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Abstract. In this paper we obtain some characterizations of linear operators that preserve
term rank of Boolean matrices. With certain conditions, we prove that for a linear opera-
tor 7 on the Boolean matrix space, T preserves term rank if and only if 7 preserves two
consecutive term ranks if and only if 7" strongly preserves just one term rank.
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1. Introduction

Let M, , be the set of all m x n matrices with entries in the Boolean algebra B = {0,1}. If
m = n, we will use the notation M, instead of M, ,,. Arithmetic in B follows the usual rules
except that 1 4+ 1 = 1. The usual definitions for adding and multiplying matrices apply to
Boolean matrices as well.

The term rank of a matrix X in M, , is the least number of lines (rows and columns)
needed to include all the nonzero entries in X, and denoted by #(X). Term ranks play a
central role in the combinatorial matrix theory and have many applications in network and
graph theory (see [4]).

An operator T : M, , — M, is called linear if T (aX 4+ bY) = aT (X)+ bT (Y) for all
X,Y € M, , and for all a,b € B. Let T be a linear operator on M, ,. If f is a function
defined on M, ,,, then T preserves f if f(T(X)) = f(X) for all X. There are many papers
on linear operators that preserve matrix functions over B ([1]-[5] and therein). But there
are few papers on term-rank preservers of Boolean matrices.

Hereafter, unless otherwise specified, we will assume that 2 < m < n. It follows that
1 <t(X) < mfor all nonzero X in M, ,,.

For a linear operator 7' on M, ,,, we say that T’

(1) preserves term rank k if t(T (X)) = k whenever ¢(X) = k for all X;
(2) strongly preserves term rank k if t(T (X)) = k if and only if #(X) = k for all X;
(3) preserves term rank if T preserves term rank k for every k < m.
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In [3], Beasley and Pullman have studied linear operators on M, , that preserve term
rank, and obtained the following main results:

Theorem 1.1. For a linear operator T on M, ,, T preserves term rank if and only if T
preserves term ranks 1 and 2.

Theorem 1.2. For a linear operator T on M, ,, T preserves term rank if and only if T
strongly preserves term rank 1 or m.

We continue their work in this paper. Let T’ be a linear operator on M, ,,. As a general-
ization of Theorem 1.1, we obtain that T preserves term rank if and only if T preserves two
consecutive term ranks k and k + 1 in a restricted condition, where 1 < k <m — 1. Also, we
generalize Theorem 1.2 as follow: T preserves term rank if and only if T strongly preserves
term rank k in a restricted condition, where 1 < k < m.

2. Preliminaries

A matrix in M, , with only one entry equal to 1 is called a cell. If the nonzero entry occurs
in the ith row and the jth column, we denote the cell by E; ;.

Definition 2.1. A matrix L in M, , is called a full line matrix if L = Y, E; ; for some i or
s=1

m n m

L=Y E; jforsome j: Ri =Y Ej is the ith full row matrix and C; = Y, E, ; is the jth full
=1 s=1 =1

column matrix.

Definition 2.2. Let X and Y be matrices in M, ,,. Then X dominates Y (denoted by Y C X)
if yij # 0 implies x; j # 0 for all i and j.

Definition 2.3. Let X be a matrix in M, , with t(X) = k. Then there are r full row matrices
Ri,,...,Ri, and k —r full column matrices Cj,...,Cj,_, such that X C (R;; +---+R;, )+
(Cj,+---+Cj,_,), where 0 < r < k. We say that

COV(X) = {Ri17"'7Rir7cj1’"'7Cjk7r}

is a covering of X. If the possible value of r are only 0 or k, we say that X does not have a

proper covering; Otherwise X has a proper covering.

1

0 0

have a proper covering.
The m X n zero matrix is denoted by O, ,, and we will suppress the subscript when the

order is evident from the context. The matrix I, is the n X n identity matrix.

For example, { ﬂ has a proper covering {R1,Cs}, while Ll) i ﬂ does not

Proposition 2.1. Let X = [12, g} be a partitioned matrix in M, ,, where A € M with

LCAand 1 <k<m. IfB#O, [C D} # 0 and [A B] does not have a proper covering,
thent(X) > k—+ 1.

Proof. By hypothesis, #(X) > k and {Ry,...,Ri} is the only covering of [A B]. If k =
1, obviously #(X) > 2. For k > 2, suppose that #(X) = k. If cov(X) is a covering of X,
then cov(X) cannot be composed of k full row matrices or k full column matrices. Thus
cov(X) must be a proper covering. But then cov(X) is a proper covering of [A  B]. This
contradiction shows that #(X) > k+ 1. 1



Characterizations of Term-Rank Preservers over Boolean Matrices 279

Lemma 2.1. Let X be a matrix in M, , with t(X) = k(> 2). If X has a proper covering, for

some r € {1,... . k— 1}, by permuting rows and columns of X, we can assume that
X1 X X3
X=1|X4s O O|, LEXy, and I_,CXy,
X; 0 O
where X, € M, and X4 € M_,; the rest X; are matrices of suitable sizes.
Proof. Since X has a proper covering, cov(X), there is an integer r in {1,...,k— 1} such that
cov(X) is composed of r full row matrices and k — r full column matrices. Hence by permut-
ing rows and columns of X (if necessary), we can assume that cov(X) = {Ry,...,R,,Ci,...,Cr_,}
X1 X2 X3
sothat X = | Xy O O, where X, € M, with I, E X, and Xy € Ml;_, with I;,_, C Xy;
X; O O
the rest X; are matrices of suitable sizes. 1

Definition 2.4. Let X be a matrix in M, ,, partitioned as in Lemma 2.2. Then we say that

X has a pure proper covering if neither [Xz X3] nor [§4 has a proper covering.
7
0 1 1 1 01 1 1
For example, consider two matricesX = |0 0 1 1| andY = {0 0 1 Of. Then
1 0 0O 1 0 0O

t(X) =t(Y) = 3. But X has a pure proper covering, while Y does not.

Lemma 2.2. Let X be a matrix in M, , with t(X) = k, where k > 2. Assume that X has a
pure proper covering and is partitioned as in Lemma 2.1. For everyY € M, ,, ift(X+Y) =
kand cov(X +7Y) is a covering of X +Y, then cov(X +Y) € {S1,52,53,54}, where

Sl = {Rla-"7Rk}7 52 = {Rr+17"' 7Rk7Ck7r+17"'Ck}7
S3= {C17"'7Ck} and S4= {Rla"' 7R}’7C17"'Ck7r}'

Proof. Assume that ¢(X +Y) =k and cov(X +Y) is a covering of X +Y. Since I, C X; and
I, C X4, we can easily show that cov(X +Y) contains neither R; nor C jforalli,j> k. Let
Dy =A{Ry,...,R.}, D ={Ry11,...,R}, D3 ={C),...,C—,} and Dy = {Cy—y41,...,Ci}.
First, suppose that cov(X +Y') contain no member in D;. Then X3 = O. It follows from
I, C X, that cov(X +Y) must contain all members in Dy4. Since {?
7
covering, cov(X 4+ Y) must contain all members in either D3 or D (in this case, X; = O and
X7 = 0). It follows that cov(X +Y) =Dy UD3 = Sz orcov(X +Y) =DsUD;, = S5.
Next, suppose that cov(X +Y) contains # members in Dy, where 1 < <r. Ifr < r, then
cov(X 4+ Y) contains at least » — ¢t members in Dy because I, C X,. Therefore cov(X +7Y)

} does not have a proper

. . . X .
contains at most k — r members in D, UD3. Since {X4 does not have a proper covering,
7

cov(X +Y) must contain all members in either D, or D3. Thus cov(X +Y) contains exactly
r —t members in Dy so that [Xz X3] is dominated by  members in D; and r — t members
in D4, a contradiction to the fact that [Xg X3] does not have a proper covering. Thus t = r.
. X L
Since {X4] does not have a proper covering, it follows that cov(X +Y) = Dy UD3 =S4 or
7
cov(X+Y)=D;UD; =S (in this case, X7 = O). |
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3. Term-rank preservers

A matrix M in M, , is called a monomial if it has exactly m 1’s with no two of the 1’s on a
line. That is, there is an n X n permutation matrix P such that MP = [Ly | Opp—m). UNC M
and M is a monomial, we call N a submonomial.

Lemma 3.1. [4] If X is an nonzero matrix in My, », there is a submonomial N(C X) such
thatt(X) =t(N).

Lemma 3.2. IfX and Y are matrices in M ,, then t(X +Y) <t(X)+t(Y).

Proof. Obvious. 1

Notice that an invertible linear operator need not preserve term-rank. For example, define

the linear operator 7 : M, — M, by T ( {)ZC vyv ] ) = B )Z] } . Then T is an invertible linear

operator that does not preserve term-rank.

Example 3.1. Consider the operator T : M, , — M, , defined by

m n 1 0
TX)=(Y Y xi; [0" 0} for all X € M, ,.
i=1j=1

Then T preserves term rank k, while it does not preserve term rank.
The number of nonzero entries of a matrix X in M, , is denoted by #(X).

Proposition 3.1. [3] Let T be a linear operator on M, . For a nonzero X € M,y ,, suppose
that N C T(X), where N is a submonomial of term rank k(< m). If t(X) > k, there is a
matrix Y (E X) such that NC T(Y) and §(Y) < k.

Lemma 3.3. If T is a linear operator on Ml ,, preserving term ranks k and k+ 1, where
2<k<m—1, thent(T(X)) =kork—1forall X in M, , witht(X) =k— 1.

Proof. Let X be a matrix in M, , with #(X) =k — 1. If #(T (X)) > k+ 1, take a cell E such
that?7(X +E) =k. Butthenk=¢(T(X+E)) > (T (X)) > k+ 1, impossible. So#(T (X)) <k.
Assume that #(T (X)) < k—2. By Lemma 3.1, there is a submonomial N;(C X) such that
t(N1) = k— 1. Furthermore #(T (N;)) < k— 2 because T'(N;) C T(X).

Take a submonomial N, with #(N,) = 2 such that Nj + N, is a submonomial with ¢(N; +
N;) =k+1. By hypothesis, #(T (N +N,)) =k+1. Thust(T(N2)) > (k+1)—#(T(Ny)) >3
by Lemma 3.2. Since (T (N; +N,)) = k+ 1, there is a submonomial G(C T (N +N,)) such
that #(G) = k+ 1 by Lemma 3.1. Write G = G| 4+ G, for some two submonomials G| and
Gy, where G| C T(N;) and G, £ T(N,). Hence 1(Gy) < ¢(T(Ny)) < k—2. By Proposition
3.1, there is a matrix Y (E Np) such that G; C T(Y) and §(Y) < k—2. By Lemma 3.2,
HY +Ny) <t(Y)+1(N2) < k. Also

G=G +G,CTY)+T(N) =T (Y +N,)

and hence #(T (Y +N2)) > k+ 1. Since #(Y + Na) < k, we can choose a matrix Z such that
t(Y+N2+Z)=k. Butthen k =¢t(T(Y + N2+ Z)) > t(T(Y +Nz)) > k+ 1, impossible.
Therefore #(T(X)) =k or k— 1 for all X in Ml,,, , with #(X) =k— 1. 1
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X1 X
X3 Xy
E;;, we say that E; ; is in X; if x; j = 1 with 1 <i<pand 1< j<g. Similarly we can
define that E; ; is a cell in X; for all [ € {1,2,3,4}.

m n

The matrix in M, , whose entries are all 1, is denoted by J. Thatis,J =}, ¥ E; ;.
i=1j=1

Let X be a partitioned matrix in M, , as X = } , where X; € M, ,. For a cell

Lemma 3.4. Suppose that T is a linear operator on Ml,,, , preserving term ranks k and k+1,
where 2 < k <m— 1. Let A be a matrix in M, , with t(A) = k— 1. If T(A) does not have a
proper covering, then t(T(A)) =k — 1.

Proof. Clearly ¢(T(A)) =k or k— 1 by Lemma 3.3. Now if #(T(A)) = k, we will get a
contradiction. And then #(7(A)) = k— 1. Suppose that (T (A)) = k. Since t(A) =k — 1,
there is a matrix X that is a sum of k — 1 distinct full line matrices such that A C X. Obviously
t(X) =k— 1. It follows from Lemma 3.3 that #(T (X)) = k because #(T(A)) =k and T(A) C
T(X). Since T (A) does not have a proper covering, neither does 7' (X).

If the covering of T (X) was composed of k full row matrices, by permuting rows and
= }g }(()2 , where X; € M with [ C X|.
For a cell E; ; with i, j > k, suppose that E; ; C T(E) for some cell E. Then E Z X and
so t(X +E) =k, while #(T(X +E)) > k+ 1, a contradiction. Hence T(J) is of the form

TWJ)= Bg Ig} with X; C Y;. Since T preserves term rank k -+ 1, we have ¥ # O and

columns of 7(X), we can assume that 7'(X)

Y3 # O. So there are two cells F, and F3 in Y, and Y3, respectively such that F> T T(Ea’b)
and F3 C T (E. 4) for some cells E, , and E, 4(Z X).

If X5 # O, it follows from Proposition 2.1 and F3 C T(E 4) that t(T (X + E.4)) = k+ 1,
while 1(X +E. 4) =k, a contradiction. So X, = O and hence T'(X) = [)8 8] andE,, £ X.
If a=corb=d, then t(X+E,p+E.q) =k, while t(T(X +E,p +E.q)) > k+1 by
Proposition 2.1, a contradiction. Hence a # ¢ and b # d.

If T(E,q) dominates a cell in Y5, then #(T(X + E, 4+ E.4)) = k+ 1 by Proposition
2.1, while t(X + E, 4+ E. 4) = k, a contradiction. Hence T (E, ) cannot dominate a cell
in ¥,. Similarly it cannot dominate a cell in ¥3. Hence T(E, ;) only dominates a cell in
Y. A parallel argument shows that 7'(E.;) only dominates a cell in ¥;. It follows that
H(T(X+Eyq+E.p)) =k while t(X +E, 4+ E.) = k+1, a contradiction. Similarly if the
covering of T'(X) was composed of k full column matrices, we get a contradiction. 1

Proposition 3.2. Suppose that T is a linear operator on M, ,, preserving term ranks k and
k+1, where 2 <k <m—1, and let X € M, , be a sum of k — 1 distinct full line matrices.
For cells E,, p, ;... ,Eq, p, that are not dominated by X, we have that cov(T (X +Ry,)) #
cov(T (X +Cp))) foralli,j€{1,...,s}.

Proof. Clearly (T (X +Ry,)) =t(T(X +Cp;)) =k for all i, j € {1,...,s} because (X +
Ry) =t(X +Cp;) = k. 1If cov(T (X +Ry,)) = cov(T (X +Cp;)) for some i,j € {1,...,s},
then #(T (X + Rq; +Cs;)) = k, while (X + Ry, +Cp;) = k+ 1, a contradiction. Hence the
result follows. 1
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Lemma 3.5. Suppose that T is a linear operator on M, , preserving term ranks k and
k+1, where 2 <k <m—2. Let A be a matrix in M, , with t(A) =k — 1. If T(A) has a pure
proper covering, then t(T(A)) =k — 1.

Proof. Clearly t(T(A)) =k or k—1 by Lemma 3.3. Suppose that #(T(A)) = k. Since
t(A) = k— 1, there is a matrix X that is a sum of k — 1 distinct full line matrices such that
A C X. Obviously #(X) = k— 1. It follows from Lemma 3.3 that #(T(X)) = k because
t(T(A)) =kand T(A) C T(X). Since T (A) has a pure proper covering, it follows that 7'(X)
does not have a proper covering or has a pure proper covering. But if 7(X) does not have
a proper covering, then 7(7' (X)) = k— 1 by Lemma 3.4, a contradiction. Thus 7(X) has a
pure proper covering. It follows from Lemma 2.2 that by permuting rows and columns of
T(X), we can assume that

X1 X2 X3
TX)=|Xs O O|, LCX, and I_,C X4,
X; O O

where 1 <r<k-—1,X, € M, and X4 € M,_,; Furthermore both [Xg X3] and [};4} have
7

no proper covering. Given a cell E;; with i,j >k, if E; ; T T(E) for some cell E, then
EZ X andsot(X+E) =k, whilez(T(X+E)) > k—+1, a contradiction. Thus 7'(J) is of the
form

Yi »h I3
T=|Ya Ys Y|,
Y Y5 O

where the sizes of partitions of 7(X) and T (J) are equal. Let

Si=A{Ri,..,Re}, S2={Rr11," ,Ri;Cr—ry1,--Ci},

S3={C1,...,Ct} and S;={Ry,---,R,,C1,---Cr_,}.
Case 1. X3 # O or X7 # O: Suppose that X3 £ O. If Y3 # O, there is a cell F in Yg such
that F C T(E) for some cell E([Z X). Then t(X + E) = k, while (T (X +E)) > k+ 1 by
Lemma 2.2, a contradiction. Hence Yg = O. It follows that [Y5 Y6] #0and Y7 #£ 0
because T preserves term rank k+ 1. So there are two cells F; and F, in [Ys Y6] and Y7,
respectively such that Fy C T'(E, ) and F> T T (E, 4) for some cells E, , (£ X) and E. 4. By
Lemma 2.2, t(T(X +E,p+E.q)) >k+1. Hence E.; Z X and t(E,, + E.4) =2. Soa# ¢
and b # d. If T(E,4) dominates a cell in [Ys Y|, then t(T'(X + Eoq+Ecq)) > k+1 by
Lemma 2.2, while t(X + E, 4 + E. 4) = k, a contradiction. That is, T (E, 4) cannot dominate
a cell in [Ys Y6]. Similarly T(E.j) cannot dominate a cell in [YS Y6]. It follows from
Y3 = O that S4 is a covering of T (X +E, 4+ E, ;). Hence t(T (X +E, 4+ E.},)) = k, while
t(X+Euq+E.p) =k+1, a contradiction. By a parallel argument, we get a contradiction
for the case of X7 # O.

X; X O
Case 2. X3 =0 and X; = O: Thatis, T(X)= |Xa O O|. Now we will show that
O O O

Yo = O or Y7 = O. If not, there are two cells Fy and F7 in Yy and Y7, respectively such that
Fs CT(E, ) and F; C T(Eg ) for some cells E, (IZ X) and Eg ;,(IZ X). By Lemma 2.2, we
have

cov(T(X+L1)) € {S1,52} and cov(T(X+Ly)) € {S3,54},
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where L; = R, or Cy, and L, = R, or Cj,. Notice that if cov(7T (X +L;)) = S», then X; = O.
By Proposition 3.2, we loss no generality in assuming that cov(T (X +R,)) = S1, cov(T (X +
R,)) =S3 and
cov(T(X+Cyr)) =8> and cov(T(X+Cp)) = Ss. (3.1)
Since t(X) =k — 1 and k <m—2, we can choose a full row matrix R; that is not dominated by
X +R.+Ry. Clearly cov(T (X +R;)) € {S1,52,53,54} because t(X +R;) =t(T (X +R;)) =
k. But then cov(T (X 4+ R;)) € {S1,53} by (3.1) and Proposition 3.2. Say that cov(7 (X +
R;)) =S;. Butthen#(T(X +R; +R,)) = k, while #(X + R; + R,) = k+ 1, a contradiction.
Consequently we have established Y5 = O or Y7 = O. A parallel argument shows that
Y3 = O or Y3 = O. Suppose that Y5 = O. Then Y3 # O because T preserves term rank k+ 1.

n n 1
Hence s =OandsoT(J)= |Y4 Y5 O|. Clearly Y5 # O and ¥; # O. Hence there are
Y, O O

three cells F3, F5 and F; in Y3, Y5 and Y7, respectively such that
F3 ET(Ea3b3)7 FS ET(Ea5,b5) and F7 E T(Ell77b7)

for some cells E,, ;. that are not dominated by X. By Lemma 2.2 and Proposition 3.2, we
loss no generality in assuming that

cov(T (X +Ry;)) =81 and  cov(T (X +Cp,)) = Sa. (3.2)
Again by Lemma 2.2, Proposition 3.2 and (3.2), we have
cov(T(X+Ry)) =83 and cov(T (X +Cp,)) = Ss. (3.3)

If b3 # by, then t(T (X +Cp, +Cp,)) = k, while t(X +C, +Cp,) = k+ 1, a contradiction.
Hence b3 = by. But then bs # b3 by Lemma 2.2. Thus cov(T (X +Cp,)) = S2 by (3.2), (3.3)
and Proposition 3.2. Since #(X) =k —1 and k < m — 2, we can choose a full row matrix R,
that is not dominated by X + R, + Rg,. It follows from (3.2), cov(T (X +Cp,)) = S, and
Proposition 3.2 that cov(T (X + R;)) = S; or S3. Say that cov(T (X +R;)) = S;. But then
t(T(X +Ra, +R;)) =k, while 1(X + Ry, +R;) = k+ 1, a contradiction. Similarly, we get a
contradiction for the case of Y7 = O. 1

Theorem 3.1. Let T be a linear operator on My, ,, where m > 3. Then T preserves term
rank if and only if T preserves term ranks 2 and 3.

Proof. Suppose that T preserves term ranks 2 and 3. Let X be a matrix in M, , with (X)) =
1. Then ¢(T(X)) = 1 or 2 by Lemma 3.3. Hence T (X) does not have a proper covering or
has a pure proper covering. It follows from Lemmas 3.4 and 3.5 that #(T'(X)) = 1. Thus T
preserves term rank 1. Therefore T preserves term rank by Theorem 1.1. The converse is
obvious. 1

Theorem 3.2. Let T be a linear operator on M.y, ,. Then T preserves term rank if and only
if T preserves term ranks m — 1 and m.

Proof. Assume that T preserves term ranks m — 1 and m. Let X be a matrix in M, , with
t(X) = m. Then ¢t(T (X)) = m by hypothesis. Oppositely, let #(T (X)) = m for some X. If
t(X) < m, take a matrix ¥ such that t(X +Y) =m—1. Butthenm—1=¢(T(X+7Y)) >
t(T(X)) = m, impossible. It follows that #(T(X)) = m if and only if #(X) = m for all X.
Thus T strongly preserves term rank m. Therefore T preserves term rank by Theorem 1.2.
The converse is obvious. 1
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Let P, , be the set of all matrix X in M, , which either do not have a proper covering
or have a pure proper covering. Clearly, X € P, , for all X € M,,, with #(X) <2. But
if X € M, , and #(X) > 3, then X € P,,,, may be true or false. For examples, consider

0 1 1 0 1 1

two matrices X = |0 1 1| ®0y,-3,3andY = 1|0 0 1| ®O0,_3,-3, where AGB
1 00 1 00

denotes the direct sum of matrices A and B. Then #(X) =¢(Y) =3 and X € P,,,, while

Y ¢ ]Pm,zr

Lemma 3.6. Suppose that T is a linear operator on M, .. If T preserves P, , and term
ranks k and k+ 1, where 2 < k <m— 1, then T preserves term rank k — 1.

Proof. If k =m — 1, then T preserves term rank m — 2 by Theorem 3.2. Suppose that
k <m—2. Let A be a matrix in M,, , with #(A) = k— 1. Then A C X for some X in M, ,,
where X is a sum of k— 1 distinct full line matrices. Clearly X € P,, , and hence T'(X) € Py, ,
by hypothesis. Thus 7' (X) does not have a proper covering or has a pure proper covering.
Hence #(T(X)) = k— 1 by Lemmas 3.4 and 3.5. Since #(T(A)) <t(T(X)), it follows from
Lemma 3.3 that #(T'(A)) = k— 1. Therefore T preserves term rank k — 1. i

Theorem 3.3. Let T be a linear operator on M., ,. Then T preserves term rank if and only
if T preserves Py, , and term ranks k and k-1, where 1 <k <m—1.

Proof. Assume that T preserves IP,, , and term ranks k and k+ 1, where 1 <k <m—1. If
k =1, then T preserves term rank by Theorem 1.1. For the case of k > 2, T preserves term
ranks 1 and 2 by applying Lemma 3.6 & times. Thus 7" preserves term rank by Theorem 1.1.
The converse is obvious. 1

The following is an immediate consequence of Theorem 3.3.

Corollary 3.1. Let T be a linear operator on Py, ,. Then T preserves term rank if and only
if T preserves term ranks k and k+ 1, where 1 <k <m— 1.

Theorem 3.4. Let T be a linear operator on Ml ,,. Then T preserves term rank if and only
if T strongly preserves term rank m — 1.

Proof. Assume that T strongly preserves term rank m — 1. First suppose that X is a matrix
in M, , with #(X) = m. Take amatrix ¥ such thatY C X and#(Y) =m—1. Then¢(7T'(X)) >
t(T(Y)) =t(Y) =m— 1. Hence t(T (X)) = m by hypothesis. Next, suppose that #(T(X)) =
m for some X in M, ,. By hypothesis, #(X) =mor#(X) <m—2. If t(X) <m—2, take a
matrix Z such that #(X +Z) =m— 1. Butthen m = ¢(T (X)) < #(T (X +Z)) = m— 1, which
is impossible. Hence 7(X) = m. Therefore T strongly preserves term rank m. Hence T
preserves term rank by Theorem 1.2.

The converse is obvious. 1

Theorem 3.5. Let T be a linear operator on M.y, ,. Then T preserves term rank if and only
if T preserves Py, , and strongly preserves term rank k, where 1 < k < m.

Proof. Suppose that T preserves PP, , and strongly preserves term rank k, where 1 <k <m.
If k =1 or m, then T preserves term rank by Theorem 1.2. Assume that 2 < k <m — 1. Let
X be a matrix in M, , with#(X) = k— 1. By the same pattern of the proof in Lemma 3.3, we
have #(T'(X)) = k— 1 or k. But then #(T (X)) = k — 1 by hypothesis. Therefore T preserves
term rank k — 1. Thus T preserves term rank by Theorem 3.3. The converse is obvious. 1
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The following is an immediate consequence of Theorem 3.5.

Corollary 3.2. Let T be a linear operator on Py, ,. Then T preserves term rank if and only
if T strongly preserves term rank k, where 1 <k < m.
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