BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

Characterizations of Term-Rank Preservers over Boolean Matrices

KYUNG-TAE KANG AND SEOK-ZUN SONG

Department of Mathematics (and RIBS), Jeju National University, Jeju 690-756, Korea kangkt@jejunu.ac.kr, szsong@jejunu.ac.kr

Abstract. In this paper we obtain some characterizations of linear operators that preserve term rank of Boolean matrices. With certain conditions, we prove that for a linear operator T on the Boolean matrix space, T preserves term rank if and only if T preserves two consecutive term ranks if and only if T strongly preserves just one term rank.

2010 Mathematics Subject Classification: 15A86, 15A03, 15A33

Keywords and phrases: Boolean matrix, term rank, covering, linear operator.

1. Introduction

Let $\mathbb{M}_{m,n}$ be the set of all $m \times n$ matrices with entries in the *Boolean algebra* $\mathbb{B} = \{0, 1\}$. If m = n, we will use the notation \mathbb{M}_n instead of $\mathbb{M}_{n,n}$. Arithmetic in \mathbb{B} follows the usual rules except that 1 + 1 = 1. The usual definitions for adding and multiplying matrices apply to Boolean matrices as well.

The *term rank* of a matrix X in $\mathbb{M}_{m,n}$ is the least number of lines (rows and columns) needed to include all the nonzero entries in X, and denoted by t(X). Term ranks play a central role in the combinatorial matrix theory and have many applications in network and graph theory (see [4]).

An operator $T : \mathbb{M}_{m,n} \to \mathbb{M}_{m,n}$ is called *linear* if T(aX + bY) = aT(X) + bT(Y) for all $X, Y \in \mathbb{M}_{m,n}$ and for all $a, b \in \mathbb{B}$. Let T be a linear operator on $\mathbb{M}_{m,n}$. If f is a function defined on $\mathbb{M}_{m,n}$, then T preserves f if f(T(X)) = f(X) for all X. There are many papers on linear operators that preserve matrix functions over \mathbb{B} ([1]–[5] and therein). But there are few papers on term-rank preservers of Boolean matrices.

Hereafter, unless otherwise specified, we will assume that $2 \le m \le n$. It follows that $1 \le t(X) \le m$ for all nonzero X in $\mathbb{M}_{m,n}$.

For a linear operator *T* on $\mathbb{M}_{m,n}$, we say that *T*

- (1) preserves term rank k if t(T(X)) = k whenever t(X) = k for all X;
- (2) strongly preserves term rank k if t(T(X)) = k if and only if t(X) = k for all X;
- (3) *preserves term rank* if *T* preserves term rank *k* for every $k \le m$.

Communicated by Rosihan M. Ali, Dato'.

Received: May 12, 2010; Revised: July 20, 2010.

In [3], Beasley and Pullman have studied linear operators on $\mathbb{M}_{m,n}$ that preserve term rank, and obtained the following main results:

Theorem 1.1. For a linear operator T on $\mathbb{M}_{m,n}$, T preserves term rank if and only if T preserves term ranks 1 and 2.

Theorem 1.2. For a linear operator T on $\mathbb{M}_{m,n}$, T preserves term rank if and only if T strongly preserves term rank 1 or m.

We continue their work in this paper. Let *T* be a linear operator on $\mathbb{M}_{m,n}$. As a generalization of Theorem 1.1, we obtain that *T* preserves term rank if and only if *T* preserves two consecutive term ranks *k* and *k*+1 in a restricted condition, where $1 \le k \le m-1$. Also, we generalize Theorem 1.2 as follow: *T* preserves term rank if and only if *T* strongly preserves term rank *k* in a restricted condition, where $1 \le k \le m$.

2. Preliminaries

A matrix in $\mathbb{M}_{m,n}$ with only one entry equal to 1 is called a *cell*. If the nonzero entry occurs in the *i*th row and the *j*th column, we denote the cell by $E_{i,j}$.

Definition 2.1. A matrix L in $\mathbb{M}_{m,n}$ is called a full line matrix if $L = \sum_{s=1}^{n} E_{i,s}$ for some i or $L = \sum_{t=1}^{m} E_{t,j}$ for some j: $R_i = \sum_{s=1}^{n} E_{i,s}$ is the ith full row matrix and $C_j = \sum_{t=1}^{m} E_{t,j}$ is the jth full column matrix.

Definition 2.2. Let X and Y be matrices in $\mathbb{M}_{m,n}$. Then X dominates Y (denoted by $Y \sqsubseteq X$) if $y_{i,j} \neq 0$ implies $x_{i,j} \neq 0$ for all i and j.

Definition 2.3. Let X be a matrix in $\mathbb{M}_{m,n}$ with t(X) = k. Then there are r full row matrices R_{i_1}, \ldots, R_{i_r} and k - r full column matrices $C_{j_1}, \ldots, C_{j_{k-r}}$ such that $X \sqsubseteq (R_{i_1} + \cdots + R_{i_r}) + (C_{j_1} + \cdots + C_{j_{k-r}})$, where $0 \le r \le k$. We say that

$$\operatorname{cov}(X) = \{R_{i_1}, \dots, R_{i_r}, C_{j_1}, \dots, C_{j_{k-r}}\}$$

is a covering of X. If the possible value of r are only 0 or k, we say that X does not have a proper covering; Otherwise X has a proper covering.

For example, $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ has a proper covering $\{R_1, C_3\}$, while $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ does not have a proper covering.

The $m \times n$ zero matrix is denoted by $O_{m,n}$, and we will suppress the subscript when the order is evident from the context. The matrix I_n is the $n \times n$ identity matrix.

Proposition 2.1. Let $X = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ be a partitioned matrix in $\mathbb{M}_{m,n}$, where $A \in \mathbb{M}_k$ with $I_k \sqsubseteq A$ and $1 \le k < m$. If $B \ne O$, $\begin{bmatrix} C & D \end{bmatrix} \ne O$ and $\begin{bmatrix} A & B \end{bmatrix}$ does not have a proper covering, then $t(X) \ge k+1$.

Proof. By hypothesis, $t(X) \ge k$ and $\{R_1, \ldots, R_k\}$ is the only covering of $\begin{bmatrix} A & B \end{bmatrix}$. If k = 1, obviously $t(X) \ge 2$. For $k \ge 2$, suppose that t(X) = k. If cov(X) is a covering of X, then cov(X) cannot be composed of k full row matrices or k full column matrices. Thus cov(X) must be a proper covering. But then cov(X) is a proper covering of $\begin{bmatrix} A & B \end{bmatrix}$. This contradiction shows that $t(X) \ge k + 1$.

Lemma 2.1. Let X be a matrix in $\mathbb{M}_{m,n}$ with $t(X) = k(\geq 2)$. If X has a proper covering, for some $r \in \{1, \ldots, k-1\}$, by permuting rows and columns of X, we can assume that

$$X = \begin{bmatrix} X_1 & X_2 & X_3 \\ X_4 & O & O \\ X_7 & O & O \end{bmatrix}, \quad I_r \sqsubseteq X_2 \quad and \quad I_{k-r} \sqsubseteq X_4,$$

where $X_2 \in \mathbb{M}_r$ and $X_4 \in \mathbb{M}_{k-r}$; the rest X_i are matrices of suitable sizes.

Proof. Since X has a proper covering, cov(X), there is an integer r in $\{1, \ldots, k-1\}$ such that cov(X) is composed of r full row matrices and k - r full column matrices. Hence by permuting rows and columns of X (if necessary), we can assume that $cov(X) = \{R_1, \dots, R_r, C_1, \dots, C_{k-r}\}$

so that $X = \begin{bmatrix} X_1 & X_2 & X_3 \\ X_4 & O & O \\ X_7 & O & O \end{bmatrix}$, where $X_2 \in \mathbb{M}_r$ with $I_r \sqsubseteq X_2$ and $X_4 \in \mathbb{M}_{k-r}$ with $I_{k-r} \sqsubseteq X_4$; the rest X_i are matrices of suitable sizes.

Definition 2.4. Let X be a matrix in $\mathbb{M}_{m,n}$ partitioned as in Lemma 2.2. Then we say that X has a pure proper covering if neither $\begin{bmatrix} X_2 & X_3 \end{bmatrix}$ nor $\begin{bmatrix} X_4 \\ X_7 \end{bmatrix}$ has a proper covering. For example, consider two matrices $X = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$ and $Y = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$. Then

t(X) = t(Y) = 3. But X has a pure proper covering, while Y does not

Lemma 2.2. Let X be a matrix in $\mathbb{M}_{m,n}$ with t(X) = k, where $k \geq 2$. Assume that X has a pure proper covering and is partitioned as in Lemma 2.1. For every $Y \in \mathbb{M}_{m,n}$, if t(X+Y) =k and cov(X+Y) is a covering of X+Y, then $cov(X+Y) \in \{S_1, S_2, S_3, S_4\}$, where

$$S_1 = \{R_1, \dots, R_k\}, \quad S_2 = \{R_{r+1}, \dots, R_k, C_{k-r+1}, \dots, C_k\},$$

$$S_3 = \{C_1, \dots, C_k\} \quad and \quad S_4 = \{R_1, \dots, R_r, C_1, \dots, C_{k-r}\}.$$

Proof. Assume that t(X+Y) = k and cov(X+Y) is a covering of X+Y. Since $I_r \sqsubseteq X_2$ and $I_{k-r} \sqsubseteq X_4$, we can easily show that cov(X+Y) contains neither R_i nor C_j for all i, j > k. Let $D_1 = \{R_1, \dots, R_r\}, D_2 = \{R_{r+1}, \dots, R_k\}, D_3 = \{C_1, \dots, C_{k-r}\} \text{ and } D_4 = \{C_{k-r+1}, \dots, C_k\}.$

First, suppose that cov(X + Y) contain no member in D_1 . Then $X_3 = O$. It follows from $I_r \sqsubseteq X_2$ that $\operatorname{cov}(X+Y)$ must contain all members in D_4 . Since $\begin{bmatrix} X_4 \\ X_7 \end{bmatrix}$ does not have a proper covering, cov(X+Y) must contain all members in either D_3 or D_2 (in this case, $X_1 = O$ and $X_7 = O$). It follows that $cov(X + Y) = D_4 \cup D_3 = S_3$ or $cov(X + Y) = D_4 \cup D_2 = S_2$.

Next, suppose that cov(X+Y) contains t members in D_1 , where $1 \le t \le r$. If t < r, then $\operatorname{cov}(X+Y)$ contains at least r-t members in D_4 because $I_r \sqsubseteq X_2$. Therefore $\operatorname{cov}(X+Y)$ contains at most k - r members in $D_2 \cup D_3$. Since $\begin{bmatrix} X_4 \\ X_7 \end{bmatrix}$ does not have a proper covering, cov(X+Y) must contain all members in either D_2 or D_3 . Thus cov(X+Y) contains exactly r-t members in D_4 so that $\begin{bmatrix} X_2 & X_3 \end{bmatrix}$ is dominated by t members in D_1 and r-t members in D_4 , a contradiction to the fact that $\begin{vmatrix} X_2 & X_3 \end{vmatrix}$ does not have a proper covering. Thus t = r. Since $\begin{bmatrix} X_4 \\ X_7 \end{bmatrix}$ does not have a proper covering, it follows that $cov(X+Y) = D_1 \cup D_3 = S_4$ or $cov(X+Y) = D_1 \cup D_2 = S_1$ (in this case, $X_7 = O$).

3. Term-rank preservers

A matrix *M* in $\mathbb{M}_{m,n}$ is called a *monomial* if it has exactly *m* 1's with no two of the 1's on a line. That is, there is an $n \times n$ permutation matrix *P* such that $MP = [I_m \mid O_{m,n-m}]$. If $N \sqsubseteq M$ and *M* is a monomial, we call *N* a *submonomial*.

Lemma 3.1. [4] If X is an nonzero matrix in $\mathbb{M}_{m,n}$, there is a submonomial $N(\sqsubseteq X)$ such that t(X) = t(N).

Lemma 3.2. If X and Y are matrices in $\mathbb{M}_{m,n}$, then $t(X+Y) \leq t(X) + t(Y)$.

Proof. Obvious.

Notice that an invertible linear operator need not preserve term-rank. For example, define the linear operator $T : \mathbb{M}_2 \to \mathbb{M}_2$ by $T\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix} \right) = \begin{bmatrix} x & y \\ w & z \end{bmatrix}$. Then *T* is an invertible linear operator that does not preserve term-rank.

Example 3.1. Consider the operator $T : \mathbb{M}_{m,n} \to \mathbb{M}_{m,n}$ defined by

$$T(X) = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i,j}\right) \begin{bmatrix} I_k & O \\ O & O \end{bmatrix}$$
 for all $X \in \mathbb{M}_{m,n}$.

Then T preserves term rank k, while it does not preserve term rank.

The number of nonzero entries of a matrix X in $\mathbb{M}_{m,n}$ is denoted by $\sharp(X)$.

Proposition 3.1. [3] Let T be a linear operator on $\mathbb{M}_{m,n}$. For a nonzero $X \in \mathbb{M}_{m,n}$, suppose that $N \sqsubseteq T(X)$, where N is a submonomial of term rank k(< m). If t(X) > k, there is a matrix $Y(\sqsubseteq X)$ such that $N \sqsubseteq T(Y)$ and $\sharp(Y) \le k$.

Lemma 3.3. If T is a linear operator on $\mathbb{M}_{m,n}$ preserving term ranks k and k+1, where $2 \le k \le m-1$, then t(T(X)) = k or k-1 for all X in $\mathbb{M}_{m,n}$ with t(X) = k-1.

Proof. Let X be a matrix in $\mathbb{M}_{m,n}$ with t(X) = k - 1. If $t(T(X)) \ge k + 1$, take a cell E such that t(X+E) = k. But then $k = t(T(X+E)) \ge t(T(X)) \ge k + 1$, impossible. So $t(T(X)) \le k$. Assume that $t(T(X)) \le k - 2$. By Lemma 3.1, there is a submonomial $N_1(\sqsubseteq X)$ such that $t(N_1) = k - 1$. Furthermore $t(T(N_1)) \le k - 2$ because $T(N_1) \sqsubseteq T(X)$.

Take a submonomial N_2 with $t(N_2) = 2$ such that $N_1 + N_2$ is a submonomial with $t(N_1 + N_2) = k + 1$. By hypothesis, $t(T(N_1 + N_2)) = k + 1$. Thus $t(T(N_2)) \ge (k+1) - t(T(N_1)) \ge 3$ by Lemma 3.2. Since $t(T(N_1 + N_2)) = k + 1$, there is a submonomial $G(\sqsubseteq T(N_1 + N_2))$ such that t(G) = k + 1 by Lemma 3.1. Write $G = G_1 + G_2$ for some two submonomials G_1 and G_2 , where $G_1 \sqsubseteq T(N_1)$ and $G_2 \sqsubseteq T(N_2)$. Hence $t(G_1) \le t(T(N_1)) \le k - 2$. By Proposition 3.1, there is a matrix $Y(\sqsubseteq N_1)$ such that $G_1 \sqsubseteq T(Y)$ and $\sharp(Y) \le k - 2$. By Lemma 3.2, $t(Y + N_2) \le t(Y) + t(N_2) \le k$. Also

$$G = G_1 + G_2 \sqsubseteq T(Y) + T(N_2) = T(Y + N_2)$$

and hence $t(T(Y + N_2)) \ge k + 1$. Since $t(Y + N_2) \le k$, we can choose a matrix Z such that $t(Y + N_2 + Z) = k$. But then $k = t(T(Y + N_2 + Z)) \ge t(T(Y + N_2)) \ge k + 1$, impossible. Therefore t(T(X)) = k or k - 1 for all X in $\mathbb{M}_{m,n}$ with t(X) = k - 1.

Let *X* be a partitioned matrix in $\mathbb{M}_{m,n}$ as $X = \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix}$, where $X_1 \in \mathbb{M}_{p,q}$. For a cell $E_{i,j}$, we say that $E_{i,j}$ is *in* X_1 if $x_{i,j} = 1$ with $1 \le i \le p$ and $1 \le j \le q$. Similarly we can define that $E_{i,j}$ is a cell *in* X_l for all $l \in \{1, 2, 3, 4\}$.

The matrix in $\mathbb{M}_{m,n}$ whose entries are all 1, is denoted by *J*. That is, $J = \sum_{i=1}^{m} \sum_{j=1}^{n} E_{i,j}$.

Lemma 3.4. Suppose that T is a linear operator on $\mathbb{M}_{m,n}$ preserving term ranks k and k+1, where $2 \le k \le m-1$. Let A be a matrix in $\mathbb{M}_{m,n}$ with t(A) = k-1. If T(A) does not have a proper covering, then t(T(A)) = k-1.

Proof. Clearly t(T(A)) = k or k - 1 by Lemma 3.3. Now if t(T(A)) = k, we will get a contradiction. And then t(T(A)) = k - 1. Suppose that t(T(A)) = k. Since t(A) = k - 1, there is a matrix *X* that is a sum of k - 1 distinct full line matrices such that $A \sqsubseteq X$. Obviously t(X) = k - 1. It follows from Lemma 3.3 that t(T(X)) = k because t(T(A)) = k and $T(A) \sqsubseteq T(X)$. Since T(A) does not have a proper covering, neither does T(X).

If the covering of T(X) was composed of k full row matrices, by permuting rows and columns of T(X), we can assume that $T(X) = \begin{bmatrix} X_1 & X_2 \\ O & O \end{bmatrix}$, where $X_1 \in \mathbb{M}_k$ with $I_k \subseteq X_1$. For a cell $E_{i,j}$ with i, j > k, suppose that $E_{i,j} \subseteq T(E)$ for some cell E. Then $E \not\subseteq X$ and so t(X + E) = k, while $t(T(X + E)) \ge k + 1$, a contradiction. Hence T(J) is of the form $T(J) = \begin{bmatrix} Y_1 & Y_2 \\ Y_3 & O \end{bmatrix}$ with $X_1 \subseteq Y_1$. Since T preserves term rank k + 1, we have $Y_2 \ne O$ and $Y_3 \ne O$. So there are two cells F_2 and F_3 in Y_2 and Y_3 , respectively such that $F_2 \subseteq T(E_{a,b})$ and $F_3 \subseteq T(E_{c,d})$ for some cells $E_{a,b}$ and $E_{c,d}(\not\subseteq X)$. If $X_2 \ne O$, it follows from Proposition 2.1 and $F_3 \subseteq T(E_{c,d})$ that $t(T(X + E_{c,d})) = k + 1$,

If $X_2 \neq O$, it follows from Proposition 2.1 and $F_3 \subseteq T(E_{c,d})$ that $t(T(X + E_{c,d})) = k + 1$, while $t(X + E_{c,d}) = k$, a contradiction. So $X_2 = O$ and hence $T(X) = \begin{bmatrix} X_1 & O \\ O & O \end{bmatrix}$ and $E_{a,b} \not\subseteq X$. If a = c or b = d, then $t(X + E_{a,b} + E_{c,d}) = k$, while $t(T(X + E_{a,b} + E_{c,d})) \geq k + 1$ by Proposition 2.1, a contradiction. Hence $a \neq c$ and $b \neq d$.

If $T(E_{a,d})$ dominates a cell in Y_2 , then $t(T(X + E_{a,d} + E_{c,d})) = k + 1$ by Proposition 2.1, while $t(X + E_{a,d} + E_{c,d}) = k$, a contradiction. Hence $T(E_{a,d})$ cannot dominate a cell in Y_2 . Similarly it cannot dominate a cell in Y_3 . Hence $T(E_{a,d})$ only dominates a cell in Y_1 . A parallel argument shows that $T(E_{c,b})$ only dominates a cell in Y_1 . It follows that $t(T(X + E_{a,d} + E_{c,b})) = k$, while $t(X + E_{a,d} + E_{c,b}) = k + 1$, a contradiction. Similarly if the covering of T(X) was composed of k full column matrices, we get a contradiction.

Proposition 3.2. Suppose that *T* is a linear operator on $\mathbb{M}_{m,n}$ preserving term ranks *k* and k+1, where $2 \le k \le m-1$, and let $X \in \mathbb{M}_{m,n}$ be a sum of k-1 distinct full line matrices. For cells $E_{a_1,b_1}, \ldots, E_{a_s,b_s}$ that are not dominated by *X*, we have that $\operatorname{cov}(T(X+R_{a_i})) \ne \operatorname{cov}(T(X+C_{b_i}))$ for all $i, j \in \{1, \ldots, s\}$.

Proof. Clearly $t(T(X + R_{a_i})) = t(T(X + C_{b_j})) = k$ for all $i, j \in \{1, ..., s\}$ because $t(X + R_{a_i}) = t(X + C_{b_j}) = k$. If $\operatorname{cov}(T(X + R_{a_i})) = \operatorname{cov}(T(X + C_{b_j}))$ for some $i, j \in \{1, ..., s\}$, then $t(T(X + R_{a_i} + C_{b_j})) = k$, while $t(X + R_{a_i} + C_{b_j}) = k + 1$, a contradiction. Hence the result follows.

Lemma 3.5. Suppose that T is a linear operator on $\mathbb{M}_{m,n}$ preserving term ranks k and k+1, where $2 \le k \le m-2$. Let A be a matrix in $\mathbb{M}_{m,n}$ with t(A) = k-1. If T(A) has a pure proper covering, then t(T(A)) = k-1.

Proof. Clearly t(T(A)) = k or k - 1 by Lemma 3.3. Suppose that t(T(A)) = k. Since t(A) = k - 1, there is a matrix X that is a sum of k - 1 distinct full line matrices such that $A \sqsubseteq X$. Obviously t(X) = k - 1. It follows from Lemma 3.3 that t(T(X)) = k because t(T(A)) = k and $T(A) \sqsubseteq T(X)$. Since T(A) has a pure proper covering, it follows that T(X) does not have a proper covering or has a pure proper covering. But if T(X) does not have a proper covering, then t(T(X)) = k - 1 by Lemma 3.4, a contradiction. Thus T(X) has a pure proper covering. It follows from Lemma 2.2 that by permuting rows and columns of T(X), we can assume that

$$T(X) = \begin{bmatrix} X_1 & X_2 & X_3 \\ X_4 & O & O \\ X_7 & O & O \end{bmatrix}, \quad I_r \sqsubseteq X_2 \text{ and } I_{k-r} \sqsubseteq X_4,$$

where $1 \le r \le k-1$, $X_2 \in \mathbb{M}_r$ and $X_4 \in \mathbb{M}_{k-r}$; Furthermore both $\begin{bmatrix} X_2 & X_3 \end{bmatrix}$ and $\begin{bmatrix} X_4 \\ X_7 \end{bmatrix}$ have no proper covering. Given a cell $E_{i,j}$ with i, j > k, if $E_{i,j} \sqsubseteq T(E)$ for some cell E, then $E \not\sqsubseteq X$ and so t(X+E) = k, while $t(T(X+E)) \ge k+1$, a contradiction. Thus T(J) is of the form

$$T(J) = \begin{bmatrix} Y_1 & Y_2 & Y_3 \\ Y_4 & Y_5 & Y_6 \\ Y_7 & Y_8 & O \end{bmatrix},$$

where the sizes of partitions of T(X) and T(J) are equal. Let

$$S_1 = \{R_1, \dots, R_k\}, \quad S_2 = \{R_{r+1}, \dots, R_k, C_{k-r+1}, \dots C_k\},$$

$$S_3 = \{C_1, \dots, C_k\} \text{ and } S_4 = \{R_1, \dots, R_r, C_1, \dots C_{k-r}\}.$$

Case 1. $X_3 \neq O$ or $X_7 \neq O$: Suppose that $X_3 \neq O$. If $Y_8 \neq O$, there is a cell F in Y_8 such that $F \sqsubseteq T(E)$ for some cell $E(\not\subseteq X)$. Then t(X + E) = k, while $t(T(X + E)) \ge k + 1$ by Lemma 2.2, a contradiction. Hence $Y_8 = O$. It follows that $\begin{bmatrix} Y_5 & Y_6 \end{bmatrix} \neq O$ and $Y_7 \neq O$ because T preserves term rank k + 1. So there are two cells F_1 and F_2 in $\begin{bmatrix} Y_5 & Y_6 \end{bmatrix}$ and Y_7 , respectively such that $F_1 \sqsubseteq T(E_{a,b})$ and $F_2 \sqsubseteq T(E_{c,d})$ for some cells $E_{a,b}(\not\subseteq X)$ and $E_{c,d}$. By Lemma 2.2, $t(T(X + E_{a,b} + E_{c,d})) \ge k + 1$. Hence $E_{c,d} \not\subseteq X$ and $t(E_{a,b} + E_{c,d}) = 2$. So $a \neq c$ and $b \neq d$. If $T(E_{a,d})$ dominates a cell in $\begin{bmatrix} Y_5 & Y_6 \end{bmatrix}$, then $t(T(X + E_{a,d} + E_{c,d})) \ge k + 1$ by Lemma 2.2, while $t(X + E_{a,d} + E_{c,d}) = k$, a contradiction. That is, $T(E_{a,d})$ cannot dominate a cell in $\begin{bmatrix} Y_5 & Y_6 \end{bmatrix}$. Similarly $T(E_{c,b})$ cannot dominate a cell in $\begin{bmatrix} Y_5 & Y_6 \end{bmatrix}$. It follows from $Y_8 = O$ that S_4 is a covering of $T(X + E_{a,d} + E_{c,b})$. Hence $t(T(X + E_{a,d} + E_{c,b})) = k$, while $t(X + E_{a,d} + E_{c,b}) = k + 1$, a contradiction. By a parallel argument, we get a contradiction for the case of $X_7 \neq O$.

Case 2. $X_3 = O$ and $X_7 = O$: That is, $T(X) = \begin{bmatrix} X_1 & X_2 & O \\ X_4 & O & O \\ O & O & O \end{bmatrix}$. Now we will show that

 $Y_6 = O$ or $Y_7 = O$. If not, there are two cells F_6 and F_7 in Y_6 and Y_7 , respectively such that $F_6 \sqsubseteq T(E_{e,f})$ and $F_7 \sqsubseteq T(E_{g,h})$ for some cells $E_{e,f}(\not\sqsubseteq X)$ and $E_{g,h}(\not\sqsubseteq X)$. By Lemma 2.2, we have

 $\operatorname{cov}(T(X+L_1)) \in \{S_1, S_2\}$ and $\operatorname{cov}(T(X+L_2)) \in \{S_3, S_4\},\$

where $L_1 = R_e$ or C_f , and $L_2 = R_g$ or C_h . Notice that if $cov(T(X + L_1)) = S_2$, then $X_1 = O$. By Proposition 3.2, we loss no generality in assuming that $cov(T(X+R_e)) = S_1, cov(T(X+R_e)) = S_1$ $(R_{\varrho})) = S_3$ and

$$cov(T(X+C_f)) = S_2$$
 and $cov(T(X+C_h)) = S_4.$ (3.1)

Since t(X) = k - 1 and $k \le m - 2$, we can choose a full row matrix R_l that is not dominated by $X + R_e + R_g$. Clearly $cov(T(X + R_l)) \in \{S_1, S_2, S_3, S_4\}$ because $t(X + R_l) = t(T(X + R_l)) = t(T(X + R_l))$ k. But then $cov(T(X + R_l)) \in \{S_1, S_3\}$ by (3.1) and Proposition 3.2. Say that $cov(T(X + R_l)) \in \{S_1, S_3\}$ by (3.1) and Proposition 3.2. (R_l) = S₁. But then $t(T(X + R_l + R_e)) = k$, while $t(X + R_l + R_e) = k + 1$, a contradiction.

Consequently we have established $Y_6 = O$ or $Y_7 = O$. A parallel argument shows that $Y_3 = O$ or $Y_8 = O$. Suppose that $Y_6 = O$. Then $Y_3 \neq O$ because T preserves term rank k + 1.

Hence $Y_8 = O$ and so $T(J) = \begin{bmatrix} Y_1 & Y_2 & Y_3 \\ Y_4 & Y_5 & O \\ Y_7 & O & O \end{bmatrix}$. Clearly $Y_5 \neq O$ and $Y_7 \neq O$. Hence there are three cells F_3 , F_5 and F_7 in Y_3 , Y_5 and Y_7 , respectively such that

$$F_3 \sqsubseteq T(E_{a_3,b_3}), \quad F_5 \sqsubseteq T(E_{a_5,b_5}) \quad \text{and} \quad F_7 \sqsubseteq T(E_{a_7,b_7})$$

for some cells E_{a_i,b_i} that are not dominated by X. By Lemma 2.2 and Proposition 3.2, we loss no generality in assuming that

$$\operatorname{cov}(T(X+R_{a_3})) = S_1$$
 and $\operatorname{cov}(T(X+C_{b_3})) = S_4.$ (3.2)

Again by Lemma 2.2, Proposition 3.2 and (3.2), we have

$$\operatorname{cov}(T(X+R_{a_7})) = S_3$$
 and $\operatorname{cov}(T(X+C_{b_7})) = S_4.$ (3.3)

If $b_3 \neq b_7$, then $t(T(X + C_{b_3} + C_{b_7})) = k$, while $t(X + C_{b_3} + C_{b_7}) = k + 1$, a contradiction. Hence $b_3 = b_7$. But then $b_5 \neq b_3$ by Lemma 2.2. Thus $cov(T(X + C_{b_5})) = S_2$ by (3.2), (3.3) and Proposition 3.2. Since t(X) = k - 1 and $k \le m - 2$, we can choose a full row matrix R_t that is not dominated by $X + R_{a_3} + R_{a_7}$. It follows from (3.2), $cov(T(X + C_{b_5})) = S_2$ and Proposition 3.2 that $cov(T(X + R_t)) = S_1$ or S_3 . Say that $cov(T(X + R_t)) = S_1$. But then $t(T(X + R_{a_3} + R_t)) = k$, while $t(X + R_{a_3} + R_t) = k + 1$, a contradiction. Similarly, we get a contradiction for the case of $Y_7 = O$.

Theorem 3.1. Let T be a linear operator on $\mathbb{M}_{m,n}$, where $m \geq 3$. Then T preserves term rank if and only if T preserves term ranks 2 and 3.

Proof. Suppose that T preserves term ranks 2 and 3. Let X be a matrix in $\mathbb{M}_{m,n}$ with t(X) =1. Then t(T(X)) = 1 or 2 by Lemma 3.3. Hence T(X) does not have a proper covering or has a pure proper covering. It follows from Lemmas 3.4 and 3.5 that t(T(X)) = 1. Thus T preserves term rank 1. Therefore T preserves term rank by Theorem 1.1. The converse is obvious.

Theorem 3.2. Let T be a linear operator on $\mathbb{M}_{m,n}$. Then T preserves term rank if and only if T preserves term ranks m - 1 and m.

Proof. Assume that T preserves term ranks m-1 and m. Let X be a matrix in $\mathbb{M}_{m,n}$ with t(X) = m. Then t(T(X)) = m by hypothesis. Oppositely, let t(T(X)) = m for some X. If t(X) < m, take a matrix Y such that t(X+Y) = m-1. But then $m-1 = t(T(X+Y)) \ge 1$ t(T(X)) = m, impossible. It follows that t(T(X)) = m if and only if t(X) = m for all X. Thus T strongly preserves term rank m. Therefore T preserves term rank by Theorem 1.2. The converse is obvious.

Let $\mathbb{P}_{m,n}$ be the set of all matrix X in $\mathbb{M}_{m,n}$ which either do not have a proper covering or have a pure proper covering. Clearly, $X \in \mathbb{P}_{m,n}$ for all $X \in \mathbb{M}_{m,n}$ with $t(X) \leq 2$. But if $X \in \mathbb{M}_{m,n}$ and $t(X) \geq 3$, then $X \in \mathbb{P}_{m,n}$ may be true or false. For examples, consider two matrices $X = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \oplus O_{m-3,n-3}$ and $Y = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \oplus O_{m-3,n-3}$, where $A \oplus B$

denotes the direct sum of matrices A and B. Then t(X) = t(Y) = 3 and $X \in \mathbb{P}_{m,n}$, while $Y \notin \mathbb{P}_{m,n}$.

Lemma 3.6. Suppose that T is a linear operator on $\mathbb{M}_{m,n}$. If T preserves $\mathbb{P}_{m,n}$ and term ranks k and k + 1, where $2 \le k \le m - 1$, then T preserves term rank k - 1.

Proof. If k = m - 1, then *T* preserves term rank m - 2 by Theorem 3.2. Suppose that $k \le m - 2$. Let *A* be a matrix in $\mathbb{M}_{m,n}$ with t(A) = k - 1. Then $A \sqsubseteq X$ for some *X* in $\mathbb{M}_{m,n}$, where *X* is a sum of k - 1 distinct full line matrices. Clearly $X \in \mathbb{P}_{m,n}$ and hence $T(X) \in \mathbb{P}_{m,n}$ by hypothesis. Thus T(X) does not have a proper covering or has a pure proper covering. Hence t(T(X)) = k - 1 by Lemmas 3.4 and 3.5. Since $t(T(A)) \le t(T(X))$, it follows from Lemma 3.3 that t(T(A)) = k - 1. Therefore *T* preserves term rank k - 1.

Theorem 3.3. Let T be a linear operator on $\mathbb{M}_{m,n}$. Then T preserves term rank if and only if T preserves $\mathbb{P}_{m,n}$ and term ranks k and k + 1, where $1 \le k \le m - 1$.

Proof. Assume that *T* preserves $\mathbb{P}_{m,n}$ and term ranks *k* and *k*+1, where $1 \le k \le m-1$. If k = 1, then *T* preserves term rank by Theorem 1.1. For the case of $k \ge 2$, *T* preserves term ranks 1 and 2 by applying Lemma 3.6 *k* times. Thus *T* preserves term rank by Theorem 1.1. The converse is obvious.

The following is an immediate consequence of Theorem 3.3.

Corollary 3.1. Let T be a linear operator on $\mathbb{P}_{m,n}$. Then T preserves term rank if and only if T preserves term ranks k and k + 1, where $1 \le k \le m - 1$.

Theorem 3.4. Let *T* be a linear operator on $\mathbb{M}_{m,n}$. Then *T* preserves term rank if and only if *T* strongly preserves term rank m - 1.

Proof. Assume that *T* strongly preserves term rank m - 1. First suppose that *X* is a matrix in $\mathbb{M}_{m,n}$ with t(X) = m. Take a matrix *Y* such that $Y \sqsubseteq X$ and t(Y) = m - 1. Then $t(T(X)) \ge t(T(Y)) = t(Y) = m - 1$. Hence t(T(X)) = m by hypothesis. Next, suppose that t(T(X)) = m for some *X* in $\mathbb{M}_{m,n}$. By hypothesis, t(X) = m or $t(X) \le m - 2$. If $t(X) \le m - 2$, take a matrix *Z* such that t(X+Z) = m - 1. But then $m = t(T(X)) \le t(T(X+Z)) = m - 1$, which is impossible. Hence t(X) = m. Therefore *T* strongly preserves term rank *m*. Hence *T* preserves term rank by Theorem 1.2.

The converse is obvious.

Theorem 3.5. Let *T* be a linear operator on $\mathbb{M}_{m,n}$. Then *T* preserves term rank if and only if *T* preserves $\mathbb{P}_{m,n}$ and strongly preserves term rank *k*, where $1 \le k \le m$.

Proof. Suppose that *T* preserves $\mathbb{P}_{m,n}$ and strongly preserves term rank *k*, where $1 \le k \le m$. If k = 1 or *m*, then *T* preserves term rank by Theorem 1.2. Assume that $2 \le k \le m-1$. Let *X* be a matrix in $\mathbb{M}_{m,n}$ with t(X) = k-1. By the same pattern of the proof in Lemma 3.3, we have t(T(X)) = k - 1 or *k*. But then t(T(X)) = k - 1 by hypothesis. Therefore *T* preserves term rank k - 1. Thus *T* preserves term rank by Theorem 3.3. The converse is obvious.

The following is an immediate consequence of Theorem 3.5.

Corollary 3.2. Let T be a linear operator on $\mathbb{P}_{m,n}$. Then T preserves term rank if and only if T strongly preserves term rank k, where $1 \le k \le m$.

Acknowledgement. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No.2011-0006095). The second author, Seok-Zun Song, is the corresponding author.

References

- L. B. Beasley, D. E. Brown and A. E. Guterman, Preserving regular tournaments and term rank-1, *Linear Algebra Appl.* 431 (2009), no. 5–7, 926–936.
- [2] L. B. Beasley and N. J. Pullman, Boolean-rank-preserving operators and Boolean-rank-1 spaces, *Linear Algebra Appl.* 59 (1984), 55–77.
- [3] L. B. Beasley and N. J. Pullman, Term-rank, permanent, and rook-polynomial preservers, *Linear Algebra Appl.* 90 (1987), 33–46.
- [4] R. A. Brualdi and H. J. Ryser, *Combinatorial Matrix Theory*, Encyclopedia of Mathematics and its Applications, 39, Cambridge Univ. Press, Cambridge, 1991.
- [5] S.-Z. Song, Linear operators that preserve column rank of Boolean matrices, *Proc. Amer. Math. Soc.* 119 (1993), no. 4, 1085–1088.