (α, β) trans-Sasakian generalized Sasakian space-form $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$ of dimension $2 m+$ $1, m>n$, is given by

$$
\begin{equation*}
\gamma_{1}(\tau)=\frac{1}{2 \pi} \sum_{\lambda=n+1}^{m} \Omega_{\lambda}^{\lambda^{*}} \tag{5.12}
\end{equation*}
$$

Theorem 5.2. Let M be an integral submanifold of the (α, β) trans-Sasakian generalized Sasakian space-form $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$. If the mean curvature vector of M is parallel, then its first normal Chern form $\gamma_{1}(\tau)$ is zero.
Proof. From (2.4) we have $\widetilde{R}_{a b c}^{a^{*}}=0$ and $\widetilde{S}_{b c^{*}}=0$. Then, taking into account Proposition 5.4 and Theorem 5.1 we obtain the result.

Proposition 5.7. Let M be a totally umbilical integral submanifold of the (α, β) transSasakian generalized Sasakian space-form $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$. If M is parallel, then its first normal Chern form $\gamma_{1}(\tau)$ is zero.

Proof. Because M is totally umbilical, we have $h(X, Y)=g(X, Y) H$ and from (2.7) we obtain that the mean curvature vector H of M is parallel. Then we apply Theorem 5.2.

References

[1] P. Alegre, D. E. Blair and A. Carriazo, Generalized Sasakian-space-forms, Israel J. Math. 141 (2004), 157183.
[2] P. Alegre and A. Carriazo, Structures on generalized Sasakian-space-forms, Differential Geom. Appl. 26 (2008), no. 6, 656-666.
[3] A. Carriazo, On generalized Sasakian-space-forms, in Proceedings of the Ninth International Workshop on Differential Geometry, 31-39, Kyungpook Nat. Univ., Taegu, 2005.
[4] P. Alegre and A. Carriazo, Submanifolds of generalized Sasakian space forms, Taiwanese J. Math. 13 (2009), no. 3, 923-941.
[5] P. Alegre and A. Carriazo, Generalized Sasakian space forms and conformal changes of the metric, Results Math. 59 (2011), no. 3-4, 485-493.
[6] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Vol. 509, Springer, Berlin, 1976.
[7] J. L. Cabrerizo, A. Carriazo, L. M. Fernández and M. Fernández, Slant submanifolds in Sasakian manifolds, Glasg. Math. J. 42 (2000), no. 1, 125-138.
[8] J. L. Cabrerizo, A. Carriazo, L. M. Fernández and M. Fernández, Semi-Slant Submanifolds of a Sasakian Manifold, Geom. Dedicata, 78(1999), 183-199.
[9] B. Chen, Geometry of Submanifolds and its Applications, Sci. Univ. Tokyo, Tokyo, 1981.
[10] B. Chen, Geometry of Slant Submanifolds, Katholieke Univ. Leuven, Louvain, 1990.
[11] B. Chen, Cohomology of CR-submanifolds, Ann. Fac. Sci. Toulouse Math. (5) 3 (1981), no. 2, 167-172.
[12] M. Cîrnu, Topological properties of semi-slant submanifolds in Sasaki manifolds, Bull. Transilv. Univ. Braşov Ser. III 1(50) (2008), 79-86.
[13] M. Cîrnu, Stability of slant and semi-slant submanifolds in Sasaki manifolds, Acta Univ. Apulensis Math. Inform. No. 20 (2009), 63-78.
[14] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol I, Interscience Publishers, a division of John Wiley \& Sons, New York, 1963.
[15] A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Sci. Math. Roumanie 39 (1996), 183-198.
[16] J. C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. Pura Appl. (4) 162 (1992), 77-86.
[17] J. A. Oubiña, New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), no. 3-4, 187-193.
[18] Y.-G. Oh, Second variation and stabilities of minimal Lagrangian submanifolds in Kähler manifolds, Invent. Math. 101 (1990), no. 2, 501-519.
[19] G. Pitiş, Feuilletages et sous-variétés d'une classe de variétés de contact, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 4, 197-202.
[20] G. Pitiş, Stability of integral submanifolds in a Sasakian manifold, Kyungpook Math. J. 41 (2001), no. 2, 381-392.
[21] G. Pitiş, Chern classes of integral submanifolds of some contact manifolds, Int. J. Math. Math. Sci. 32 (2002), no. 8, 481-490.
[22] B. L. Reinhart, Differential Geometry of Foliations, Ergebnisse der Mathematik und ihrer Grenzgebiete, 99, Springer, Berlin, 1983.

