BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

Cohomology and Stability of Generalized Sasakian Space-Forms

MARIA CÎRNU

Department of Mathematics and Informatics, University Transilvania of Braşov Iuliu Maniu str., 50, Braşov, Romania maria.cirnu@vahoo.com

Abstract. In this paper we study the geometry of distributions of semi-slant submanifolds of (α, β) trans-Sasakian manifolds, some problems concerning the stability of slant submanifolds of generalized Sasakian space-forms and we also investigate the first normal Chern class for integral submanifolds of (α, β) trans-Sasakian generalized Sasakian space-forms.

2010 Mathematics Subject Classification: 53C25, 53D15, 53C40

Keywords and phrases: Trans-Sasakian manifold, semi-slant submanifold, generalized Sasakian space-form, Chern class, Bott connection.

1. Introduction

The geometry of distributions of slant and semi-slant submanifolds was studied by Cabrerizo, Carriazo, Fernández and Fernández [7, 8] in the case of *K*-contact and Sasakian manifolds. In this paper we study the geometry of distributions for semi-slant submanifolds of (α, β) trans-Sasakian manifolds. We obtain some results for cohomology groups and study remarkable forms associated to the Bott connection for semi-slant submanifolds in (α, β) trans-Sasakian manifolds. Ours results generalize those in [20] and [13]. Secondly, we study some aspects concerning variational problems for slant submanifolds in generalized Sasakian space-forms. Finally, studying the structure equations for integral submanifolds of (α, β) trans-Sasakian generalized Sasakian space-forms, we find certain conditions so that the first normal Chern class be trivial.

2. Preliminaries

Let \widetilde{M} be an almost contact manifold, C^{∞} -differentiable with dimension 2m+1. Let (F, ξ, η, g) be its almost contact structure, where F is a tensor field of type (1,1), ξ is the Reeb vector field, η is a 1-form and g is a Riemannian metric on \widetilde{M} , all these tensors satisfying the following conditions:

(2.1) $F^2 = -I + \eta \otimes \xi; \quad \eta(\xi) = 1; \quad g(FX, FY) = g(X, Y) - \eta(X)\eta(Y),$

Communicated by Young Jin Suh.

Received: February 13, 2010; Revised: July 16, 2010.

for all $X, Y \in \chi(\widetilde{M})$. Here $\chi(\widetilde{M})$ is the set of all vector fields on \widetilde{M} . We denote by Ω the fundamental (or the Sasaki) 2-form of \widetilde{M} , given by $\Omega(X,Y) = g(X,FY)$.

In [17], Oubina introduced the notion of a trans-Sasakian manifold. An almost contact metric manifold \tilde{M} is a *trans-Sasakian* manifold if there exist two functions α and β on \tilde{M} such that

(2.2)
$$(\widetilde{\nabla}_X F)Y = \alpha[g(X,Y)\xi - \eta(Y)X] + \beta[g(FX,Y)\xi - \eta(Y)FX],$$

for any $X, Y \in \chi(\widetilde{M})$. In particular, from (2.2) it is easy to see that the following equations hold on a trans-Sasakian manifold

(2.3)
$$\nabla_X \xi = -\alpha F X + \beta [X - \eta(X)\xi]; \qquad d\eta = \alpha \Omega.$$

Moreover, if $\beta = 0$ then \widetilde{M} is to said to be an α -Sasakian manifold. Sasakian manifolds appear as examples of α -Sasakian manifolds, with $\alpha = 1$, and Kenmotsu manifolds appear as examples of β -Kenmotsu manifolds, with $\beta = 1$. Another important kind of trans-Sasakian manifolds is that of *cosymplectic manifolds*, obtained for $\alpha = \beta = 0$. Marrero showed in [16] that a trans-Sasakian manifold of dimension greater than or equal to 5 is either α -Sasakian, β -Kenmotsu or cosymplectic manifold.

Given an almost contact metric manifold \widetilde{M} , we say that \widetilde{M} is a generalized Sasakianspace-form, [1], if there exit three functions f_1 , f_2 , f_3 on \widetilde{M} such that

(2.4)

$$R(X,Y)Z = f_1[g(Y,Z)X - g(X,Z)Y] + f_2[g(X,FZ)FY - g(Y,FZ)FX + 2g(X,FY)FZ] + f_3[\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi],$$

for any vector fields X, Y, Z on \widetilde{M} , where \widetilde{R} denotes the curvature tensor of \widetilde{M} . In such a case, we will write $\widetilde{M}(f_1, f_2, f_3)$.

We also observe that this kind of manifold appears as a natural generalization of the well known Sasakian space-forms $\widetilde{M}(c)$, which can be obtained as particular cases of generalized Sasakian space-forms, by taking $f_1 = (c+3)/4$ and $f_2 = f_3 = (c-1)/4$ and as a generalization of Kenmotsu space-forms, by taking $f_1 = (c-3)/4$ and $f_2 = f_3 = (c+1)/4$.

Let *M* be a submanifold of the Riemannian manifold \widetilde{M} , ∇ the Levi-Civita connection induced by $\widetilde{\nabla}$ on *M*, ∇^{\perp} the connection in the normal bundle $T^{\perp}(M)$, *h* the second fundamental form of *M* and $A_{\vec{n}}$ the Weingarten operator. We recall the Gauss-Weingarten formulas on *M*

(2.5)
$$\widetilde{\nabla}_X Y = \nabla_X Y + h(X,Y); \quad \widetilde{\nabla}_X \vec{n} = -A_{\vec{n}} X + \nabla_X^{\perp} \vec{n},$$

for all $X, Y \in \chi(M)$ and $\vec{n} \in \chi^{\perp}(M)$.

A submanifold M of an almost contact metric manifold \widetilde{M} is totally contact geodesic, [3], if

(2.6)
$$h(X,Y) = \eta(X)h(Y,\xi) + \eta(Y)h(X,\xi),$$

for all X, Y vector fields on M. From (2.6) it results that on a totally contact geodesic submanifold $M, h(\xi, \xi) = 0$.

A submanifold M of an almost contact metric manifold \widetilde{M} is parallel if

$$(2.7) \qquad \qquad (\nabla_X h)(Y,Z) = 0$$

where $(\widetilde{\nabla}_X h)(Y,Z) = \nabla_X^{\perp}(h(Y,Z)) - h(\nabla_X Y,Z) - h(Y,\nabla_X Z)$ and X,Y,Z are vector fields on M.

An integral submanifold *M* of the contact distribution $\mathcal{D} = \ker \eta$ is an *integral manifold* and such a submanifold is characterized by any of

- (1) $\eta = 0, \quad d\eta = 0;$
- (2) $FX \in \chi^{\perp}(M)$ for all X in $\chi(M)$.

The submanifold M of \widetilde{M} , tangent to ξ , is a *slant submanifold*, [15], if

$$\theta = \angle (FX_x, T_xM) = constant,$$

for all $x \in M$, $X_x \in T_x M$, X_x non-collinear with ξ . Taking into account the definition of the angle between a vector and a subspace in the Euclidean space, this is equivalent with

$$\cos \theta = \frac{g(FX,Y)}{\|FX\| \, \|Y\|} = constant,$$

for all $Y \in \chi(M)$, $X \in D$, X, Y nowhere zero, where D is the orthogonal distribution of ξ in $\chi(M)$. In this case, θ is the *slant angle* of the submanifold M and the distribution D is the *slant distribution* of M.

The submanifold M of a Riemannian manifold \widetilde{M} is a semi-slant submanifold, [8], if there are D_1, D_2 two distributions on M so that

- (i) $\chi(M) = D_1 \oplus D_2 \oplus \langle \xi \rangle$;
- (ii) D_1 is invariant, i.e. $FD_1 = D_1$;
- (iii) D_2 is slant with the slant angle θ .

For M a slant or semi-slant submanifold in a Riemannian manifold \widetilde{M} , we consider the decompositions

$$FX = TX + NX; \quad F\vec{n} = t\vec{n} + n\vec{n},$$

for all $X \in \chi(M)$, $\vec{n} \in \chi^{\perp}(M)$, where *TX* is the tangent component and *NX* the normal component of *FX* and $t\vec{n}$ is the tangent component and $n\vec{n}$ is the normal component of $F\vec{n}$ in $\chi(\widetilde{M})$.

Moreover, if M is a semi-slant submanifold of a Riemannian manifold \widetilde{M} , then we consider

(2.9)
$$X = P_1 X + P_2 X + \eta(X) \xi,$$

for all $X \in \chi(M)$, where P_1 is the projection on D_1 and P_2 is the projection on D_2 .

We recall some known results for slant and semi-slant submanifolds, [7, 8]:

Proposition 2.1. Let M be a submanifold of the almost contact manifold \widetilde{M} tangent to the Reeb vector field $\xi \in \chi(M)$. Then M is slant if and only if there is $\lambda \in [0, 1]$ so that

$$T^2 = -\lambda(I - \eta \otimes \xi).$$

Moreover, in this case, the slant angle θ of M satisfies the condition $\lambda = \cos^2 \theta$.

Proposition 2.2. Let M be a slant submanifold in an almost contact manifold \widetilde{M} with the slant angle θ . Then

$$g(TX,TY) = \cos^2 \theta [g(X,Y) - \eta(X)\eta(Y)]$$

and

$$g(NX,NY) = \sin^2 \theta[g(X,Y) - \eta(X)\eta(Y)],$$

for all $X, Y \in \chi(M)$.

Proposition 2.3. Let M be a semi-slant submanifold of the almost contact manifold \widetilde{M} with the slant angle θ . Then

$$g(TX, TP_2Y) = \cos^2 \theta g(X, P_2Y); \qquad g(NX, NP_2Y) = \sin^2 \theta g(X, P_2Y),$$

for all $X, Y \in \chi(M)$.

3. Geometry of distributions on semi-slant submanifolds in (α,β) trans-Sasakian manifolds

Let *M* be a semi-slant submanifold of the (α, β) trans-Sasakian manifold \widetilde{M} . Denote by $T_i = P_i \circ T$, i = 1, 2 and taking into account (2.9) and the fact that D_1 is invariant we have

$$FP_1X = TP_1X;$$
 $NP_1X = 0;$ $TP_2X \in D_2,$

for all X vector fields on M. Using (2.2), (2.5), the definition of slant angle and these last equalities, we have

(3.1)
$$h(X, FP_1Y) + h(X, TP_2Y) + \nabla_X^{\perp}(NP_2Y) = NP_2\nabla_XY + [Fh(X,Y)]^{\perp} -\beta\eta(Y)NP_2X,$$

where X,Y are vector fields on M, $[Fh(X,Y)]^{\perp}$ is the normal component of Fh(X,Y) in $\chi(\widetilde{M})$.

Now, let *M* be a *p*-dimensional semi-slant submanifold of (α, β) trans-Sasakian manifold \widetilde{M} so that

(
$$\nabla_X T$$
) $Y = \alpha[g(P_1X, Y)\xi - \eta(Y)P_1X]$
+ $\alpha \cos^2 \theta[g(P_2X, Y)\xi - \eta(Y)P_2X]$
+ $\beta[g(TX, Y)\xi - \eta(Y)TX],$
(3.2)

for all X, Y vector fields on M. Because D_1 is invariant, using (2.2) and (2.5) it results that

$$\begin{aligned} (\nabla_X T)Y = &\alpha[g(X,Y)\xi - \eta(Y)X] + \beta[g(TX,Y)\xi - \eta(Y)TX] \\ &+ A_{NP_2Y}X + [Fh(X,Y)]^T. \end{aligned}$$

Taking into account (3.2) we obtain

$$A_{NP_2Y}X = -[Fh(X,Y)]^T - \alpha \sin^2 \theta [g(P_2X,Y)\xi - \eta(Y)P_2X],$$

 $P_1A_{NP_2Y}X = 0$, for all $X, Y \in \chi(M)$ and $[Fh(X,Y)]^T = \alpha \sin^2 \theta \eta(Y)P_2X$, for all $X \in \chi(M)$, $Y \in D_1 \oplus \langle \xi \rangle$. From these last relations, (3.1) and the fact that $TP_2X \in D_2$, we have that $g(NP_2\nabla_XY, Fh(X,Y)) = g(A_{NP_2}\nabla_XY, Y)$ = 0 and then

(3.3)
$$\nabla_X Y \in D_1 \oplus \langle \xi \rangle; \qquad \nabla_X Z \in D_2 \oplus \langle \xi \rangle,$$

for all $X \in \chi(M)$, $Y \in D_1$ and $Z \in D_2$.

We also have the following results:

Proposition 3.1. Let M be a p-dimensional semi-slant submanifold of a 2m+1-dimensional α -Sasakian manifold or β -Kenmotsu manifold \widetilde{M} , with $m \geq 2$ so that

$$(\nabla_X T)Y = \alpha[g(P_1X,Y) - \eta(Y)P_1X] + \alpha\cos^2\theta[g(P_1X,Y)\xi - \eta(Y)P_2X]$$

in α -Sasakian case and

$$(\nabla_X T)Y = \beta[g(TX,Y)\xi - \eta(Y)TX]$$

in β-Kenmotsu case.

Then the invariant distribution D_1 is minimal for α -Sasakian case and is not minimal for β -Kenmotsu case.

Proof. We consider $\{X_i, FX_i\}$, i = 1, ..., q, an orthonormal basis of the invariant distribution D_1 so that 2q < p. The mean curvature vector of the distribution D_1 is

$$H_{D_1} = \frac{1}{2q} \sum_{i=1}^q (\nabla_{X_i} X_i + \nabla_{FX_i} F X_i)^{\perp},$$

where $(\nabla_{X_i}X_i + \nabla_{FX_i}FX_i)^{\perp}$ represents the orthogonal complement of $(\nabla_{X_i}X_i + \nabla_{FX_i}FX_i)$ in $D_2 \oplus \langle \xi \rangle$. For α -Sasakian case we obtain that $g(\nabla_{X_i}X_i, Z) = g(\nabla_{FX_i}FX_i, Z) = g(\nabla_{X_i}X_i, \xi) = g(\nabla_{FX_i}FX_i, \xi) = 0$ and for β -Kenmotsu case $g(\nabla_{X_i}X_i, \xi) = g(\nabla_{FX_i}FX_i, \xi) = -\beta$ and $g(\nabla_{X_i}X_i, \xi) = g(\nabla_{FX_i}FX_i, \xi) = 0$, where $Z \in D_2$.

Denote by $\stackrel{o}{\nabla}: D_2 \times D_1 \to D_1$ the Bott connection defined by

$$\stackrel{\circ}{\nabla}_X U = P_1([X, U]),$$

for all $X \in D_2$ and $U \in D_1$. Let $S_{D_1} : D_1 \times D_1 \rightarrow D_2$ be defined by

$$S_{D_1} = P_2(\nabla_X Y + \nabla_Y X),$$

for $X, Y \in D_1$. If $S_{D_1} = 0$ then D_1 is a *totally geodesic plane field*, [22]. Let $\{\omega^1, ..., \omega^{2q}\}$ be the dual basis of the local orthonormal basis $\{X_1, ..., X_q, FX_1 = X_{q+1}, ..., FX_q = X_{2q}\}$ of D_1 and we extend it to whole $\chi(M)$. This means that

$$\omega^i(X_j) = \delta^i_j; \quad \omega^i_{/D_2} = 0; \quad \omega^i(\xi) = 0, \quad i, j = \overline{1, 2q}.$$

We obtain the global defined 2*q*-form $\omega = \omega^1 \wedge ... \wedge \omega^{2q}$ and it is a volume form of the distribution D_1 .

Theorem 3.1. Let *M* be a *p*-dimensional semi-slant submanifold of the (α, β) trans-Sasakian manifold \widetilde{M} . Then

- (i) the metric g of submanifold M is parallel with $\stackrel{o}{\nabla}$ if and only if D_1 is a totally geodesic plane field.
- (ii) if *M* is compact and (3.2) holds for all $X, Y \in \chi(M)$, then ω is parallel with $\stackrel{o}{\nabla}$.

Proof.

(i) We consider $X \in D_2$ and $Y, Z \in D_1$. Taking into account the definition of $\stackrel{o}{\nabla}$, the properties of Levi-Civita connection, we obtain

$$(\overset{o}{\nabla}_X g)(Y,Z) = -g(X,S_{D_1}(Y,Z)),$$

for all $X \in D_2, Y, Z \in D_1$ and then *i*).

(ii) We have to prove that $(\stackrel{o}{\nabla}_X \omega)(X_1, ..., X_{2q}) = 0$ for all $X \in D_2$. We have $\omega(X_1, X_2, ..., X_{2q})$ = 1. From the definitions of $\stackrel{o}{\nabla}_X \omega$, 1-forms ω^i and (3.3) we have that $(\stackrel{o}{\nabla}_X \omega)(X_1, ..., X_{2q}) = 0$.

We denote by $\{X_{2q+1},...,X_{p-1}\}$ a local orthonormal basis in D_2 with its dual basis $\{\theta^{2q+1},...,\theta^{p-1}\}$ so that

$$\{X_1, ..., X_q, X_{q+1} = FX_1, ..., X_{2q} = FX_q, X_{2q+1}, ..., X_{p-1}, \xi\}$$

is a local orthonormal basis in $\chi(M)$. Let $\theta = \theta^{2q+1} \wedge ... \wedge \theta^{p-1} \wedge \theta^p$ be a (p-2q)-form, where $\theta^p = \eta$. We extend θ^{α} , $\alpha = \overline{2q+1, p-1}$ at $\chi(M)$ so that $\theta^{\alpha}(X_{\beta}) = \delta^{\alpha}_{\beta}$; $\theta^{\alpha}(\xi) = 0$; $\theta^{\alpha}_{/D_1} = 0$, $\alpha, \beta = \overline{2q+1, p-1}$.

Proposition 3.2. Let M be a p-dimensional semi-slant submanifold of the (α, β) trans-Sasakian manifold \widetilde{M} so that (3.2) holds for all X, Y vector fields on M. Then

- (i) the 2q-form $\omega = \omega^1 \wedge ... \wedge \omega^{2q}$ is closed;
- (ii) θ is closed;
- (iii) $*\omega = \theta$.

Proof.

(i) We have $d\omega = 0$ if and only if

$$(d\omega)(Y_1, X_1, ..., X_{2q}) = 0;$$
 $(d\omega)(Y_1, Y_2, X_1, ..., X_{2q-1}) = 0$
 $(d\omega)(\xi, X_1, ..., X_{2q}) = 0;$ $(d\omega)(\xi, Y_1, X_1, ..., X_{2q-1}) = 0,$

for all $Y_1, Y_2 \in D_2$. But these equalities follow by a straightforward computation using the definition of $d\omega$, ω^i , the property of Levi-Civita connection and (3.3).

(ii) Now, let $\{Y_{2q+1}, Y_{2q+2}, ..., Y_{p-1}, Y_p = \xi\}$ be a local orthonormal frame in $D_2 \oplus \langle \xi \rangle$. Then $d\theta = 0$ if and only if

$$(d\theta)(X_1, Y_{2q+1}, \dots, Y_p) = 0;$$
 $(d\theta)(X_1, X_2, Y_{2q+1}, \dots, Y_{p-1}) = 0,$

for all $X_1, X_2 \in D_1$.

These two last equalities result from an analogous computation as that used at i), using the definitions of θ , θ^{α} , the property of Levi-Civita connection.

(iii) Results from the definition and the properties of the Hodge operator *.

Theorem 3.2. Let *M* be a compact semi-slant submanifold of the (α, β) trans-Sasakian manifold \widetilde{M} so that (3.2) holds for all *X*, *Y* vector fields on *M*. Then

$$b_{2k}(M) \ge 1,$$

where $k = \overline{1,q}$, dim $D_1 = 2q$ and $b_{2k}(M)$ is the $2k^{th}$ Betti number of the submanifold M. *Proof.* From the definition of Ω we consider $\Omega_M(X,Y) = g(X,FY)$, for all $X,Y \in \chi(M)$. It is easy to see that

$$\Omega_M^r(X_1,...,X_r) = (-1)^r r!; \qquad \Omega_M^r = 0$$

in other cases, where $r = \overline{1,q}$, $\Omega_M^r = \Omega_M \wedge ... \wedge \Omega_M$ and \wedge is the exterior product. Moreover, $\Omega_M^q(X_1,...,X_q,FX_1,...,FX_q) = (-1)^q q! \omega$ and $\Omega_M^q = 0$, in other cases. From these last equalities, Proposition 3.1, the properties of the operators δ , * and the Hodge-de Rham decomposition, we have $b_{2q}(M) \geq 1$.

4. Stability of slant submanifolds in generalized Sasakian space-forms

If *M* is a slant submanifold of the generalized Sasakian space-form $\widehat{M}(f_1, f_2, f_3)$, with *D* the slant distribution with slant angle θ , then we consider $\{e_1, ..., e_{n-1}\}$ an orthonormal basis in *D* and

$$e_{n+1} = \frac{Ne_1}{\sin\theta}, \dots, e_{2n-1} = \frac{Ne_{n-1}}{\sin\theta}$$

Taking into account Proposition 2.2, we deduce that $\{e_{n+1}, ..., e_{2n-1}\}$ are orthonormal vectors. Let ΓNFD be the subspace spanned by $\{e_{n+1}, ..., e_{2n-1}\}$ and $\Gamma(\tau(M))$ the orthogonal complement of ΓNFD in $\chi^{\perp}(M)$, so that

 $\{e_{2n}, ..., e_{2m+1}\}$ is an orthonormal basis in $\Gamma(\tau(M))$. We consider the dual 1-form to the vector $\vec{n} \in \chi^{\perp}(M)$, defined by

(4.1)
$$\alpha_{\vec{n}}: \chi(M) \to F(M), \quad \alpha_{\vec{n}}(X) = g(F\vec{n}, X),$$

for all $X \in \chi(M)$ and we denote by $\mathbf{L} = \{\vec{n} \in \chi^{\perp}(M) : d\alpha_{\vec{n}} = 0\}$ the set of Legendre variations, by $\mathbf{E} = \{\vec{n} \in \chi^{\perp}(M) : (\exists) f \in F(M) : \alpha_{\vec{n}} = df\}$ the set of Hamiltonian variations and by $\mathbf{H} = \{\vec{n} \in \chi^{\perp}(M) : d\alpha_{\vec{n}} = \delta\alpha_{\vec{n}} = 0\}$ the set of harmonic variations.

The first variation of the volume form of M, relative to the normal vector field \vec{n} (that is the value at t = 0 of the first derivative of $V(\vec{n})$) can be expressed under the form [9]

(4.2)
$$V'(\vec{n}) = -n \int_M g(\vec{n}, H) dv,$$

where H is the mean curvature vector field of M. Then M is

- (i) *l-minimal* if $V'(\vec{n}) = 0$ for all $\vec{n} \in \mathbf{L}$
- (ii) *e-minimal* if $V'(\vec{n}) = 0$ for all $\vec{n} \in \mathbf{E}$
- (iii) *h*-minimal if $V'(\vec{n}) = 0$ for all $\vec{n} \in \mathbf{H}$.

We also observe that:

- (a) If the slant submanifold M is minimal, then M is l, e and h-minimal.
- (b) If the slant submanifold *M* is *e*-minimal or *h*-minimal, then *M* is *l*-minimal.

Using similar arguments like those in [20], we have the following results:

Proposition 4.1. Let *M* be a slant submanifold with slant angle θ of the generalized Sasakian space-form $\widetilde{M}(f_1, f_2, f_3)$. Then:

- (i) $\Gamma(\tau(M)) \subset \mathbf{L}$;
- (ii) $\mathbf{H} \subset \mathbf{L}$;
- (iii) $\mathbf{E} \subset \mathbf{L}$;
- (iv) $F(\operatorname{grad} f)|_{\Gamma NFD} \subset \mathbf{E}$.

Theorem 4.1. Let *M* be a compact slant submanifold of the generalized Sasakian space-form $\widetilde{M}(f_1, f_2, f_3)$. Then:

- (i) *M* is *l*-minimal if and only if $H \in \Gamma NFD$ and $\alpha_H = \sum_{\mu} f_{\mu} \Phi_{\mu}$, where $f_{\mu} \in F(M)$ and Φ_{μ} are co-exact 1-forms.
- (ii) *M* is *e*-minimal if and only if $H \in \Gamma NFD$ and α_H is co-closed.
- (iii) *M* is *h*-minimal if and only if $H \in \Gamma NFD$ and α_H is the sum of an exact 1-form and a co-exact 1-form.

Theorem 4.2. Let *M* be a compact slant submanifold of the generalized Sasakian space-form $\widetilde{M}(f_1, f_2, f_3)$. Then

- (i) *M* is *l*-minimal if and only if *M* is minimal
- (ii) M is e-minimal if and only if H is an harmonic variation.
- (iii) M is h-minimal if and only if H is a hamiltonian variation.

Let $V''(\vec{n})$ be the second variation of the volume form of a *n*-dimensional slant submanifold *M* in the (α, β) generalized Sasakian-space-form $\widetilde{M}(f_1, f_2, f_3)$. By [9] this is given by

(4.3)
$$V''(\vec{n}) = \int_{M} \left\{ \left\| \nabla^{\perp} \vec{n} \right\|^{2} - \left\| A_{\vec{n}} \right\|^{2} \right\} dv + \int_{M} \left\{ n^{2} g^{2}(H, \vec{n}) - ng(H, \widetilde{\nabla}_{\vec{n}} \vec{n}) - \sum_{a=1}^{n} \widetilde{R}(\vec{n}, e_{a}, \vec{n}, e_{a}) \right\} dv$$

where $\vec{n} \in \chi^{\perp}(M)$ and \widetilde{R} is the Riemann Christoffel tensor of the manifold \widetilde{M} . Then:

- (i) *M* is stable if $V''(\vec{n}) \ge 0$ for all $\vec{n} \in \chi^{\perp}(M)$;
- (ii) *M* is *l*-stable if $V''(\vec{n}) \ge 0$ for all $\vec{n} \in \mathbf{L}$;
- (iii) *M* is *e*-stable if $V''(\vec{n}) \ge 0$ for all $\vec{n} \in \mathbf{E}$;
- (iv) *M* is *h*-stable if $V''(\vec{n}) \ge 0$ for all $\vec{n} \in \mathbf{H}$.

Proposition 4.2. Let *M* be a *n*-dimensional slant submanifold with θ -the slant angle in the generalized Sasakian-space form $\widetilde{M}(f_1, f_2, f_3)$. If *M* is tangent to the Reeb vector field ξ then

(4.4)
$$\sum_{a=1}^{n} \widetilde{R}(\vec{n}, e_a, \vec{n}, e_a) = nf_1 - f_3,$$

for all $\vec{n} \in \Gamma(\tau(M))$.

Proof. From (2.4) and the fact that

$$\|\text{proj}_{\Gamma NFD}\vec{n}\|^2 = \frac{1}{\sin^2\theta} \sum_{a=1}^{n-1} g^2(\vec{n}, Ne_a)$$

we have

(4.5)
$$\sum_{a=1}^{n} \widetilde{R}(\vec{n}, e_a, \vec{n}, e_a) = nf_1 - f_3 + 3f_2 \sin^2 \theta \| \operatorname{proj}_{\Gamma NFD} \vec{n} \|^2,$$

where \vec{n} is a normal vector field on M and $\text{proj}_{\Gamma NFD}\vec{n}$ is the projection of \vec{n} on ΓNFD and then (4.4)

Proposition 4.3. Let *M* be a *n*-dimensional minimal slant totally contact geodesic submanifold with θ -the slant angle in the generalized Sasakian-space-form $\widetilde{M}(f_1, f_2, f_3)$ so that *M* is tangent to the Reeb vector field ξ and

$$nf_1 - f_3 + 3f_3 \sin^2 \theta \| proj_{\Gamma NFD} \vec{n} \|^2 \le 0,$$

for all \vec{n} normal vector fields on *M*. If \vec{n} is parallel with the Levi-Civita connection $\widetilde{\nabla}$, then

$$V"(\vec{n}) \ge 0.$$

Proof. From (2.6), the properties of the Levi-Civita connection and the fact that \vec{n} is parallel with respect the Levi-Civita connection $\widetilde{\nabla}$, we obtain that

$$||A_{\vec{n}}||^2 = 4\sum_{b=1}^n g^2(\xi, \widetilde{\nabla}_{e_b}\vec{n}) = 0.$$

From (4.3), the fact that *M* is minimal we have $V''(\vec{n}) \ge 0$.

Example 4.1. Let $\widetilde{M} = \mathbb{R}^5$ be with local coordinates (x^1, x^2, y^1, y^2, z) and the Sasaki structure given by

$$\eta = \frac{1}{2}(dz - y^{1}dx^{1} - y^{2}dx^{2}); \quad \xi = 2\frac{\partial}{\partial z};$$
$$g = \eta \otimes \eta + \frac{1}{4}(dx^{1} \otimes dx^{1} + dx^{2} \otimes dx^{2} + dy^{1} \otimes dy^{1} + dy^{2} \otimes dy^{2});$$

and $F: \chi(\mathbb{R}^5) \to \chi(\mathbb{R}^5)$ a tensor field of type (1,1) so that

$$F(\frac{\partial}{\partial x^{1}}) = -\frac{\partial}{\partial y^{1}}; \quad F(\frac{\partial}{\partial x^{2}}) = -\frac{\partial}{\partial y^{2}}; \quad F(\frac{\partial}{\partial z}) = 0;$$

$$F(\frac{\partial}{\partial y^{1}}) = \frac{\partial}{\partial x^{1}} + y^{1}\frac{\partial}{\partial z}; \quad F(\frac{\partial}{\partial y^{2}}) = \frac{\partial}{\partial x^{2}} + y^{2}\frac{\partial}{\partial z},$$

where $\left\{\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^2}, \frac{\partial}{\partial y^1}, \frac{\partial}{\partial y^2}, \frac{\partial}{\partial z}\right\}$ is a basis of $\chi(R^5)$. We observe that \widetilde{M} is a generalized Sasakian space-form with $f_2 = f_3 = -1$ and $f_1 = 0$.

For $\theta \in [0, \frac{\pi}{2}]$ we consider the submanifold [3]

$$M: x(u,v,t) = (2u\cos\theta, 2u\sin\theta, 2v, 0, 2t).$$

From [3] and [13], it results that *M* is a minimal totally contact geodesic slant submanifold with the slant angle θ and slant distribution *D*, with the orthonormal basis

$$\left\{\vec{v_1} = \frac{\partial}{\partial v}; \vec{v_2} = \frac{\partial}{\partial u} + 2v\cos\theta \frac{\partial}{\partial t}\right\}$$

and

$$\left\{\vec{n_1} = 2\frac{\partial}{\partial y^2}; \vec{n_2} = 2\sin\theta \frac{\partial}{\partial x^1} - 2\cos\theta \frac{\partial}{\partial x^2} + 4v\sin\theta \frac{\partial}{\partial z}\right\}$$

the orthonormal basis in $\chi^{\perp}(M)$, \vec{n}_1, \vec{n}_2 in ΓNFD . We also have $\sum_{a=1}^2 \widetilde{R}(\vec{n}_1, e_a, \vec{n}_1, e_a) = 1 - 3\sin^2\theta$ and $V''(\vec{n}_1) \ge 0$, for $\theta \in [0, \arcsin\frac{1}{\sqrt{3}}]$.

5. Chern classes of integral submanifolds of (α, β) trans-Sasakian generalized space-forms

In this section we give the structure equations of an integral submanifold M in an (α, β) trans-Sasakian generalized Sasakian space-form $\widetilde{M}(f_1, f_2, f_3)$ and we study the geometry of the maximal invariant normal subbundle $\tau(M)$. We also prove that the first Chern class of $\tau(M)$ is zero under certain conditions.

Taking into account Marrero's classification of the (α, β) trans-Sasakian manifolds with dimensions greater or equal with 5, [16], we recall some results obtained in [2] about this kind of manifolds.

Proposition 5.1. Let $\widetilde{M}(f_1, f_2, f_3)$ be an α -Sasakian generalized-space-form. Then α does not depend on the direction of ξ and the following equation holds

$$f_1-f_3=\alpha^2.$$

Moreover, if *M* is connected or dim $\widetilde{M}(f_1, f_2, f_3) \ge 5$ then α is constant, respectively, f_1, f_2, f_3 are constant, related as follows

- (i) If $\alpha = 0$, then $f_1 = f_2 = f_3$ and *M* is a cosymplectic manifold of constant *F*-sectional curvature.
- (ii) If $\alpha \neq 0$, then $f_1 \alpha = f_2 = f_3$.

Proposition 5.2. Let $\widetilde{M}(f_1, f_2, f_3)$ be a β -Kenmotsu generalized space-form. Then β does not depend on the direction of ξ and the following equation holds

$$f_1 - f_3 + \xi(\boldsymbol{\beta}) + \boldsymbol{\beta}^2 = 0$$

Moreover, if dim $\widetilde{M}(f_1, f_2, f_3) \ge 5$ then f_1, f_2, f_3 depend only on the direction of ξ and the following equations hold

$$\xi(f_1) + 2\beta f_3 = 0;$$
 $\xi(f_2) + 2\beta f_2 = 0.$

Proposition 5.3. Let *M* be a 3-dimensional (α, β) trans-Sasakian manifold such that α, β depend only the direction of ξ . Then *M* is a generalized Sasakian space-form $\widetilde{M}(f_1, f_2, f_3)$ with functions

$$f_1 = 3\rho - 2(\alpha^2 - \xi(\beta) - \beta^2); \quad f_2 = 0; \quad f_3 = 3\rho - 3(\alpha^2 - \xi(\beta) - \beta^2),$$

where ρ is the scalar curvature of *M*.

Now, let *M* be a *n*-dimensional integral submanifold of an (α, β) trans-Sasakian generalized Sasakian space-form $\widetilde{M}(f_1, f_2, f_3)$, with dimension 2m + 1. From the properties of the integral submanifolds, [6], we have $n \leq m$ and we consider on $\widetilde{M}(f_1, f_2, f_3)$ a local orthonormal basis $B = \{e_1, ..., e_n, e_{n+1}, ..., e_m, e_{1^*} = Fe_1, ..., e_{n^*} = Fe_n, e_{(n+1)^*} = Fe_{n+1}, ..., e_{m^*} = Fe_m, \xi\}$, so that $\{e_1, ..., e_n\}$ is a local orthonormal basis on *M*. Denote by $e_{(m+1)^*} = \xi$ and we will use the following convention on indices: $j = \overline{1,m}$; $j^* = j + m$; $a, b, c = \overline{1,n}$; $a^* = a + m$; $b^* = b + m$; $c^* = c + m$; $\lambda, \mu, \nu = \overline{n+1,m}$; $\lambda^* = \lambda + m$; $\alpha, \beta, \gamma, \delta = \overline{1,2m+1}$. If $B^* = \{\omega^1, ..., \omega^n, \omega^{n+1}, ..., \omega^m, ..., \omega^{1^*}, ..., \omega^{n^*}, ..., \omega^{(m+1)^*} = \eta\}$ is the dual basis of *B*, then, at the points of *M* we locally have

(5.1)
$$\omega^{\lambda} = \omega^{j^*} = \omega^{(m+1)^*} = 0.$$

On the other hand, if we consider ω_{α}^{β} the connection forms of $\widetilde{\nabla}$, expressed with respect to *B*, on the submanifold *M*, we obtain:

(5.2)
$$\omega_{(m+1)^*}^a = \beta \, \omega^a; \quad \omega_{(m+1)^*}^\lambda = \omega_{(m+1)^*}^{\lambda^*} = 0; \quad \omega_{a^*}^{(m+1)^*} = \alpha \, \omega^a;$$

(5.3)
$$\omega_a^{j^*} = \omega_j^{a^*}; \quad \omega_{a^*}^{j^*} = \omega_a^j; \quad \omega_{\lambda}^{j^*} = \omega_j^{\lambda^*}; \quad \omega_{\lambda^*}^{j^*} = \omega_{\lambda}^j.$$

The curvature forms of $\widetilde{M}(f_1, f_2, f_3)$ and M are, respectively,

(5.4)
$$\widetilde{\Omega}^{\alpha}_{\beta} = \frac{1}{2} \sum_{\alpha,\beta=1}^{2m+1} \widetilde{R}^{\alpha}_{\beta\gamma\delta} \omega^{\gamma} \wedge \omega^{\delta}; \quad \Omega^{a}_{b} = \frac{1}{2} \sum_{c,d=1}^{n} R^{a}_{bcd} \omega^{c} \wedge \omega^{d},$$

where $\widetilde{R}^{\alpha}_{\beta\gamma\delta}$ and R^{a}_{bcd} are the components with respect to *B* of the curvature tensors of $\widetilde{M}(f_1, f_2, f_3)$ and *M*, respectively. Then, at the points of M, we have

(5.5)
$$\Omega_b^a = \widetilde{\Omega}_b^a - \sum_{\lambda=n+1}^m \omega_\lambda^a \wedge \omega_b^\lambda - \sum_{j=1}^m \omega_{j^*}^a \wedge \omega_b^{j^*},$$

(5.6)
$$\Omega^{\lambda}_{\mu} = \widetilde{\Omega}^{\lambda}_{\mu} - \sum_{a=1}^{n} \omega^{\lambda}_{\alpha} \wedge \omega^{a}_{\mu} = \frac{1}{2} \sum_{a,b=1}^{n} R^{\lambda}_{\mu ab} \omega^{a} \wedge \omega^{b},$$

where $R^{\lambda}_{\mu ab}$ are the components of the curvature tensor of ∇^{\perp} . From (5.1), (5.2), (5.3) and from the general form of the structure equations, [14], we have the following structure equations of the integral submanifold M, under the form

(5.7)
$$d\omega^a = -\sum_{b=1}^n \omega_b^a; \quad d\omega_b^a = -\sum_{c=1}^n \omega_c^a \wedge \omega_b^c + \Omega_b^a,$$

(5.8)
$$d\omega_{\mu}^{\lambda} = -\sum_{\nu=n+1}^{m} \omega_{\nu}^{\lambda} \wedge \omega_{\mu}^{\nu} - \sum_{j=1}^{m} \omega_{j^{*}}^{\lambda} \wedge \omega_{\mu}^{j^{*}} + \Omega_{\mu}^{\lambda}$$

Let \vec{n} be a normal vector field to the integral submanifold M of the (α, β) trans-Sasakian generalized Sasakian space-form $\widetilde{M}(f_1, f_2, f_3)$. We consider 1-form $\alpha_{\vec{n}}$ defined in (4.1) and 1-form $\theta = \sum_{a=1}^{n} \omega_a^{a^*}$. We obtain, using similar technics as those in [21], the following results:

Proposition 5.4. The forms $\alpha_{\vec{n}}$ and θ have the following properties:

- (i) $\alpha_{\xi} = 0$ and $\theta = -n\alpha_{H}$, where *H* is the mean curvature vector of *M*
- (ii) $\alpha_{\vec{n}}$ is closed if and only if

$$g(\nabla_X^{\perp}\vec{n}, FY) = g(\nabla_Y^{\perp}\vec{n}, FX),$$

for all X, Y vector fields on M.

(iii) The exterior derivative of θ is given by

$$d\theta = \sum_{b,c=1}^{n} (\widetilde{S}_{bc^*} - \sum_{\lambda} R_{\lambda bc}^{\lambda^*} - \frac{1}{2} \sum_{a=1}^{n} \widetilde{R}_{abc}^{a^*}) \omega^b \wedge \omega^c,$$

where \widetilde{S} is the Ricci tensor of $\widetilde{M}(f_1, f_2, f_3)$.

The normal space $T_x^{\perp}M$ at each point x of M has the following orthogonal decomposition

(5.9)
$$T_x^{\perp}M = F(T_xM) \oplus \tau_x(M) \oplus \langle \xi_x \rangle,$$

where $\langle \xi_x \rangle$ is the normal subspace generated by ξ_x and $\tau_x(M)$ is the 2(m-n)-dimensional subspace of $T_x \widetilde{M}$, orthogonal to $F(T_x M) \oplus \langle \xi_x \rangle$. Then $\tau(M) = \bigcup_{x \in M} \tau_x(M)$ is the total space of the subbundle of $T^{\perp}(M)$ and $B_{\tau} = \{e_{n+1}, ..., e_m, e_{(n+1)^*}, ..., e_{m^*}\}$ is a local basis in the module $\Gamma(\tau)$ of its sections. We also denote this bundle by $\tau(M)$ and it is called *the maximal invariant normal bundle* of the integral submanifold M.

Proposition 5.5. Let *M* be an integral submanifold of the (α, β) trans-Sasakian generalized-space-form $\widetilde{M}(f_1, f_2, f_3)$. Then its maximal invariant normal bundle $\tau(M)$ has the following properties:

(i) $\tau(M)$ is invariant by *F*, that is, $F(T_x(M)) = \tau_x(M)$ for each point *x* of *M*.

(ii) $\tau(M)$ has a natural structure of complex vector bundle.

Proof.

- (i) Follows from (5.9).
- (ii) Let $B_{\tau} = \{e_{n+1}, ..., e_m, e_{(n+1)^*}, ..., e_{m^*}\}$ be an orthonormal basis on $\Gamma(\tau)$. For $\vec{n} \in \Gamma(\tau)$ we consider $\{n^{\lambda}, n^{\lambda^*}\}$ the components of the vector \vec{n} relative to the basis B_{τ} and $P : \tau(M) \to M$ be the natural projection. Then, using the classical notations, the vector charts

$$\Phi: P^{-1}(U) \to U \times \mathbf{C}^{m-n}, \Phi(\vec{n}_x) = (x, (n^{\lambda} + in^{\lambda^*})),$$

for $x \in U$, define on $\tau(M)$ a complex vector bundle structure.

Because $g(\nabla_X^{\perp} \vec{n}, \xi) = 0$, for all X vector fields on M and $\vec{n} \in \Gamma(\tau)$, the normal vector field $\nabla_X^{\perp} \vec{n}$ has the following decomposition

(5.10)
$$\nabla_X^{\perp} \vec{n} = B_{\vec{n}} X + \nabla_X^{\tau} \vec{n},$$

where $B_{\vec{n}}X \in \Gamma(FTM)$ and $\nabla_X^{\tau}\vec{n} \in \Gamma(\tau)$. Moreover, the maps $B : \Gamma(\tau) \times \chi(M) \to \Gamma(FTM)$ and $\nabla^{\tau} : \chi(M) \times \Gamma(\tau) \to \Gamma(\tau)$ have the following properties:

Proposition 5.6.

- (i) ∇^{τ} is an almost complex connection on the maximal invariant normal bundle of the integral submanifold *M*, that is, $(\nabla_x^{\tau} F)\vec{n} = 0$.
- (ii) $B_{\vec{n}}X = FA_{F\vec{n}}X$, for all $X \in \chi(M)$ and $\vec{n} \in \Gamma(\tau)$.

As a complex vector bundle, the basic characteristic classes of the maximal invariant normal bundle $\Gamma(\tau)$ are the *Chern classes* $[\gamma_k(\tau)]$, represented by Chern forms

(5.11)
$$\gamma_k = \frac{i^{\kappa}}{(2\pi)^k k!} \delta^{\mu_1 \dots \mu_k}_{\lambda_1 \dots \lambda_k} \Omega^{\tau \lambda_1}_{\mu_1} \wedge \dots \wedge \Omega^{\tau \lambda_k}_{\mu_k},$$

where $\Omega_{\mu}^{\tau\lambda}$ are the curvature forms of ∇^{τ} and $\delta_{\lambda_1...\lambda_k}^{\mu_1...\mu_k}$ are the multiindex Kronecker symbol. $\gamma_k(\tau)$ is called *the kth normal Chern form* of the submanifold *M*. From a similar argument as that used in [21], we have the following

Theorem 5.1. The first normal Chern of an *n*-dimensional integral submanifold in the (α, β) trans-Sasakian generalized Sasakian space-form $\widetilde{M}(f_1, f_2, f_3)$ of dimension 2m + 1, m > n, is given by

(5.12)
$$\gamma_1(\tau) = \frac{1}{2\pi} \sum_{\lambda=n+1}^m \Omega_{\lambda}^{\lambda^*}$$

Theorem 5.2. Let *M* be an integral submanifold of the (α, β) trans-Sasakian generalized Sasakian space-form $\widetilde{M}(f_1, f_2, f_3)$. If the mean curvature vector of *M* is parallel, then its first normal Chern form $\gamma_1(\tau)$ is zero.

Proof. From (2.4) we have $\widetilde{R}_{abc}^{a^*} = 0$ and $\widetilde{S}_{bc^*} = 0$. Then, taking into account Proposition 5.4 and Theorem 5.1 we obtain the result.

Proposition 5.7. Let *M* be a totally umbilical integral submanifold of the (α, β) trans-Sasakian generalized Sasakian space-form $\widetilde{M}(f_1, f_2, f_3)$. If *M* is parallel, then its first normal Chern form $\gamma_1(\tau)$ is zero. *Proof.* Because *M* is totally umbilical, we have h(X,Y) = g(X,Y)H and from (2.7) we obtain that the mean curvature vector *H* of *M* is parallel. Then we apply Theorem 5.2.

References

- P. Alegre, D. E. Blair and A. Carriazo, Generalized Sasakian-space-forms, *Israel J. Math.* 141 (2004), 157– 183.
- [2] P. Alegre and A. Carriazo, Structures on generalized Sasakian-space-forms, *Differential Geom. Appl.* 26 (2008), no. 6, 656–666.
- [3] A. Carriazo, On generalized Sasakian-space-forms, in Proceedings of the Ninth International Workshop on Differential Geometry, 31–39, Kyungpook Nat. Univ., Taegu, 2005.
- [4] P. Alegre and A. Carriazo, Submanifolds of generalized Sasakian space forms, *Taiwanese J. Math.* 13 (2009), no. 3, 923–941.
- [5] P. Alegre and A. Carriazo, Generalized Sasakian space forms and conformal changes of the metric, *Results Math.* 59 (2011), no. 3–4, 485–493.
- [6] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Vol. 509, Springer, Berlin, 1976.
- [7] J. L. Cabrerizo, A. Carriazo, L. M. Fernández and M. Fernández, Slant submanifolds in Sasakian manifolds, *Glasg. Math. J.* 42 (2000), no. 1, 125–138.
- [8] J. L. Cabrerizo, A. Carriazo, L. M. Fernández and M. Fernández, Semi-Slant Submanifolds of a Sasakian Manifold, Geom. Dedicata, 78(1999), 183–199.
- [9] B. Chen, Geometry of Submanifolds and its Applications, Sci. Univ. Tokyo, Tokyo, 1981.
- [10] B. Chen, Geometry of Slant Submanifolds, Katholieke Univ. Leuven, Louvain, 1990.
- [11] B. Chen, Cohomology of CR-submanifolds, Ann. Fac. Sci. Toulouse Math. (5) 3 (1981), no. 2, 167–172.
- [12] M. Cîrnu, Topological properties of semi-slant submanifolds in Sasaki manifolds, Bull. Transilv. Univ. Braşov Ser. III 1(50) (2008), 79–86.
- [13] M. Cîrnu, Stability of slant and semi-slant submanifolds in Sasaki manifolds, Acta Univ. Apulensis Math. Inform. No. 20 (2009), 63–78.
- [14] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol I, Interscience Publishers, a division of John Wiley & Sons, New York, 1963.
- [15] A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Sci. Math. Roumanie 39 (1996), 183–198.
- [16] J. C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. Pura Appl. (4) 162 (1992), 77-86.
- [17] J. A. Oubiña, New classes of almost contact metric structures, *Publ. Math. Debrecen* 32 (1985), no. 3-4, 187–193.
- [18] Y.-G. Oh, Second variation and stabilities of minimal Lagrangian submanifolds in Kähler manifolds, *Invent. Math.* 101 (1990), no. 2, 501–519.
- [19] G. Pitiş, Feuilletages et sous-variétés d'une classe de variétés de contact, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 4, 197–202.
- [20] G. Pitiş, Stability of integral submanifolds in a Sasakian manifold, Kyungpook Math. J. 41 (2001), no. 2, 381–392.
- [21] G. Pitiş, Chern classes of integral submanifolds of some contact manifolds, Int. J. Math. Math. Sci. 32 (2002), no. 8, 481–490.
- [22] B. L. Reinhart, *Differential Geometry of Foliations*, Ergebnisse der Mathematik und ihrer Grenzgebiete, 99, Springer, Berlin, 1983.