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Abstract. In this paper we study the geometry of distributions of semi-slant submanifolds
of (α,β ) trans-Sasakian manifolds, some problems concerning the stability of slant subman-
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class for integral submanifolds of (α,β ) trans-Sasakian generalized Sasakian space-forms.

2010 Mathematics Subject Classification: 53C25, 53D15, 53C40

Keywords and phrases: Trans-Sasakian manifold, semi-slant submanifold, generalized Sasakian
space-form, Chern class, Bott connection.

1. Introduction

The geometry of distributions of slant and semi-slant submanifolds was studied by Cabrerizo,
Carriazo, Fernández and Fernández [7, 8] in the case of K-contact and Sasakian manifolds.
In this paper we study the geometry of distributions for semi-slant submanifolds of (α,β )
trans-Sasakian manifolds. We obtain some results for cohomology groups and study re-
markable forms associated to the Bott connection for semi-slant submanifolds in (α,β )
trans-Sasakian manifolds. Ours results generalize those in [20] and [13]. Secondly, we
study some aspects concerning variational problems for slant submanifolds in generalized
Sasakian space-forms. Finally, studying the structure equations for integral submanifolds of
(α,β ) trans-Sasakian generalized Sasakian space-forms, we find certain conditions so that
the first normal Chern class be trivial.

2. Preliminaries

Let M̃ be an almost contact manifold, C∞-differentiable with dimension 2m+1. Let (F,ξ ,η ,g)
be its almost contact structure, where F is a tensor field of type (1,1), ξ is the Reeb vec-
tor field, η is a 1-form and g is a Riemannian metric on M̃, all these tensors satisfying the
following conditions:

(2.1) F2 =−I +η⊗ξ ; η(ξ ) = 1; g(FX ,FY ) = g(X ,Y )−η(X)η(Y ),
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for all X ,Y ∈ χ(M̃). Here χ(M̃) is the set of all vector fields on M̃. We denote by Ω the
fundamental (or the Sasaki) 2-form of M̃, given by Ω(X ,Y ) = g(X ,FY ).

In [17], Oubina introduced the notion of a trans-Sasakian manifold. An almost contact
metric manifold M̃ is a trans-Sasakian manifold if there exist two functions α and β on M̃
such that

(2.2) (∇̃X F)Y = α[g(X ,Y )ξ −η(Y )X ]+β [g(FX ,Y )ξ −η(Y )FX ],

for any X ,Y ∈ χ(M̃). In particular, from (2.2) it is easy to see that the following equations
hold on a trans-Sasakian manifold

(2.3) ∇̃X ξ =−αFX +β [X−η(X)ξ ]; dη = αΩ.

Moreover, if β = 0 then M̃ is to said to be an α-Sasakian manifold. Sasakian manifolds ap-
pear as examples of α-Sasakian manifolds, with α = 1, and Kenmotsu manifolds appear as
examples of β -Kenmotsu manifolds, with β = 1. Another important kind of trans-Sasakian
manifolds is that of cosymplectic manifolds, obtained for α = β = 0. Marrero showed in
[16] that a trans-Sasakian manifold of dimension greater than or equal to 5 is either α-
Sasakian, β -Kenmotsu or cosymplectic manifold.

Given an almost contact metric manifold M̃, we say that M̃ is a generalized Sasakian-
space-form, [1], if there exit three functions f1, f2, f3 on M̃ such that

R̃(X ,Y )Z = f1[g(Y,Z)X−g(X ,Z)Y ]

+ f2[g(X ,FZ)FY −g(Y,FZ)FX +2g(X ,FY )FZ]

+ f3[η(X)η(Z)Y −η(Y )η(Z)X

+g(X ,Z)η(Y )ξ −g(Y,Z)η(X)ξ ],(2.4)

for any vector fields X ,Y,Z on M̃, where R̃ denotes the curvature tensor of M̃. In such a
case, we will write M̃( f1, f2, f3).

We also observe that this kind of manifold appears as a natural generalization of the
well known Sasakian space-forms M̃(c), which can be obtained as particular cases of gen-
eralized Sasakian space-forms, by taking f1 = (c + 3)/4 and f2 = f3 = (c− 1)/4 and as a
generalization of Kenmotsu space-forms, by taking f1 = (c−3)/4 and f2 = f3 = (c+1)/4.

Let M be a submanifold of the Riemannian manifold M̃, ∇ the Levi-Civita connection
induced by ∇̃ on M, ∇⊥ the connection in the normal bundle T⊥(M), h the second funda-
mental form of M and A~n the Weingarten operator. We recall the Gauss-Weingarten formulas
on M

(2.5) ∇̃XY = ∇XY +h(X ,Y ); ∇̃X~n =−A~nX +∇
⊥
X~n,

for all X ,Y ∈ χ(M) and~n ∈ χ⊥(M).
A submanifold M of an almost contact metric manifold M̃ is totally contact geodesic,

[3], if

(2.6) h(X ,Y ) = η(X)h(Y,ξ )+η(Y )h(X ,ξ ),

for all X ,Y vector fields on M. From (2.6) it results that on a totally contact geodesic
submanifold M, h(ξ ,ξ ) = 0.

A submanifold M of an almost contact metric manifold M̃ is parallel if

(2.7) (∇̃X h)(Y,Z) = 0,
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where (∇̃X h)(Y,Z) = ∇⊥X (h(Y,Z))−h(∇XY,Z)−h(Y,∇X Z) and X ,Y,Z are vector fields on
M.

An integral submanifold M of the contact distribution D = kerη is an integral manifold
and such a submanifold is characterized by any of

(1) η = 0, dη = 0;
(2) FX ∈ χ⊥(M) for all X in χ(M).

The submanifold M of M̃, tangent to ξ , is a slant submanifold, [15], if

θ = ∠(FXx,TxM) = constant,

for all x ∈M, Xx ∈ TxM, Xx non-collinear with ξ . Taking into account the definition of the
angle between a vector and a subspace in the Euclidean space, this is equivalent with

cosθ =
g(FX ,Y )
‖FX‖‖Y‖

= constant,

for all Y ∈ χ(M), X ∈ D, X , Y nowhere zero, where D is the orthogonal distribution of ξ in
χ(M). In this case, θ is the slant angle of the submanifold M and the distribution D is the
slant distribution of M.

The submanifold M of a Riemannian manifold M̃ is a semi-slant submanifold, [8], if
there are D1, D2 two distributions on M so that

(i) χ(M) = D1⊕D2⊕〈ξ 〉;
(ii) D1 is invariant, i.e. FD1 = D1;

(iii) D2 is slant with the slant angle θ .

For M a slant or semi-slant submanifold in a Riemannian manifold M̃, we consider the
decompositions

(2.8) FX = T X +NX ; F~n = t~n+n~n,

for all X ∈ χ(M), ~n ∈ χ⊥(M), where T X is the tangent component and NX the normal
component of FX and t~n is the tangent component and n~n is the normal component of F~n
in χ(M̃).

Moreover, if M is a semi-slant submanifold of a Riemannian manifold M̃, then we con-
sider

(2.9) X = P1X +P2X +η(X)ξ ,

for all X ∈ χ(M), where P1 is the projection on D1 and P2 is the projection on D2.

We recall some known results for slant and semi-slant submanifolds, [7, 8]:

Proposition 2.1. Let M be a submanifold of the almost contact manifold M̃ tangent to the
Reeb vector field ξ ∈ χ(M). Then M is slant if and only if there is λ ∈ [0,1] so that

T 2 =−λ (I−η⊗ξ ).

Moreover, in this case, the slant angle θ of M satisfies the condition λ = cos2 θ .

Proposition 2.2. Let M be a slant submanifold in an almost contact manifold M̃ with the
slant angle θ . Then

g(T X ,TY ) = cos2
θ [g(X ,Y )−η(X)η(Y )]
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and
g(NX ,NY ) = sin2

θ [g(X ,Y )−η(X)η(Y )],

for all X ,Y ∈ χ(M).

Proposition 2.3. Let M be a semi-slant submanifold of the almost contact manifold M̃ with
the slant angle θ . Then

g(T X ,T P2Y ) = cos2
θg(X ,P2Y ); g(NX ,NP2Y ) = sin2

θg(X ,P2Y ),

for all X ,Y ∈ χ(M).

3. Geometry of distributions on semi-slant submanifolds in (α,β ) trans-Sasakian man-
ifolds

Let M be a semi-slant submanifold of the (α,β ) trans-Sasakian manifold M̃. Denote by
Ti = Pi ◦T , i = 1,2 and taking into account (2.9) and the fact that D1 is invariant we have

FP1X = T P1X ; NP1X = 0; T P2X ∈ D2,

for all X vector fields on M. Using (2.2), (2.5), the definition of slant angle and these last
equalities, we have

h(X ,FP1Y )+h(X ,T P2Y )+∇
⊥
X (NP2Y ) =NP2∇XY +[Fh(X ,Y )]⊥

−βη(Y )NP2X ,(3.1)

where X,Y are vector fields on M, [Fh(X ,Y )]⊥ is the normal component of Fh(X ,Y ) in
χ(M̃).

Now, let M be a p-dimensional semi-slant submanifold of (α,β ) trans-Sasakian manifold
M̃ so that

(∇X T )Y =α[g(P1X ,Y )ξ −η(Y )P1X ]

+α cos2
θ [g(P2X ,Y )ξ −η(Y )P2X ]

+β [g(T X ,Y )ξ −η(Y )T X ],(3.2)

for all X ,Y vector fields on M. Because D1 is invariant, using (2.2) and (2.5) it results that

(∇X T )Y =α[g(X ,Y )ξ −η(Y )X ]+β [g(T X ,Y )ξ −η(Y )T X ]

+ANP2Y X +[Fh(X ,Y )]T .

Taking into account (3.2) we obtain

ANP2Y X =−[Fh(X ,Y )]T −α sin2
θ [g(P2X ,Y )ξ −η(Y )P2X ],

P1ANP2Y X = 0, for all X ,Y ∈ χ(M) and [Fh(X ,Y )]T = α sin2
θη(Y )P2X , for all X ∈ χ(M),

Y ∈ D1⊕〈ξ 〉. From these last relations, (3.1) and the fact that T P2X ∈ D2, we have that
g(NP2∇XY,Fh(X ,Y )) = g(ANP2∇XY X ,Y )
= 0 and then

(3.3) ∇XY ∈ D1⊕〈ξ 〉; ∇X Z ∈ D2⊕〈ξ 〉,

for all X ∈ χ(M), Y ∈ D1 and Z ∈ D2.
We also have the following results:
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Proposition 3.1. Let M be a p-dimensional semi-slant submanifold of a 2m+1-dimensional
α-Sasakian manifold or β -Kenmotsu manifold M̃, with m≥ 2 so that

(∇X T )Y = α[g(P1X ,Y )−η(Y )P1X ]+α cos2
θ [g(P1X ,Y )ξ −η(Y )P2X ]

in α-Sasakian case and

(∇X T )Y = β [g(T X ,Y )ξ −η(Y )T X ]

in β -Kenmotsu case.
Then the invariant distribution D1 is minimal for α-Sasakian case and is not minimal for

β -Kenmotsu case.

Proof. We consider {Xi,FXi}, i = 1, ...,q, an orthonormal basis of the invariant distribution
D1 so that 2q < p. The mean curvature vector of the distribution D1 is

HD1 =
1

2q

q

∑
i=1

(∇XiXi +∇FXiFXi)⊥,

where (∇XiXi +∇FXiFXi)⊥ represents the orthogonal complement of (∇XiXi +∇FXiFXi) in
D2⊕〈ξ 〉. For α-Sasakian case we obtain that g(∇XiXi,Z) = g(∇FXiFXi,Z) = g(∇XiXi,ξ )
= g(∇FXiFXi,ξ ) = 0 and for β -Kenmotsu case g(∇XiXi,ξ ) = g(∇FXiFXiξ ) =−β and g(∇Xi

Xi,Z) = g(∇FXiFXi,Z) = 0, where Z ∈ D2.

Denote by
o
∇: D2×D1→ D1 the Bott connection defined by

o
∇X U = P1([X ,U ]),

for all X ∈ D2 and U ∈ D1. Let SD1 : D1×D1→ D2 be defined by

SD1 = P2(∇XY +∇Y X),

for X ,Y ∈ D1. If SD1 = 0 then D1 is a totally geodesic plane field, [22]. Let {ω1, ...,ω2q}
be the dual basis of the local orthonormal basis {X1, ...,Xq,FX1 = Xq+1, ...,FXq = X2q} of
D1 and we extend it to whole χ(M). This means that

ω
i(X j) = δ

i
j; ω

i
/D2

= 0; ω
i(ξ ) = 0, i, j = 1,2q.

We obtain the global defined 2q-form ω = ω1 ∧ ...∧ω2q and it is a volume form of the
distribution D1.

Theorem 3.1. Let M be a p-dimensional semi-slant submanifold of the (α,β ) trans-Sasakian
manifold M̃. Then

(i) the metric g of submanifold M is parallel with
o
∇ if and only if D1 is a totally

geodesic plane field.

(ii) if M is compact and (3.2) holds for all X ,Y ∈ χ(M), then ω is parallel with
o
∇.

Proof.

(i) We consider X ∈ D2 and Y,Z ∈ D1. Taking into account the definition of
o
∇, the

properties of Levi-Civita connection, we obtain

(
o
∇X g)(Y,Z) =−g(X ,SD1(Y,Z)),

for all X ∈ D2,Y,Z ∈ D1 and then i).
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(ii) We have to prove that (
o
∇X ω)(X1, ...,X2q)= 0 for all X ∈D2. We have ω(X1,X2, ..,X2q)

= 1. From the definitions of
o
∇X ω , 1-forms ω i and (3.3) we have that (

0
∇X ω)(X1, ...,

X2q) = 0.

We denote by
{

X2q+1, ...,Xp−1
}

a local orthonormal basis in D2 with its dual basis{
θ 2q+1, ...,θ p−1

}
so that{

X1, ...,Xq,Xq+1 = FX1, ...,X2q = FXq,X2q+1, ...,Xp−1,ξ
}

is a local orthonormal basis in χ(M). Let θ = θ 2q+1∧ ...∧θ p−1∧θ p

be a (p− 2q)-form, where θ p = η . We extend θ α , α = 2q+1, p−1 at χ(M) so that
θ α(Xβ ) = δ α

β
; θ α(ξ ) = 0; θ α

/D1
= 0, α,β = 2q+1, p−1.

Proposition 3.2. Let M be a p-dimensional semi-slant submanifold of the (α,β ) trans-
Sasakian manifold M̃ so that (3.2) holds for all X ,Y vector fields on M. Then

(i) the 2q-form ω = ω1∧ ...∧ω2q is closed;
(ii) θ is closed;

(iii) ∗ω = θ .

Proof.
(i) We have dω = 0 if and only if

(dω)(Y1,X1, ...,X2q) = 0; (dω)(Y1,Y2,X1, ...,X2q−1) = 0

(dω)(ξ ,X1, ...,X2q) = 0; (dω)(ξ ,Y1,X1, ...,X2q−1) = 0,

for all Y1,Y2 ∈ D2. But these equalities follow by a straightforward computation
using the definition of dω , ω i, the property of Levi-Civita connection and (3.3).

(ii) Now, let
{

Y2q+1,Y2q+2, ...,Yp−1,Yp = ξ
}

be a local orthonormal frame in D2⊕〈ξ 〉.
Then dθ = 0 if and only if

(dθ)(X1,Y2q+1, ...,Yp) = 0; (dθ)(X1,X2,Y2q+1, ...,Yp−1) = 0,

for all X1,X2 ∈ D1.
These two last equalities result from an analogous computation as that used at i),
using the definitions of θ , θ α , the property of Levi-Civita connection.

(iii) Results from the definition and the properties of the Hodge operator *.

Theorem 3.2. Let M be a compact semi-slant submanifold of the (α,β ) trans-Sasakian
manifold M̃ so that (3.2) holds for all X ,Y vector fields on M. Then

b2k(M)≥ 1,

where k = 1,q, dimD1 = 2q and b2k(M) is the 2kth Betti number of the submanifold M.

Proof. From the definition of Ω we consider ΩM(X ,Y ) = g(X ,FY ), for all X ,Y ∈ χ(M). It
is easy to see that

Ω
r
M(X1, ...,Xr) = (−1)rr!; Ω

r
M = 0

in other cases, where r = 1,q, Ωr
M = ΩM ∧ ...∧ΩM and ∧ is the exterior product. More-

over, Ω
q
M(X1, ...,Xq,FX1, ...,FXq) = (−1)qq!ω and Ω

q
M = 0, in other cases. From these last

equalities, Proposition 3.1, the properties of the operators δ , * and the Hodge-de Rham
decomposition, we have b2q(M)≥ 1.
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4. Stability of slant submanifolds in generalized Sasakian space-forms

If M is a slant submanifold of the generalized Sasakian space-form M̃( f1, f2, f3), with D the
slant distribution with slant angle θ , then we consider {e1, ...,en−1} an orthonormal basis in
D and

en+1 =
Ne1

sinθ
, ...,e2n−1 =

Nen−1

sinθ
.

Taking into account Proposition 2.2, we deduce that {en+1, ...,e2n−1} are orthonormal vec-
tors. Let ΓNFD be the subspace spanned by {en+1, ...,e2n−1} and Γ(τ(M)) the orthogonal
complement of ΓNFD in χ⊥(M), so that
{e2n, ...,e2m+1} is an orthonormal basis in Γ(τ(M)). We consider the dual 1-form to the
vector~n ∈ χ⊥(M), defined by

(4.1) α~n : χ(M)→ F(M), α~n(X) = g(F~n,X),

for all X ∈ χ(M) and we denote by L =
{
~n ∈ χ⊥(M) : dα~n = 0

}
the set of Legendre varia-

tions, by E =
{
~n ∈ χ⊥(M) : (∃) f ∈ F(M) : α~n = d f

}
the set of Hamiltonian variations and

by H =
{
~n ∈ χ⊥(M) : dα~n = δα~n = 0

}
the set of harmonic variations.

The first variation of the volume form of M, relative to the normal vector field~n (that is
the value at t = 0 of the first derivative of V (~n)) can be expressed under the form [9]

(4.2) V
′
(~n) =−n

∫
M

g(~n,H)dv,

where H is the mean curvature vector field of M. Then M is
(i) l-minimal if V ′(~n) = 0 for all~n ∈ L

(ii) e-minimal if V ′(~n) = 0 for all~n ∈ E
(iii) h-minimal if V ′(~n) = 0 for all~n ∈H.

We also observe that:
(a) If the slant submanifold M is minimal, then M is l,e and h-minimal.
(b) If the slant submanifold M is e-minimal or h-minimal, then M is l-minimal.

Using similar arguments like those in [20], we have the following results:

Proposition 4.1. Let M be a slant submanifold with slant angle θ of the generalized Sasakian
space-form M̃( f1, f2, f3). Then:

(i) Γ(τ(M))⊂ L;
(ii) H⊂ L;

(iii) E⊂ L;
(iv) F(grad f )|ΓNFD ⊂ E.

Theorem 4.1. Let M be a compact slant submanifold of the generalized Sasakian space-
form M̃( f1, f2, f3). Then:

(i) M is l-minimal if and only if H ∈ ΓNFD and αH = ∑µ fµ Φµ , where fµ ∈ F(M)
and Φµ are co-exact 1-forms.

(ii) M is e-minimal if and only if H ∈ ΓNFD and αH is co-closed.
(iii) M is h-minimal if and only if H ∈ ΓNFD and αH is the sum of an exact 1-form and

a co-exact 1-form.

Theorem 4.2. Let M be a compact slant submanifold of the generalized Sasakian space-
form M̃( f1, f2, f3). Then
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(i) M is l-minimal if and only if M is minimal
(ii) M is e-minimal if and only if H is an harmonic variation.

(iii) M is h-minimal if and only if H is a hamiltonian variation.

Let V ′′(~n) be the second variation of the volume form of a n-dimensional slant subman-
ifold M in the (α,β ) generalized Sasakian-space-form M̃( f1, f2, f3). By [9] this is given
by

V ”(~n) =
∫

M

{∥∥∥∇
⊥~n
∥∥∥2
−‖A~n‖2

}
dv

+
∫

M

{
n2g2(H,~n)−ng(H, ∇̃~n~n)−

n

∑
a=1

R̃(~n,ea,~n,ea)

}
dv(4.3)

where~n ∈ χ⊥(M) and R̃ is the Riemann Christoffel tensor of the manifold M̃.
Then:

(i) M is stable if V ”(~n)≥ 0 for all~n ∈ χ⊥(M);
(ii) M is l-stable if V ”(~n)≥ 0 for all~n ∈ L;

(iii) M is e-stable if V ”(~n)≥ 0 for all~n ∈ E;
(iv) M is h-stable if V ”(~n)≥ 0 for all~n ∈H.

Proposition 4.2. Let M be a n-dimensional slant submanifold with θ -the slant angle in the
generalized Sasakian-space form M̃( f1, f2, f3). If M is tangent to the Reeb vector field ξ

then

(4.4)
n

∑
a=1

R̃(~n,ea,~n,ea) = n f1− f3,

for all~n ∈ Γ(τ(M)).

Proof. From (2.4) and the fact that

‖projΓNFD~n‖
2 =

1
sin2

θ

n−1

∑
a=1

g2(~n,Nea)

we have

(4.5)
n

∑
a=1

R̃(~n,ea,~n,ea) = n f1− f3 +3 f2 sin2
θ ‖projΓNFD~n‖

2 ,

where ~n is a normal vector field on M and projΓNFD~n is the projection of ~n on ΓNFD and
then (4.4)

Proposition 4.3. Let M be a n-dimensional minimal slant totally contact geodesic subman-
ifold with θ -the slant angle in the generalized Sasakian-space-form M̃( f1, f2, f3) so that M
is tangent to the Reeb vector field ξ and

n f1− f3 +3 f3 sin2
θ ‖pro jΓNFD~n‖2 ≤ 0,

for all~n normal vector fields on M. If~n is parallel with the Levi-Civita connection ∇̃, then

V ”(~n)≥ 0.
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Proof. From (2.6), the properties of the Levi-Civita connection and the fact that~n is parallel
with respect the Levi-Civita connection ∇̃, we obtain that

‖A~n‖2 = 4
n

∑
b=1

g2(ξ , ∇̃eb~n) = 0.

From (4.3), the fact that M is minimal we have V ′′(~n)≥ 0.

Example 4.1. Let M̃ = R5 be with local coordinates (x1,x2,y1,y2,z) and the Sasaki struc-
ture given by

η =
1
2
(dz− y1dx1− y2dx2); ξ = 2

∂

∂ z
;

g = η⊗η +
1
4
(dx1⊗dx1 +dx2⊗dx2 +dy1⊗dy1 +dy2⊗dy2);

and F : χ(R5)→ χ(R5) a tensor field of type (1,1) so that

F(
∂

∂x1 ) =− ∂

∂y1 ; F(
∂

∂x2 ) =− ∂

∂y2 ; F(
∂

∂ z
) = 0;

F(
∂

∂y1 ) =
∂

∂x1 + y1 ∂

∂ z
; F(

∂

∂y2 ) =
∂

∂x2 + y2 ∂

∂ z
,

where
{

∂

∂x1 , ∂

∂x2 , ∂

∂y1 , ∂

∂y2 , ∂

∂ z

}
is a basis of χ(R5). We observe that M̃ is a generalized

Sasakian space-form with f2 = f3 =−1 and f1 = 0.
For θ ∈ [0, π

2 ] we consider the submanifold [3]

M : x(u,v, t) = (2ucosθ ,2usinθ ,2v,0,2t).

From [3] and [13], it results that M is a minimal totally contact geodesic slant submanifold
with the slant angle θ and slant distribution D, with the orthonormal basis{

~v1 =
∂

∂v
;~v2 =

∂

∂u
+2vcosθ

∂

∂ t

}
and {

~n1 = 2
∂

∂y2 ;~n2 = 2sinθ
∂

∂x1 −2cosθ
∂

∂x2 +4vsinθ
∂

∂ z

}
the orthonormal basis in χ⊥(M),~n1,~n2 in ΓNFD. We also have
∑

2
a=1 R̃(~n1,ea,~n1,ea) = 1−3sin2

θ and V ′′(~n1)≥ 0, for θ ∈ [0,arcsin 1√
3
].

5. Chern classes of integral submanifolds of (α,β ) trans-Sasakian generalized space-
forms

In this section we give the structure equations of an integral submanifold M in an (α,β )
trans-Sasakian generalized Sasakian space-form M̃( f1, f2, f3) and we study the geometry of
the maximal invariant normal subbundle τ(M). We also prove that the first Chern class of
τ(M) is zero under certain conditions.

Taking into account Marrero’s classification of the (α,β ) trans-Sasakian manifolds with
dimensions greater or equal with 5, [16], we recall some results obtained in [2] about this
kind of manifolds.
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Proposition 5.1. Let M̃( f1, f2, f3) be an α-Sasakian generalized-space-form. Then α does
not depend on the direction of ξ and the following equation holds

f1− f3 = α
2.

Moreover, if M is connected or dimM̃( f1, f2, f3)≥ 5 then α is constant, respectively, f1, f2, f3
are constant, related as follows

(i) If α = 0, then f1 = f2 = f3 and M is a cosymplectic manifold of constant F-
sectional curvature.

(ii) If α 6= 0, then f1−α = f2 = f3.

Proposition 5.2. Let M̃( f1, f2, f3) be a β -Kenmotsu generalized space-form. Then β does
not depend on the direction of ξ and the following equation holds

f1− f3 +ξ (β )+β
2 = 0.

Moreover, if dimM̃( f1, f2, f3) ≥ 5 then f1, f2, f3 depend only on the direction of ξ and the
following equations hold

ξ ( f1)+2β f3 = 0; ξ ( f2)+2β f2 = 0.

Proposition 5.3. Let M be a 3-dimensional (α,β ) trans-Sasakian manifold such that α,β

depend only the direction of ξ . Then M is a generalized Sasakian space-form M̃( f1, f2, f3)
with functions

f1 = 3ρ−2(α2−ξ (β )−β
2); f2 = 0; f3 = 3ρ−3(α2−ξ (β )−β

2),

where ρ is the scalar curvature of M.

Now, let M be a n-dimensional integral submanifold of an (α,β ) trans-Sasakian general-
ized Sasakian space-form M̃( f1, f2, f3), with dimension 2m+1. From the properties of the
integral submanifolds, [6], we have n≤m and we consider on M̃( f1, f2. f3) a local orthonor-
mal basis B =

{
e1, ...,en,en+1, ..,em,e1∗ = Fe1, ...,en∗ = Fen,e(n+1)∗ = Fen+1, ...,em∗ = Fem ,

ξ}, so that {e1, ...,en} is a local orthonormal basis on M. Denote by e(m+1)∗ = ξ and we
will use the following convention on indices: j = 1,m; j∗ = j+m; a,b,c = 1,n; a∗ = a+m;
b∗ = b+m; c∗ = c+m; λ ,µ,ν = n+1,m; λ ∗ = λ +m; α,β ,γ,δ = 1,2m+1.
If B∗ =

{
ω1, ...,ωn,ωn+1, ...,ωm, ...,ω1∗ , ...,ωn∗ , ...,ω(n+1)∗ , ...,ωm∗ ,ω(m+1)∗ = η

}
is the

dual basis of B, then, at the points of M we locally have

(5.1) ω
λ = ω

j∗ = ω
(m+1)∗ = 0.

On the other hand, if we consider ω
β

α the connection forms of ∇̃, expressed with respect to
B, on the submanifold M, we obtain:

(5.2) ω
a
(m+1)∗ = βω

a; ω
λ

(m+1)∗ = ω
λ ∗
(m+1)∗ = 0; ω

(m+1)∗
a∗ = αω

a;

(5.3) ω
j∗

a = ω
a∗
j ; ω

j∗
a∗ = ω

j
a ; ω

j∗

λ
= ω

λ ∗
j ; ω

j∗

λ ∗ = ω
j

λ
.

The curvature forms of M̃( f1, f2, f3) and M are, respectively,

(5.4) Ω̃
α

β
=

1
2

2m+1

∑
α,β=1

R̃α

βγδ
ω

γ ∧ω
δ ; Ω

a
b =

1
2

n

∑
c,d=1

Ra
bcdω

c∧ω
d ,
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where R̃α

βγδ
and Ra

bcd are the components with respect to B of the curvature tensors of

M̃( f1, f2, f3) and M, respectively. Then, at the points of M, we have

(5.5) Ω
a
b = Ω̃

a
b−

m

∑
λ=n+1

ω
a
λ
∧ω

λ
b −

m

∑
j=1

ω
a
j∗ ∧ω

j∗
b ,

(5.6) Ω
λ
µ = Ω̃

λ
µ −

n

∑
a=1

ω
λ
α ∧ω

a
µ =

1
2

n

∑
a,b=1

Rλ
µabω

a∧ω
b,

where Rλ
µab are the components of the curvature tensor of ∇⊥. From (5.1), (5.2), (5.3)

and from the general form of the structure equations, [14], we have the following structure
equations of the integral submanifold M, under the form

(5.7) dω
a =−

n

∑
b=1

ω
a
b ; dω

a
b =−

n

∑
c=1

ω
a
c ∧ω

c
b +Ω

a
b,

(5.8) dω
λ
µ =−

m

∑
ν=n+1

ω
λ
ν ∧ω

ν
µ −

m

∑
j=1

ω
λ
j∗ ∧ω

j∗
µ +Ω

λ
µ .

Let~n be a normal vector field to the integral submanifold M of the (α,β ) trans-Sasakian
generalized Sasakian space-form M̃( f1, f2, f3). We consider 1-form α~n defined in (4.1) and
1-form θ = ∑

n
a=1 ωa∗

a . We obtain, using similar technics as those in [21], the following
results:

Proposition 5.4. The forms α~n and θ have the following properties:
(i) αξ = 0 and θ =−nαH , where H is the mean curvature vector of M

(ii) α~n is closed if and only if

g(∇⊥X~n,FY ) = g(∇⊥Y~n,FX),

for all X ,Y vector fields on M.
(iii) The exterior derivative of θ is given by

dθ =
n

∑
b,c=1

(S̃bc∗ −∑
λ

Rλ ∗
λbc−

1
2

n

∑
a=1

R̃a∗
abc)ω

b∧ω
c,

where S̃ is the Ricci tensor of M̃( f1, f2, f3).

The normal space T⊥x M at each point x of M has the following orthogonal decomposition

(5.9) T⊥x M = F(TxM)⊕ τx(M)⊕〈ξx〉,
where 〈ξx〉 is the normal subspace generated by ξx and τx(M) is the 2(m−n)-dimensional
subspace of TxM̃, orthogonal to F(TxM)⊕〈ξx〉. Then τ(M) = ∪x∈Mτx(M) is the total space
of the subbundle of T⊥(M) and Bτ =

{
en+1, ...,em,e(n+1)∗ , ...,em∗

}
is a local basis in the

module Γ(τ) of its sections. We also denote this bundle by τ(M) and it is called the maximal
invariant normal bundle of the integral submanifold M.

Proposition 5.5. Let M be an integral submanifold of the (α,β ) trans-Sasakian generalized-
space-form M̃( f1, f2, f3). Then its maximal invariant normal bundle τ(M) has the following
properties:

(i) τ(M) is invariant by F , that is, F(Tx(M)) = τx(M) for each point x of M.
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(ii) τ(M) has a natural structure of complex vector bundle.

Proof.
(i) Follows from (5.9).

(ii) Let Bτ =
{

en+1, ...,em,e(n+1)∗ , ...,em∗
}

be an orthonormal basis on Γ(τ). For ~n ∈
Γ(τ) we consider

{
nλ ,nλ ∗

}
the components of the vector~n relative to the basis Bτ

and P : τ(M)→ M be the natural projection. Then, using the classical notations,
the vector charts

Φ : P−1(U)→U×Cm−n,Φ(~nx) = (x,(nλ + inλ ∗)),

for x ∈U , define on τ(M) a complex vector bundle structure.
Because g(∇⊥X~n,ξ ) = 0, for all X vector fields on M and ~n ∈ Γ(τ), the normal vector

field ∇⊥X~n has the following decomposition

(5.10) ∇
⊥
X~n = B~nX +∇

τ
X~n,

where B~nX ∈ Γ(FT M) and ∇τ
X~n ∈ Γ(τ). Moreover, the maps B : Γ(τ)× χ(M)→ Γ(FT M)

and ∇τ : χ(M)×Γ(τ)→ Γ(τ) have the following properties:

Proposition 5.6.
(i) ∇τ is an almost complex connection on the maximal invariant normal bundle of the

integral submanifold M, that is , (∇τ
xF)~n = 0.

(ii) B~nX = FAF~nX , for all X ∈ χ(M) and~n ∈ Γ(τ).

As a complex vector bundle, the basic characteristic classes of the maximal invariant
normal bundle Γ(τ) are the Chern classes [γk(τ)], represented by Chern forms

(5.11) γk =
ik

(2π)kk!
δ

µ1....µk
λ1...λk

Ω
τλ1
µ1 ∧ ...∧Ω

τλk
µk ,

where Ωτλ
µ are the curvature forms of ∇τ and δ

µ1...µk
λ1...λk

are the multiindex Kronecker symbol.
γk(τ) is called the kth normal Chern form of the submanifold M. From a similar argument
as that used in [21], we have the following

Theorem 5.1. The first normal Chern of an n-dimensional integral submanifold in the
(α,β ) trans-Sasakian generalized Sasakian space-form M̃( f1, f2, f3) of dimension 2m +
1,m > n, is given by

(5.12) γ1(τ) =
1

2π

m

∑
λ=n+1

Ω
λ ∗
λ .

Theorem 5.2. Let M be an integral submanifold of the (α,β ) trans-Sasakian generalized
Sasakian space-form M̃( f1, f2, f3). If the mean curvature vector of M is parallel, then its
first normal Chern form γ1(τ) is zero.

Proof. From (2.4) we have R̃a∗
abc = 0 and S̃bc∗ = 0. Then, taking into account Proposition

5.4 and Theorem 5.1 we obtain the result.

Proposition 5.7. Let M be a totally umbilical integral submanifold of the (α,β ) trans-
Sasakian generalized Sasakian space-form M̃( f1, f2, f3). If M is parallel, then its first normal
Chern form γ1(τ) is zero.
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Proof. Because M is totally umbilical, we have h(X ,Y ) = g(X ,Y )H and from (2.7) we
obtain that the mean curvature vector H of M is parallel. Then we apply Theorem 5.2.
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