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Abstract. In this paper we obtain some characterizations of linear operators that preserve
term rank of Boolean matrices. With certain conditions, we prove that for a linear opera-
tor T on the Boolean matrix space, T preserves term rank if and only if T preserves two
consecutive term ranks if and only if T strongly preserves just one term rank.
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1. Introduction

Let Mm,n be the set of all m×n matrices with entries in the Boolean algebra B = {0,1}. If
m = n, we will use the notation Mn instead of Mn,n. Arithmetic in B follows the usual rules
except that 1 + 1 = 1. The usual definitions for adding and multiplying matrices apply to
Boolean matrices as well.

The term rank of a matrix X in Mm,n is the least number of lines (rows and columns)
needed to include all the nonzero entries in X , and denoted by t(X). Term ranks play a
central role in the combinatorial matrix theory and have many applications in network and
graph theory (see [4]).

An operator T : Mm,n →Mm,n is called linear if T (aX + bY ) = aT (X)+ bT (Y ) for all
X ,Y ∈Mm,n and for all a,b ∈ B. Let T be a linear operator on Mm,n. If f is a function
defined on Mm,n, then T preserves f if f (T (X)) = f (X) for all X . There are many papers
on linear operators that preserve matrix functions over B ([1]–[5] and therein). But there
are few papers on term-rank preservers of Boolean matrices.

Hereafter, unless otherwise specified, we will assume that 2 ≤ m ≤ n. It follows that
1≤ t(X)≤ m for all nonzero X in Mm,n.

For a linear operator T on Mm,n, we say that T

(1) preserves term rank k if t(T (X)) = k whenever t(X) = k for all X ;
(2) strongly preserves term rank k if t(T (X)) = k if and only if t(X) = k for all X ;
(3) preserves term rank if T preserves term rank k for every k ≤ m.
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In [3], Beasley and Pullman have studied linear operators on Mm,n that preserve term
rank, and obtained the following main results:

Theorem 1.1. For a linear operator T on Mm,n, T preserves term rank if and only if T
preserves term ranks 1 and 2.

Theorem 1.2. For a linear operator T on Mm,n, T preserves term rank if and only if T
strongly preserves term rank 1 or m.

We continue their work in this paper. Let T be a linear operator on Mm,n. As a general-
ization of Theorem 1.1, we obtain that T preserves term rank if and only if T preserves two
consecutive term ranks k and k +1 in a restricted condition, where 1≤ k≤m−1. Also, we
generalize Theorem 1.2 as follow: T preserves term rank if and only if T strongly preserves
term rank k in a restricted condition, where 1≤ k ≤ m.

2. Preliminaries

A matrix in Mm,n with only one entry equal to 1 is called a cell. If the nonzero entry occurs
in the ith row and the jth column, we denote the cell by Ei, j.

Definition 2.1. A matrix L in Mm,n is called a full line matrix if L =
n
∑

s=1
Ei,s for some i or

L =
m
∑

t=1
Et, j for some j: Ri =

n
∑

s=1
Ei,s is the ith full row matrix and C j =

m
∑

t=1
Et, j is the jth full

column matrix.

Definition 2.2. Let X and Y be matrices in Mm,n. Then X dominates Y (denoted by Y v X)
if yi, j 6= 0 implies xi, j 6= 0 for all i and j.

Definition 2.3. Let X be a matrix in Mm,n with t(X) = k. Then there are r full row matrices
Ri1 , . . . ,Rir and k− r full column matrices C j1 , . . . ,C jk−r such that X v (Ri1 + · · ·+ Rir)+
(C j1 + · · ·+C jk−r), where 0≤ r ≤ k. We say that

cov(X) =
{

Ri1 , . . . ,Rir ,C j1 , . . . ,C jk−r

}
is a covering of X. If the possible value of r are only 0 or k, we say that X does not have a
proper covering; Otherwise X has a proper covering.

For example,
[

1 1 1
0 0 1

]
has a proper covering {R1,C3}, while

[
1 1 1
0 1 1

]
does not

have a proper covering.
The m× n zero matrix is denoted by Om,n, and we will suppress the subscript when the

order is evident from the context. The matrix In is the n×n identity matrix.

Proposition 2.1. Let X =
[

A B
C D

]
be a partitioned matrix in Mm,n, where A ∈Mk with

Ik v A and 1≤ k < m. If B 6= O,
[
C D

]
6= O and

[
A B

]
does not have a proper covering,

then t(X)≥ k +1.

Proof. By hypothesis, t(X) ≥ k and {R1, . . . ,Rk} is the only covering of
[
A B

]
. If k =

1, obviously t(X) ≥ 2. For k ≥ 2, suppose that t(X) = k. If cov(X) is a covering of X ,
then cov(X) cannot be composed of k full row matrices or k full column matrices. Thus
cov(X) must be a proper covering. But then cov(X) is a proper covering of

[
A B

]
. This

contradiction shows that t(X)≥ k +1.
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Lemma 2.1. Let X be a matrix in Mm,n with t(X) = k(≥ 2). If X has a proper covering, for
some r ∈ {1, . . . ,k−1}, by permuting rows and columns of X, we can assume that

X =

X1 X2 X3
X4 O O
X7 O O

 , Ir v X2 and Ik−r v X4,

where X2 ∈Mr and X4 ∈Mk−r; the rest Xi are matrices of suitable sizes.

Proof. Since X has a proper covering, cov(X), there is an integer r in {1, . . . ,k−1} such that
cov(X) is composed of r full row matrices and k−r full column matrices. Hence by permut-
ing rows and columns of X (if necessary), we can assume that cov(X)= {R1, . . . ,Rr,C1, . . . ,Ck−r}

so that X =

X1 X2 X3
X4 O O
X7 O O

, where X2 ∈Mr with Ir v X2 and X4 ∈Mk−r with Ik−r v X4;

the rest Xi are matrices of suitable sizes.

Definition 2.4. Let X be a matrix in Mm,n partitioned as in Lemma 2.2. Then we say that

X has a pure proper covering if neither
[
X2 X3

]
nor

[
X4
X7

]
has a proper covering.

For example, consider two matrices X =

0 1 1 1
0 0 1 1
1 0 0 0

 and Y =

0 1 1 1
0 0 1 0
1 0 0 0

. Then

t(X) = t(Y ) = 3. But X has a pure proper covering, while Y does not.

Lemma 2.2. Let X be a matrix in Mm,n with t(X) = k, where k ≥ 2. Assume that X has a
pure proper covering and is partitioned as in Lemma 2.1. For every Y ∈Mm,n, if t(X +Y ) =
k and cov(X +Y ) is a covering of X +Y , then cov(X +Y ) ∈ {S1,S2,S3,S4}, where

S1 = {R1, . . . ,Rk}, S2 = {Rr+1, · · · ,Rk,Ck−r+1, · · ·Ck},
S3 = {C1, . . . ,Ck} and S4 = {R1, · · · ,Rr,C1, · · ·Ck−r}.

Proof. Assume that t(X +Y ) = k and cov(X +Y ) is a covering of X +Y . Since Ir v X2 and
Ik−r v X4, we can easily show that cov(X +Y ) contains neither Ri nor C j for all i, j > k. Let
D1 = {R1, . . . ,Rr}, D2 = {Rr+1, . . . ,Rk}, D3 = {C1, . . . ,Ck−r} and D4 = {Ck−r+1, . . . ,Ck}.

First, suppose that cov(X +Y ) contain no member in D1. Then X3 = O. It follows from

Ir v X2 that cov(X +Y ) must contain all members in D4. Since
[

X4
X7

]
does not have a proper

covering, cov(X +Y ) must contain all members in either D3 or D2 (in this case, X1 = O and
X7 = O). It follows that cov(X +Y ) = D4∪D3 = S3 or cov(X +Y ) = D4∪D2 = S2.

Next, suppose that cov(X +Y ) contains t members in D1, where 1≤ t ≤ r. If t < r, then
cov(X +Y ) contains at least r− t members in D4 because Ir v X2. Therefore cov(X +Y )

contains at most k− r members in D2 ∪D3. Since
[

X4
X7

]
does not have a proper covering,

cov(X +Y ) must contain all members in either D2 or D3. Thus cov(X +Y ) contains exactly
r− t members in D4 so that

[
X2 X3

]
is dominated by t members in D1 and r− t members

in D4, a contradiction to the fact that
[
X2 X3

]
does not have a proper covering. Thus t = r.

Since
[

X4
X7

]
does not have a proper covering, it follows that cov(X +Y ) = D1∪D3 = S4 or

cov(X +Y ) = D1∪D2 = S1 (in this case, X7 = O).
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3. Term-rank preservers

A matrix M in Mm,n is called a monomial if it has exactly m 1’s with no two of the 1’s on a
line. That is, there is an n×n permutation matrix P such that MP = [Im | Om,n−m]. If N vM
and M is a monomial, we call N a submonomial.

Lemma 3.1. [4] If X is an nonzero matrix in Mm,n, there is a submonomial N(v X) such
that t(X) = t(N).

Lemma 3.2. If X and Y are matrices in Mm,n, then t(X +Y )≤ t(X)+ t(Y ).

Proof. Obvious.

Notice that an invertible linear operator need not preserve term-rank. For example, define

the linear operator T : M2→M2 by T

([
x y
z w

])
=
[

x y
w z

]
. Then T is an invertible linear

operator that does not preserve term-rank.

Example 3.1. Consider the operator T : Mm,n→Mm,n defined by

T (X) =

(
m

∑
i=1

n

∑
j=1

xi, j

)[
Ik O
O O

]
for all X ∈Mm,n.

Then T preserves term rank k, while it does not preserve term rank.

The number of nonzero entries of a matrix X in Mm,n is denoted by ](X).

Proposition 3.1. [3] Let T be a linear operator on Mm,n. For a nonzero X ∈Mm,n, suppose
that N v T (X), where N is a submonomial of term rank k(< m). If t(X) > k, there is a
matrix Y (v X) such that N v T (Y ) and ](Y )≤ k.

Lemma 3.3. If T is a linear operator on Mm,n preserving term ranks k and k + 1, where
2≤ k ≤ m−1, then t(T (X)) = k or k−1 for all X in Mm,n with t(X) = k−1.

Proof. Let X be a matrix in Mm,n with t(X) = k−1. If t(T (X))≥ k +1, take a cell E such
that t(X +E) = k. But then k = t(T (X +E))≥ t(T (X))≥ k+1, impossible. So t(T (X))≤ k.
Assume that t(T (X)) ≤ k− 2. By Lemma 3.1, there is a submonomial N1(v X) such that
t(N1) = k−1. Furthermore t(T (N1))≤ k−2 because T (N1)v T (X).

Take a submonomial N2 with t(N2) = 2 such that N1 +N2 is a submonomial with t(N1 +
N2) = k+1. By hypothesis, t(T (N1 +N2)) = k+1. Thus t(T (N2))≥ (k+1)−t(T (N1))≥ 3
by Lemma 3.2. Since t(T (N1 +N2)) = k+1, there is a submonomial G(v T (N1 +N2)) such
that t(G) = k + 1 by Lemma 3.1. Write G = G1 + G2 for some two submonomials G1 and
G2, where G1 v T (N1) and G2 v T (N2). Hence t(G1)≤ t(T (N1))≤ k−2. By Proposition
3.1, there is a matrix Y (v N1) such that G1 v T (Y ) and ](Y ) ≤ k− 2. By Lemma 3.2,
t(Y +N2)≤ t(Y )+ t(N2)≤ k. Also

G = G1 +G2 v T (Y )+T (N2) = T (Y +N2)

and hence t(T (Y + N2)) ≥ k + 1. Since t(Y + N2) ≤ k, we can choose a matrix Z such that
t(Y + N2 + Z) = k. But then k = t(T (Y + N2 + Z)) ≥ t(T (Y + N2)) ≥ k + 1, impossible.
Therefore t(T (X)) = k or k−1 for all X in Mm,n with t(X) = k−1.
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Let X be a partitioned matrix in Mm,n as X =
[

X1 X2
X3 X4

]
, where X1 ∈Mp,q. For a cell

Ei, j, we say that Ei, j is in X1 if xi, j = 1 with 1 ≤ i ≤ p and 1 ≤ j ≤ q. Similarly we can
define that Ei, j is a cell in Xl for all l ∈ {1,2,3,4}.

The matrix in Mm,n whose entries are all 1, is denoted by J. That is, J =
m
∑

i=1

n
∑
j=1

Ei, j.

Lemma 3.4. Suppose that T is a linear operator on Mm,n preserving term ranks k and k+1,
where 2≤ k ≤ m−1. Let A be a matrix in Mm,n with t(A) = k−1. If T (A) does not have a
proper covering, then t(T (A)) = k−1.

Proof. Clearly t(T (A)) = k or k− 1 by Lemma 3.3. Now if t(T (A)) = k, we will get a
contradiction. And then t(T (A)) = k− 1. Suppose that t(T (A)) = k. Since t(A) = k− 1,
there is a matrix X that is a sum of k−1 distinct full line matrices such that AvX . Obviously
t(X) = k−1. It follows from Lemma 3.3 that t(T (X)) = k because t(T (A)) = k and T (A)v
T (X). Since T (A) does not have a proper covering, neither does T (X).

If the covering of T (X) was composed of k full row matrices, by permuting rows and

columns of T (X), we can assume that T (X) =
[

X1 X2
O O

]
, where X1 ∈Mk with Ik v X1.

For a cell Ei, j with i, j > k, suppose that Ei, j v T (E) for some cell E. Then E 6v X and
so t(X + E) = k, while t(T (X + E)) ≥ k + 1, a contradiction. Hence T (J) is of the form

T (J) =
[
Y1 Y2
Y3 O

]
with X1 v Y1. Since T preserves term rank k + 1, we have Y2 6= O and

Y3 6= O. So there are two cells F2 and F3 in Y2 and Y3, respectively such that F2 v T (Ea,b)
and F3 v T (Ec,d) for some cells Ea,b and Ec,d(6v X).

If X2 6= O, it follows from Proposition 2.1 and F3 v T (Ec,d) that t(T (X +Ec,d)) = k +1,

while t(X +Ec,d) = k, a contradiction. So X2 = O and hence T (X) =
[

X1 O
O O

]
and Ea,b 6vX .

If a = c or b = d, then t(X + Ea,b + Ec,d) = k, while t(T (X + Ea,b + Ec,d)) ≥ k + 1 by
Proposition 2.1, a contradiction. Hence a 6= c and b 6= d.

If T (Ea,d) dominates a cell in Y2, then t(T (X + Ea,d + Ec,d)) = k + 1 by Proposition
2.1, while t(X + Ea,d + Ec,d) = k, a contradiction. Hence T (Ea,d) cannot dominate a cell
in Y2. Similarly it cannot dominate a cell in Y3. Hence T (Ea,d) only dominates a cell in
Y1. A parallel argument shows that T (Ec,b) only dominates a cell in Y1. It follows that
t(T (X +Ea,d +Ec,b)) = k, while t(X +Ea,d +Ec,b) = k+1, a contradiction. Similarly if the
covering of T (X) was composed of k full column matrices, we get a contradiction.

Proposition 3.2. Suppose that T is a linear operator on Mm,n preserving term ranks k and
k + 1, where 2 ≤ k ≤ m−1, and let X ∈Mm,n be a sum of k−1 distinct full line matrices.
For cells Ea1,b1 , . . . ,Eas,bs that are not dominated by X, we have that cov(T (X + Rai)) 6=
cov(T (X +Cb j)) for all i, j ∈ {1, . . . ,s}.

Proof. Clearly t(T (X + Rai)) = t(T (X +Cb j)) = k for all i, j ∈ {1, . . . ,s} because t(X +
Rai) = t(X +Cb j) = k. If cov(T (X + Rai)) = cov(T (X +Cb j)) for some i, j ∈ {1, . . . ,s},
then t(T (X + Rai +Cb j)) = k, while t(X + Rai +Cb j) = k + 1, a contradiction. Hence the
result follows.
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Lemma 3.5. Suppose that T is a linear operator on Mm,n preserving term ranks k and
k+1, where 2≤ k≤m−2. Let A be a matrix in Mm,n with t(A) = k−1. If T (A) has a pure
proper covering, then t(T (A)) = k−1.

Proof. Clearly t(T (A)) = k or k− 1 by Lemma 3.3. Suppose that t(T (A)) = k. Since
t(A) = k− 1, there is a matrix X that is a sum of k− 1 distinct full line matrices such that
A v X . Obviously t(X) = k− 1. It follows from Lemma 3.3 that t(T (X)) = k because
t(T (A)) = k and T (A)v T (X). Since T (A) has a pure proper covering, it follows that T (X)
does not have a proper covering or has a pure proper covering. But if T (X) does not have
a proper covering, then t(T (X)) = k− 1 by Lemma 3.4, a contradiction. Thus T (X) has a
pure proper covering. It follows from Lemma 2.2 that by permuting rows and columns of
T (X), we can assume that

T (X) =

X1 X2 X3
X4 O O
X7 O O

 , Ir v X2 and Ik−r v X4,

where 1 ≤ r ≤ k−1, X2 ∈Mr and X4 ∈Mk−r; Furthermore both
[
X2 X3

]
and

[
X4
X7

]
have

no proper covering. Given a cell Ei, j with i, j > k, if Ei, j v T (E) for some cell E, then
E 6v X and so t(X +E) = k, while t(T (X +E))≥ k+1, a contradiction. Thus T (J) is of the
form

T (J) =

Y1 Y2 Y3
Y4 Y5 Y6
Y7 Y8 O

 ,

where the sizes of partitions of T (X) and T (J) are equal. Let

S1 = {R1, . . . ,Rk}, S2 = {Rr+1, · · · ,Rk,Ck−r+1, · · ·Ck},
S3 = {C1, . . . ,Ck} and S4 = {R1, · · · ,Rr,C1, · · ·Ck−r}.

Case 1. X3 6= O or X7 6= O : Suppose that X3 6= O. If Y8 6= O, there is a cell F in Y8 such
that F v T (E) for some cell E(6v X). Then t(X + E) = k, while t(T (X + E)) ≥ k + 1 by
Lemma 2.2, a contradiction. Hence Y8 = O. It follows that

[
Y5 Y6

]
6= O and Y7 6= O

because T preserves term rank k + 1. So there are two cells F1 and F2 in
[
Y5 Y6

]
and Y7,

respectively such that F1 v T (Ea,b) and F2 v T (Ec,d) for some cells Ea,b(6v X) and Ec,d . By
Lemma 2.2, t(T (X +Ea,b +Ec,d))≥ k+1. Hence Ec,d 6v X and t(Ea,b +Ec,d) = 2. So a 6= c
and b 6= d. If T (Ea,d) dominates a cell in

[
Y5 Y6

]
, then t(T (X + Ea,d + Ec,d)) ≥ k + 1 by

Lemma 2.2, while t(X +Ea,d +Ec,d) = k, a contradiction. That is, T (Ea,d) cannot dominate
a cell in

[
Y5 Y6

]
. Similarly T (Ec,b) cannot dominate a cell in

[
Y5 Y6

]
. It follows from

Y8 = O that S4 is a covering of T (X +Ea,d +Ec,b). Hence t(T (X +Ea,d +Ec,b)) = k, while
t(X + Ea,d + Ec,b) = k + 1, a contradiction. By a parallel argument, we get a contradiction
for the case of X7 6= O.

Case 2. X3 = O and X7 = O: That is, T (X) =

X1 X2 O
X4 O O
O O O

. Now we will show that

Y6 = O or Y7 = O. If not, there are two cells F6 and F7 in Y6 and Y7, respectively such that
F6 v T (Ee, f ) and F7 v T (Eg,h) for some cells Ee, f (6v X) and Eg,h(6v X). By Lemma 2.2, we
have

cov(T (X +L1)) ∈ {S1,S2} and cov(T (X +L2)) ∈ {S3,S4},
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where L1 = Re or C f , and L2 = Rg or Ch. Notice that if cov(T (X +L1)) = S2, then X1 = O.
By Proposition 3.2, we loss no generality in assuming that cov(T (X +Re)) = S1, cov(T (X +
Rg)) = S3 and

cov(T (X +C f )) = S2 and cov(T (X +Ch)) = S4. (3.1)
Since t(X) = k−1 and k≤m−2, we can choose a full row matrix Rl that is not dominated by
X +Re +Rg. Clearly cov(T (X +Rl)) ∈ {S1,S2,S3,S4} because t(X +Rl) = t(T (X +Rl)) =
k. But then cov(T (X + Rl)) ∈ {S1,S3} by (3.1) and Proposition 3.2. Say that cov(T (X +
Rl)) = S1. But then t(T (X +Rl +Re)) = k, while t(X +Rl +Re) = k +1, a contradiction.

Consequently we have established Y6 = O or Y7 = O. A parallel argument shows that
Y3 = O or Y8 = O. Suppose that Y6 = O. Then Y3 6= O because T preserves term rank k +1.

Hence Y8 = O and so T (J) =

Y1 Y2 Y3
Y4 Y5 O
Y7 O O

. Clearly Y5 6= O and Y7 6= O. Hence there are

three cells F3, F5 and F7 in Y3, Y5 and Y7, respectively such that

F3 v T (Ea3,b3), F5 v T (Ea5,b5) and F7 v T (Ea7,b7)

for some cells Eai,bi that are not dominated by X . By Lemma 2.2 and Proposition 3.2, we
loss no generality in assuming that

cov(T (X +Ra3)) = S1 and cov(T (X +Cb3)) = S4. (3.2)

Again by Lemma 2.2, Proposition 3.2 and (3.2), we have

cov(T (X +Ra7)) = S3 and cov(T (X +Cb7)) = S4. (3.3)

If b3 6= b7, then t(T (X +Cb3 +Cb7)) = k, while t(X +Cb3 +Cb7) = k + 1, a contradiction.
Hence b3 = b7. But then b5 6= b3 by Lemma 2.2. Thus cov(T (X +Cb5)) = S2 by (3.2), (3.3)
and Proposition 3.2. Since t(X) = k−1 and k ≤ m−2, we can choose a full row matrix Rt
that is not dominated by X + Ra3 + Ra7 . It follows from (3.2), cov(T (X +Cb5)) = S2 and
Proposition 3.2 that cov(T (X + Rt)) = S1 or S3. Say that cov(T (X + Rt)) = S1. But then
t(T (X +Ra3 +Rt)) = k, while t(X +Ra3 +Rt) = k +1, a contradiction. Similarly, we get a
contradiction for the case of Y7 = O.

Theorem 3.1. Let T be a linear operator on Mm,n, where m ≥ 3. Then T preserves term
rank if and only if T preserves term ranks 2 and 3.

Proof. Suppose that T preserves term ranks 2 and 3. Let X be a matrix in Mm,n with t(X) =
1. Then t(T (X)) = 1 or 2 by Lemma 3.3. Hence T (X) does not have a proper covering or
has a pure proper covering. It follows from Lemmas 3.4 and 3.5 that t(T (X)) = 1. Thus T
preserves term rank 1. Therefore T preserves term rank by Theorem 1.1. The converse is
obvious.

Theorem 3.2. Let T be a linear operator on Mm,n. Then T preserves term rank if and only
if T preserves term ranks m−1 and m.

Proof. Assume that T preserves term ranks m− 1 and m. Let X be a matrix in Mm,n with
t(X) = m. Then t(T (X)) = m by hypothesis. Oppositely, let t(T (X)) = m for some X . If
t(X) < m, take a matrix Y such that t(X +Y ) = m− 1. But then m− 1 = t(T (X +Y )) ≥
t(T (X)) = m, impossible. It follows that t(T (X)) = m if and only if t(X) = m for all X .
Thus T strongly preserves term rank m. Therefore T preserves term rank by Theorem 1.2.
The converse is obvious.
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Let Pm,n be the set of all matrix X in Mm,n which either do not have a proper covering
or have a pure proper covering. Clearly, X ∈ Pm,n for all X ∈Mm,n with t(X) ≤ 2. But
if X ∈ Mm,n and t(X) ≥ 3, then X ∈ Pm,n may be true or false. For examples, consider

two matrices X =

0 1 1
0 1 1
1 0 0

⊕Om−3,n−3 and Y =

0 1 1
0 0 1
1 0 0

⊕Om−3,n−3, where A⊕B

denotes the direct sum of matrices A and B. Then t(X) = t(Y ) = 3 and X ∈ Pm,n, while
Y 6∈ Pm,n.

Lemma 3.6. Suppose that T is a linear operator on Mm,n. If T preserves Pm,n and term
ranks k and k +1, where 2≤ k ≤ m−1, then T preserves term rank k−1.

Proof. If k = m− 1, then T preserves term rank m− 2 by Theorem 3.2. Suppose that
k ≤ m−2. Let A be a matrix in Mm,n with t(A) = k−1. Then A v X for some X in Mm,n,
where X is a sum of k−1 distinct full line matrices. Clearly X ∈Pm,n and hence T (X)∈Pm,n
by hypothesis. Thus T (X) does not have a proper covering or has a pure proper covering.
Hence t(T (X)) = k−1 by Lemmas 3.4 and 3.5. Since t(T (A))≤ t(T (X)), it follows from
Lemma 3.3 that t(T (A)) = k−1. Therefore T preserves term rank k−1.

Theorem 3.3. Let T be a linear operator on Mm,n. Then T preserves term rank if and only
if T preserves Pm,n and term ranks k and k +1, where 1≤ k ≤ m−1.

Proof. Assume that T preserves Pm,n and term ranks k and k + 1, where 1 ≤ k ≤ m−1. If
k = 1, then T preserves term rank by Theorem 1.1. For the case of k ≥ 2, T preserves term
ranks 1 and 2 by applying Lemma 3.6 k times. Thus T preserves term rank by Theorem 1.1.
The converse is obvious.

The following is an immediate consequence of Theorem 3.3.

Corollary 3.1. Let T be a linear operator on Pm,n. Then T preserves term rank if and only
if T preserves term ranks k and k +1, where 1≤ k ≤ m−1.

Theorem 3.4. Let T be a linear operator on Mm,n. Then T preserves term rank if and only
if T strongly preserves term rank m−1.

Proof. Assume that T strongly preserves term rank m−1. First suppose that X is a matrix
in Mm,n with t(X) = m. Take a matrix Y such that Y v X and t(Y ) = m−1. Then t(T (X))≥
t(T (Y )) = t(Y ) = m−1. Hence t(T (X)) = m by hypothesis. Next, suppose that t(T (X)) =
m for some X in Mm,n. By hypothesis, t(X) = m or t(X) ≤ m− 2. If t(X) ≤ m− 2, take a
matrix Z such that t(X +Z) = m−1. But then m = t(T (X))≤ t(T (X +Z)) = m−1, which
is impossible. Hence t(X) = m. Therefore T strongly preserves term rank m. Hence T
preserves term rank by Theorem 1.2.

The converse is obvious.

Theorem 3.5. Let T be a linear operator on Mm,n. Then T preserves term rank if and only
if T preserves Pm,n and strongly preserves term rank k, where 1≤ k ≤ m.

Proof. Suppose that T preserves Pm,n and strongly preserves term rank k, where 1≤ k≤m.
If k = 1 or m, then T preserves term rank by Theorem 1.2. Assume that 2≤ k ≤ m−1. Let
X be a matrix in Mm,n with t(X) = k−1. By the same pattern of the proof in Lemma 3.3, we
have t(T (X)) = k−1 or k. But then t(T (X)) = k−1 by hypothesis. Therefore T preserves
term rank k−1. Thus T preserves term rank by Theorem 3.3. The converse is obvious.
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The following is an immediate consequence of Theorem 3.5.

Corollary 3.2. Let T be a linear operator on Pm,n. Then T preserves term rank if and only
if T strongly preserves term rank k, where 1≤ k ≤ m.
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