Characterizations of Term-Rank Preservers over Boolean Matrices

Kyung-Tae Kang and Seok-Zun Song
Department of Mathematics (and RIBS), Jeju National University, Jeju 690-756, Korea
kangkt@jejunu.ac.kr, szsong@jejunu.ac.kr

Abstract

In this paper we obtain some characterizations of linear operators that preserve term rank of Boolean matrices. With certain conditions, we prove that for a linear operator T on the Boolean matrix space, T preserves term rank if and only if T preserves two consecutive term ranks if and only if T strongly preserves just one term rank.

2010 Mathematics Subject Classification: 15A86, 15A03, 15A33

Keywords and phrases: Boolean matrix, term rank, covering, linear operator.

1. Introduction

Let $\mathbb{M}_{m, n}$ be the set of all $m \times n$ matrices with entries in the Boolean algebra $\mathbb{B}=\{0,1\}$. If $m=n$, we will use the notation \mathbb{M}_{n} instead of $\mathbb{M}_{n, n}$. Arithmetic in \mathbb{B} follows the usual rules except that $1+1=1$. The usual definitions for adding and multiplying matrices apply to Boolean matrices as well.

The term rank of a matrix X in $\mathbb{M}_{m, n}$ is the least number of lines (rows and columns) needed to include all the nonzero entries in X, and denoted by $t(X)$. Term ranks play a central role in the combinatorial matrix theory and have many applications in network and graph theory (see [4]).

An operator $T: \mathbb{M}_{m, n} \rightarrow \mathbb{M}_{m, n}$ is called linear if $T(a X+b Y)=a T(X)+b T(Y)$ for all $X, Y \in \mathbb{M}_{m, n}$ and for all $a, b \in \mathbb{B}$. Let T be a linear operator on $\mathbb{M}_{m, n}$. If f is a function defined on $\mathbb{M}_{m, n}$, then T preserves f if $f(T(X))=f(X)$ for all X. There are many papers on linear operators that preserve matrix functions over \mathbb{B} ([1]-[5] and therein). But there are few papers on term-rank preservers of Boolean matrices.

Hereafter, unless otherwise specified, we will assume that $2 \leq m \leq n$. It follows that $1 \leq t(X) \leq m$ for all nonzero X in $\mathbb{M}_{m, n}$.

For a linear operator T on $\mathbb{M}_{m, n}$, we say that T
(1) preserves term rank k if $t(T(X))=k$ whenever $t(X)=k$ for all X;
(2) strongly preserves term rank k if $t(T(X))=k$ if and only if $t(X)=k$ for all X;
(3) preserves term rank if T preserves term rank k for every $k \leq m$.

In [3], Beasley and Pullman have studied linear operators on $\mathbb{M}_{m, n}$ that preserve term rank, and obtained the following main results:

Theorem 1.1. For a linear operator T on $\mathbb{M}_{m, n}, T$ preserves term rank if and only if T preserves term ranks 1 and 2.
Theorem 1.2. For a linear operator T on $\mathbb{M}_{m, n}, T$ preserves term rank if and only if T strongly preserves term rank 1 or m.

We continue their work in this paper. Let T be a linear operator on $\mathbb{M}_{m, n}$. As a generalization of Theorem 1.1, we obtain that T preserves term rank if and only if T preserves two consecutive term ranks k and $k+1$ in a restricted condition, where $1 \leq k \leq m-1$. Also, we generalize Theorem 1.2 as follow: T preserves term rank if and only if T strongly preserves term rank k in a restricted condition, where $1 \leq k \leq m$.

2. Preliminaries

A matrix in $\mathbb{M}_{m, n}$ with only one entry equal to 1 is called a cell. If the nonzero entry occurs in the i th row and the j th column, we denote the cell by $E_{i, j}$.

Definition 2.1. A matrix L in $\mathbb{M}_{m, n}$ is called a full line matrix if $L=\sum_{s=1}^{n} E_{i, s}$ for some ior $L=\sum_{t=1}^{m} E_{t, j}$ for some $j: R_{i}=\sum_{s=1}^{n} E_{i, s}$ is the ith full row matrix and $C_{j}=\sum_{t=1}^{m} E_{t, j}$ is the j th full column matrix.

Definition 2.2. Let X and Y be matrices in $\mathbb{M}_{m, n}$. Then X dominates Y (denoted by $Y \sqsubseteq X$) if $y_{i, j} \neq 0$ implies $x_{i, j} \neq 0$ for all i and j.
Definition 2.3. Let X be a matrix in $\mathbb{M}_{m, n}$ with $t(X)=k$. Then there are r full row matrices $R_{i_{1}}, \ldots, R_{i_{r}}$ and $k-r$ full column matrices $C_{j_{1}}, \ldots, C_{j_{k-r}}$ such that $X \sqsubseteq\left(R_{i_{1}}+\cdots+R_{i_{r}}\right)+$ $\left(C_{j_{1}}+\cdots+C_{j_{k-r}}\right)$, where $0 \leq r \leq k$. We say that

$$
\operatorname{cov}(X)=\left\{R_{i_{1}}, \ldots, R_{i_{r}}, C_{j_{1}}, \ldots, C_{j_{k-r}}\right\}
$$

is a covering of X. If the possible value of r are only 0 or k, we say that X does not have a proper covering; Otherwise X has a proper covering.

For example, $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ has a proper covering $\left\{R_{1}, C_{3}\right\}$, while $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$ does not have a proper covering.

The $m \times n$ zero matrix is denoted by $O_{m, n}$, and we will suppress the subscript when the order is evident from the context. The matrix I_{n} is the $n \times n$ identity matrix.
Proposition 2.1. Let $X=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ be a partitioned matrix in $\mathbb{M}_{m, n}$, where $A \in \mathbb{M}_{k}$ with $I_{k} \sqsubseteq A$ and $1 \leq k<m$. If $B \neq O,\left[\begin{array}{ll}C & D\end{array}\right] \neq O$ and $\left[\begin{array}{ll}A & B\end{array}\right]$ does not have a proper covering, then $t(X) \geq k+1$.
Proof. By hypothesis, $t(X) \geq k$ and $\left\{R_{1}, \ldots, R_{k}\right\}$ is the only covering of $\left[\begin{array}{cc}A & B\end{array}\right]$. If $k=$ 1 , obviously $t(X) \geq 2$. For $k \geq 2$, suppose that $t(X)=k$. If $\operatorname{cov}(X)$ is a covering of X, then $\operatorname{cov}(X)$ cannot be composed of k full row matrices or k full column matrices. Thus $\operatorname{cov}(X)$ must be a proper covering. But then $\operatorname{cov}(X)$ is a proper covering of $\left[\begin{array}{ll}A & B\end{array}\right]$. This contradiction shows that $t(X) \geq k+1$.

Lemma 2.1. Let X be a matrix in $\mathbb{M}_{m, n}$ with $t(X)=k(\geq 2)$. If X has a proper covering, for some $r \in\{1, \ldots, k-1\}$, by permuting rows and columns of X, we can assume that

$$
X=\left[\begin{array}{ccc}
X_{1} & X_{2} & X_{3} \\
X_{4} & O & O \\
X_{7} & O & O
\end{array}\right], \quad I_{r} \sqsubseteq X_{2} \quad \text { and } \quad I_{k-r} \sqsubseteq X_{4},
$$

where $X_{2} \in \mathbb{M}_{r}$ and $X_{4} \in \mathbb{M}_{k-r}$; the rest X_{i} are matrices of suitable sizes.
Proof. Since X has a proper covering, $\operatorname{cov}(X)$, there is an integer r in $\{1, \ldots, k-1\}$ such that $\operatorname{cov}(X)$ is composed of r full row matrices and $k-r$ full column matrices. Hence by permuting rows and columns of X (if necessary), we can assume that $\operatorname{cov}(X)=\left\{R_{1}, \ldots, R_{r}, C_{1}, \ldots, C_{k-r}\right\}$ so that $X=\left[\begin{array}{ccc}X_{1} & X_{2} & X_{3} \\ X_{4} & O & O \\ X_{7} & O & O\end{array}\right]$, where $X_{2} \in \mathbb{M}_{r}$ with $I_{r} \sqsubseteq X_{2}$ and $X_{4} \in \mathbb{M}_{k-r}$ with $I_{k-r} \sqsubseteq X_{4}$; the rest X_{i} are matrices of suitable sizes.

Definition 2.4. Let X be a matrix in $\mathbb{M}_{m, n}$ partitioned as in Lemma 2.2. Then we say that X has a pure proper covering if neither $\left[\begin{array}{ll}X_{2} & X_{3}\end{array}\right]$ nor $\left[\begin{array}{l}X_{4} \\ X_{7}\end{array}\right]$ has a proper covering.

For example, consider two matrices $X=\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0\end{array}\right]$ and $Y=\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$. Then $t(X)=t(Y)=3$. But X has a pure proper covering, while Y does not.
Lemma 2.2. Let X be a matrix in $\mathbb{M}_{m, n}$ with $t(X)=k$, where $k \geq 2$. Assume that X has a pure proper covering and is partitioned as in Lemma 2.1. For every $Y \in \mathbb{M}_{m, n}$, if $t(X+Y)=$ k and $\operatorname{cov}(X+Y)$ is a covering of $X+Y$, then $\operatorname{cov}(X+Y) \in\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$, where

$$
\begin{aligned}
& S_{1}=\left\{R_{1}, \ldots, R_{k}\right\}, \quad S_{2}=\left\{R_{r+1}, \cdots, R_{k}, C_{k-r+1}, \cdots C_{k}\right\}, \\
& S_{3}=\left\{C_{1}, \ldots, C_{k}\right\} \quad \text { and } \quad S_{4}=\left\{R_{1}, \cdots, R_{r}, C_{1}, \cdots C_{k-r}\right\} .
\end{aligned}
$$

Proof. Assume that $t(X+Y)=k$ and $\operatorname{cov}(X+Y)$ is a covering of $X+Y$. Since $I_{r} \sqsubseteq X_{2}$ and $I_{k-r} \sqsubseteq X_{4}$, we can easily show that $\operatorname{cov}(X+Y)$ contains neither R_{i} nor C_{j} for all $i, j>k$. Let $D_{1}=\left\{R_{1}, \ldots, R_{r}\right\}, D_{2}=\left\{R_{r+1}, \ldots, R_{k}\right\}, D_{3}=\left\{C_{1}, \ldots, C_{k-r}\right\}$ and $D_{4}=\left\{C_{k-r+1}, \ldots, C_{k}\right\}$.

First, suppose that $\operatorname{cov}(X+Y)$ contain no member in D_{1}. Then $X_{3}=O$. It follows from $I_{r} \sqsubseteq X_{2}$ that $\operatorname{cov}(X+Y)$ must contain all members in D_{4}. Since $\left[\begin{array}{l}X_{4} \\ X_{7}\end{array}\right]$ does not have a proper covering, $\operatorname{cov}(X+Y)$ must contain all members in either D_{3} or D_{2} (in this case, $X_{1}=O$ and $\left.X_{7}=O\right)$. It follows that $\operatorname{cov}(X+Y)=D_{4} \cup D_{3}=S_{3}$ or $\operatorname{cov}(X+Y)=D_{4} \cup D_{2}=S_{2}$.

Next, suppose that $\operatorname{cov}(X+Y)$ contains t members in D_{1}, where $1 \leq t \leq r$. If $t<r$, then $\operatorname{cov}(X+Y)$ contains at least $r-t$ members in D_{4} because $I_{r} \sqsubseteq X_{2}$. Therefore $\operatorname{cov}(X+Y)$ contains at most $k-r$ members in $D_{2} \cup D_{3}$. Since $\left[\begin{array}{l}X_{4} \\ X_{7}\end{array}\right]$ does not have a proper covering, $\operatorname{cov}(X+Y)$ must contain all members in either D_{2} or D_{3}. Thus $\operatorname{cov}(X+Y)$ contains exactly $r-t$ members in D_{4} so that $\left[\begin{array}{ll}X_{2} & X_{3}\end{array}\right]$ is dominated by t members in D_{1} and $r-t$ members in D_{4}, a contradiction to the fact that $\left[\begin{array}{ll}X_{2} & X_{3}\end{array}\right]$ does not have a proper covering. Thus $t=r$. Since $\left[\begin{array}{l}X_{4} \\ X_{7}\end{array}\right]$ does not have a proper covering, it follows that $\operatorname{cov}(X+Y)=D_{1} \cup D_{3}=S_{4}$ or $\operatorname{cov}(X+Y)=D_{1} \cup D_{2}=S_{1}$ (in this case, $X_{7}=O$).

3. Term-rank preservers

A matrix M in $\mathbb{M}_{m, n}$ is called a monomial if it has exactly m 1's with no two of the 1 's on a line. That is, there is an $n \times n$ permutation matrix P such that $M P=\left[I_{m} \mid O_{m, n-m}\right]$. If $N \sqsubseteq M$ and M is a monomial, we call N a submonomial.

Lemma 3.1. [4] If X is an nonzero matrix in $\mathbb{M}_{m, n}$, there is a submonomial $N(\sqsubseteq X)$ such that $t(X)=t(N)$.

Lemma 3.2. If X and Y are matrices in $\mathbb{M}_{m, n}$, then $t(X+Y) \leq t(X)+t(Y)$.
Proof. Obvious.
Notice that an invertible linear operator need not preserve term-rank. For example, define the linear operator $T: \mathbb{M}_{2} \rightarrow \mathbb{M}_{2}$ by $T\left(\left[\begin{array}{ll}x & y \\ z & w\end{array}\right]\right)=\left[\begin{array}{ll}x & y \\ w & z\end{array}\right]$. Then T is an invertible linear operator that does not preserve term-rank.

Example 3.1. Consider the operator $T: \mathbb{M}_{m, n} \rightarrow \mathbb{M}_{m, n}$ defined by

$$
T(X)=\left(\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i, j}\right)\left[\begin{array}{ll}
I_{k} & O \\
O & O
\end{array}\right] \quad \text { for all } X \in \mathbb{M}_{m, n}
$$

Then T preserves term rank k, while it does not preserve term rank.
The number of nonzero entries of a matrix X in $\mathbb{M}_{m, n}$ is denoted by $\sharp(X)$.
Proposition 3.1. [3] Let T be a linear operator on $\mathbb{M}_{m, n}$. For a nonzero $X \in \mathbb{M}_{m, n}$, suppose that $N \sqsubseteq T(X)$, where N is a submonomial of term rank $k(<m)$. If $t(X)>k$, there is a matrix $Y(\sqsubseteq X)$ such that $N \sqsubseteq T(Y)$ and $\sharp(Y) \leq k$.

Lemma 3.3. If T is a linear operator on $\mathbb{M}_{m, n}$ preserving term ranks k and $k+1$, where $2 \leq k \leq m-1$, then $t(T(X))=k$ or $k-1$ for all X in $\mathbb{M}_{m, n}$ with $t(X)=k-1$.

Proof. Let X be a matrix in $\mathbb{M}_{m, n}$ with $t(X)=k-1$. If $t(T(X)) \geq k+1$, take a cell E such that $t(X+E)=k$. But then $k=t(T(X+E)) \geq t(T(X)) \geq k+1$, impossible. So $t(T(X)) \leq k$. Assume that $t(T(X)) \leq k-2$. By Lemma 3.1, there is a submonomial $N_{1}(\sqsubseteq X)$ such that $t\left(N_{1}\right)=k-1$. Furthermore $t\left(T\left(N_{1}\right)\right) \leq k-2$ because $T\left(N_{1}\right) \sqsubseteq T(X)$.

Take a submonomial N_{2} with $t\left(N_{2}\right)=2$ such that $N_{1}+N_{2}$ is a submonomial with $t\left(N_{1}+\right.$ $\left.N_{2}\right)=k+1$. By hypothesis, $t\left(T\left(N_{1}+N_{2}\right)\right)=k+1$. Thus $t\left(T\left(N_{2}\right)\right) \geq(k+1)-t\left(T\left(N_{1}\right)\right) \geq 3$ by Lemma 3.2. Since $t\left(T\left(N_{1}+N_{2}\right)\right)=k+1$, there is a submonomial $G\left(\sqsubseteq T\left(N_{1}+N_{2}\right)\right)$ such that $t(G)=k+1$ by Lemma 3.1. Write $G=G_{1}+G_{2}$ for some two submonomials G_{1} and G_{2}, where $G_{1} \sqsubseteq T\left(N_{1}\right)$ and $G_{2} \sqsubseteq T\left(N_{2}\right)$. Hence $t\left(G_{1}\right) \leq t\left(T\left(N_{1}\right)\right) \leq k-2$. By Proposition 3.1, there is a matrix $Y\left(\sqsubseteq N_{1}\right)$ such that $G_{1} \sqsubseteq T(Y)$ and $\sharp(Y) \leq k-2$. By Lemma 3.2, $t\left(Y+N_{2}\right) \leq t(Y)+t\left(N_{2}\right) \leq k$. Also

$$
G=G_{1}+G_{2} \sqsubseteq T(Y)+T\left(N_{2}\right)=T\left(Y+N_{2}\right)
$$

and hence $t\left(T\left(Y+N_{2}\right)\right) \geq k+1$. Since $t\left(Y+N_{2}\right) \leq k$, we can choose a matrix Z such that $t\left(Y+N_{2}+Z\right)=k$. But then $k=t\left(T\left(Y+N_{2}+Z\right)\right) \geq t\left(T\left(Y+N_{2}\right)\right) \geq k+1$, impossible. Therefore $t(T(X))=k$ or $k-1$ for all X in $\mathbb{M}_{m, n}$ with $t(X)=k-1$.

Let X be a partitioned matrix in $\mathbb{M}_{m, n}$ as $X=\left[\begin{array}{ll}X_{1} & X_{2} \\ X_{3} & X_{4}\end{array}\right]$, where $X_{1} \in \mathbb{M}_{p, q}$. For a cell $E_{i, j}$, we say that $E_{i, j}$ is in X_{1} if $x_{i, j}=1$ with $1 \leq i \leq p$ and $1 \leq j \leq q$. Similarly we can define that $E_{i, j}$ is a cell in X_{l} for all $l \in\{1,2,3,4\}$.

The matrix in $\mathbb{M}_{m, n}$ whose entries are all 1 , is denoted by J. That is, $J=\sum_{i=1}^{m} \sum_{j=1}^{n} E_{i, j}$.
Lemma 3.4. Suppose that T is a linear operator on $\mathbb{M}_{m, n}$ preserving term ranks k and $k+1$, where $2 \leq k \leq m-1$. Let A be a matrix in $\mathbb{M}_{m, n}$ with $t(A)=k-1$. If $T(A)$ does not have a proper covering, then $t(T(A))=k-1$.

Proof. Clearly $t(T(A))=k$ or $k-1$ by Lemma 3.3. Now if $t(T(A))=k$, we will get a contradiction. And then $t(T(A))=k-1$. Suppose that $t(T(A))=k$. Since $t(A)=k-1$, there is a matrix X that is a sum of $k-1$ distinct full line matrices such that $A \sqsubseteq X$. Obviously $t(X)=k-1$. It follows from Lemma 3.3 that $t(T(X))=k$ because $t(T(A))=k$ and $T(A) \sqsubseteq$ $T(X)$. Since $T(A)$ does not have a proper covering, neither does $T(X)$.

If the covering of $T(X)$ was composed of k full row matrices, by permuting rows and columns of $T(X)$, we can assume that $T(X)=\left[\begin{array}{cc}X_{1} & X_{2} \\ O & O\end{array}\right]$, where $X_{1} \in \mathbb{M}_{k}$ with $I_{k} \sqsubseteq X_{1}$. For a cell $E_{i, j}$ with $i, j>k$, suppose that $E_{i, j} \sqsubseteq T(E)$ for some cell E. Then $E \nsubseteq X$ and so $t(X+E)=k$, while $t(T(X+E)) \geq k+1$, a contradiction. Hence $T(J)$ is of the form $T(J)=\left[\begin{array}{cc}Y_{1} & Y_{2} \\ Y_{3} & O\end{array}\right]$ with $X_{1} \sqsubseteq Y_{1}$. Since T preserves term rank $k+1$, we have $Y_{2} \neq O$ and $Y_{3} \neq O$. So there are two cells F_{2} and F_{3} in Y_{2} and Y_{3}, respectively such that $F_{2} \sqsubseteq T\left(E_{a, b}\right)$ and $F_{3} \sqsubseteq T\left(E_{c, d}\right)$ for some cells $E_{a, b}$ and $E_{c, d}(\nsubseteq X)$.

If $X_{2} \neq O$, it follows from Proposition 2.1 and $F_{3} \sqsubseteq T\left(E_{c, d}\right)$ that $t\left(T\left(X+E_{c, d}\right)\right)=k+1$, while $t\left(X+E_{c, d}\right)=k$, a contradiction. So $X_{2}=O$ and hence $T(X)=\left[\begin{array}{cc}X_{1} & O \\ O & O\end{array}\right]$ and $E_{a, b} \nsubseteq X$. If $a=c$ or $b=d$, then $t\left(X+E_{a, b}+E_{c, d}\right)=k$, while $t\left(T\left(X+E_{a, b}+E_{c, d}\right)\right) \geq k+1$ by Proposition 2.1, a contradiction. Hence $a \neq c$ and $b \neq d$.

If $T\left(E_{a, d}\right)$ dominates a cell in Y_{2}, then $t\left(T\left(X+E_{a, d}+E_{c, d}\right)\right)=k+1$ by Proposition 2.1, while $t\left(X+E_{a, d}+E_{c, d}\right)=k$, a contradiction. Hence $T\left(E_{a, d}\right)$ cannot dominate a cell in Y_{2}. Similarly it cannot dominate a cell in Y_{3}. Hence $T\left(E_{a, d}\right)$ only dominates a cell in Y_{1}. A parallel argument shows that $T\left(E_{c, b}\right)$ only dominates a cell in Y_{1}. It follows that $t\left(T\left(X+E_{a, d}+E_{c, b}\right)\right)=k$, while $t\left(X+E_{a, d}+E_{c, b}\right)=k+1$, a contradiction. Similarly if the covering of $T(X)$ was composed of k full column matrices, we get a contradiction.

Proposition 3.2. Suppose that T is a linear operator on $\mathbb{M}_{m, n}$ preserving term ranks k and $k+1$, where $2 \leq k \leq m-1$, and let $X \in \mathbb{M}_{m, n}$ be a sum of $k-1$ distinct full line matrices. For cells $E_{a_{1}, b_{1}}, \ldots, E_{a_{s}, b_{s}}$ that are not dominated by X, we have that $\operatorname{cov}\left(T\left(X+R_{a_{i}}\right)\right) \neq$ $\operatorname{cov}\left(T\left(X+C_{b_{j}}\right)\right)$ for all $i, j \in\{1, \ldots, s\}$.

Proof. Clearly $t\left(T\left(X+R_{a_{i}}\right)\right)=t\left(T\left(X+C_{b_{j}}\right)\right)=k$ for all $i, j \in\{1, \ldots, s\}$ because $t(X+$ $\left.R_{a_{i}}\right)=t\left(X+C_{b_{j}}\right)=k$. If $\operatorname{cov}\left(T\left(X+R_{a_{i}}\right)\right)=\operatorname{cov}\left(T\left(X+C_{b_{j}}\right)\right)$ for some $i, j \in\{1, \ldots, s\}$, then $t\left(T\left(X+R_{a_{i}}+C_{b_{j}}\right)\right)=k$, while $t\left(X+R_{a_{i}}+C_{b_{j}}\right)=k+1$, a contradiction. Hence the result follows.

Lemma 3.5. Suppose that T is a linear operator on $\mathbb{M}_{m, n}$ preserving term ranks k and $k+1$, where $2 \leq k \leq m-2$. Let A be a matrix in $\mathbb{M}_{m, n}$ with $t(A)=k-1$. If $T(A)$ has a pure proper covering, then $t(T(A))=k-1$.

Proof. Clearly $t(T(A))=k$ or $k-1$ by Lemma 3.3. Suppose that $t(T(A))=k$. Since $t(A)=k-1$, there is a matrix X that is a sum of $k-1$ distinct full line matrices such that $A \sqsubseteq X$. Obviously $t(X)=k-1$. It follows from Lemma 3.3 that $t(T(X))=k$ because $t(T(A))=k$ and $T(A) \sqsubseteq T(X)$. Since $T(A)$ has a pure proper covering, it follows that $T(X)$ does not have a proper covering or has a pure proper covering. But if $T(X)$ does not have a proper covering, then $t(T(X))=k-1$ by Lemma 3.4, a contradiction. Thus $T(X)$ has a pure proper covering. It follows from Lemma 2.2 that by permuting rows and columns of $T(X)$, we can assume that

$$
T(X)=\left[\begin{array}{ccc}
X_{1} & X_{2} & X_{3} \\
X_{4} & O & O \\
X_{7} & O & O
\end{array}\right], \quad I_{r} \sqsubseteq X_{2} \quad \text { and } \quad I_{k-r} \sqsubseteq X_{4},
$$

where $1 \leq r \leq k-1, X_{2} \in \mathbb{M}_{r}$ and $X_{4} \in \mathbb{M}_{k-r}$; Furthermore both $\left[\begin{array}{ll}X_{2} & X_{3}\end{array}\right]$ and $\left[\begin{array}{l}X_{4} \\ X_{7}\end{array}\right]$ have no proper covering. Given a cell $E_{i, j}$ with $i, j>k$, if $E_{i, j} \sqsubseteq T(E)$ for some cell E, then $E \nsubseteq X$ and so $t(X+E)=k$, while $t(T(X+E)) \geq k+1$, a contradiction. Thus $T(J)$ is of the form

$$
T(J)=\left[\begin{array}{ccc}
Y_{1} & Y_{2} & Y_{3} \\
Y_{4} & Y_{5} & Y_{6} \\
Y_{7} & Y_{8} & O
\end{array}\right]
$$

where the sizes of partitions of $T(X)$ and $T(J)$ are equal. Let

$$
\begin{aligned}
& S_{1}=\left\{R_{1}, \ldots, R_{k}\right\}, \quad S_{2}=\left\{R_{r+1}, \cdots, R_{k}, C_{k-r+1}, \cdots C_{k}\right\}, \\
& S_{3}=\left\{C_{1}, \ldots, C_{k}\right\} \quad \text { and } \quad S_{4}=\left\{R_{1}, \cdots, R_{r}, C_{1}, \cdots C_{k-r}\right\} .
\end{aligned}
$$

Case 1. $X_{3} \neq O$ or $X_{7} \neq O$: Suppose that $X_{3} \neq O$. If $Y_{8} \neq O$, there is a cell F in Y_{8} such that $F \sqsubseteq T(E)$ for some cell $E(\nsubseteq X)$. Then $t(X+E)=k$, while $t(T(X+E)) \geq k+1$ by Lemma 2.2, a contradiction. Hence $Y_{8}=O$. It follows that $\left[\begin{array}{ll}Y_{5} & Y_{6}\end{array}\right] \neq O$ and $Y_{7} \neq O$ because T preserves term rank $k+1$. So there are two cells F_{1} and F_{2} in $\left[\begin{array}{ll}Y_{5} & Y_{6}\end{array}\right]$ and Y_{7}, respectively such that $F_{1} \sqsubseteq T\left(E_{a, b}\right)$ and $F_{2} \sqsubseteq T\left(E_{c, d}\right)$ for some cells $E_{a, b}(\nsubseteq X)$ and $E_{c, d}$. By Lemma 2.2, $t\left(T\left(X+E_{a, b}+E_{c, d}\right)\right) \geq k+1$. Hence $E_{c, d} \nsubseteq X$ and $t\left(E_{a, b}+E_{c, d}\right)=2$. So $a \neq c$ and $b \neq d$. If $T\left(E_{a, d}\right)$ dominates a cell in $\left[\begin{array}{rl}Y_{5} & Y_{6}\end{array}\right]$, then $t\left(T\left(X+E_{a, d}+E_{c, d}\right)\right) \geq k+1$ by Lemma 2.2, while $t\left(X+E_{a, d}+E_{c, d}\right)=k$, a contradiction. That is, $T\left(E_{a, d}\right)$ cannot dominate a cell in $\left[\begin{array}{ll}Y_{5} & Y_{6}\end{array}\right]$. Similarly $T\left(E_{c, b}\right)$ cannot dominate a cell in $\left[\begin{array}{ll}Y_{5} & Y_{6}\end{array}\right]$. It follows from $Y_{8}=O$ that S_{4} is a covering of $T\left(X+E_{a, d}+E_{c, b}\right)$. Hence $t\left(T\left(X+E_{a, d}+E_{c, b}\right)\right)=k$, while $t\left(X+E_{a, d}+E_{c, b}\right)=k+1$, a contradiction. By a parallel argument, we get a contradiction for the case of $X_{7} \neq O$.
Case 2. $X_{3}=O$ and $X_{7}=O$: That is, $T(X)=\left[\begin{array}{ccc}X_{1} & X_{2} & O \\ X_{4} & O & O \\ O & O & O\end{array}\right]$. Now we will show that $Y_{6}=O$ or $Y_{7}=O$. If not, there are two cells F_{6} and F_{7} in Y_{6} and Y_{7}, respectively such that $F_{6} \sqsubseteq T\left(E_{e, f}\right)$ and $F_{7} \sqsubseteq T\left(E_{g, h}\right)$ for some cells $E_{e, f}(\nsubseteq X)$ and $E_{g, h}(\nsubseteq X)$. By Lemma 2.2, we have

$$
\operatorname{cov}\left(T\left(X+L_{1}\right)\right) \in\left\{S_{1}, S_{2}\right\} \quad \text { and } \quad \operatorname{cov}\left(T\left(X+L_{2}\right)\right) \in\left\{S_{3}, S_{4}\right\}
$$

where $L_{1}=R_{e}$ or C_{f}, and $L_{2}=R_{g}$ or C_{h}. Notice that if $\operatorname{cov}\left(T\left(X+L_{1}\right)\right)=S_{2}$, then $X_{1}=O$. By Proposition 3.2, we loss no generality in assuming that $\operatorname{cov}\left(T\left(X+R_{e}\right)\right)=S_{1}, \operatorname{cov}(T(X+$ $\left.R_{g}\right)$) $=S_{3}$ and

$$
\begin{equation*}
\operatorname{cov}\left(T\left(X+C_{f}\right)\right)=S_{2} \quad \text { and } \quad \operatorname{cov}\left(T\left(X+C_{h}\right)\right)=S_{4} . \tag{3.1}
\end{equation*}
$$

Since $t(X)=k-1$ and $k \leq m-2$, we can choose a full row matrix R_{l} that is not dominated by $X+R_{e}+R_{g}$. Clearly $\operatorname{cov}\left(T\left(X+R_{l}\right)\right) \in\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$ because $t\left(X+R_{l}\right)=t\left(T\left(X+R_{l}\right)\right)=$ k. But then $\operatorname{cov}\left(T\left(X+R_{l}\right)\right) \in\left\{S_{1}, S_{3}\right\}$ by (3.1) and Proposition 3.2. Say that $\operatorname{cov}(T(X+$ $\left.\left.R_{l}\right)\right)=S_{1}$. But then $t\left(T\left(X+R_{l}+R_{e}\right)\right)=k$, while $t\left(X+R_{l}+R_{e}\right)=k+1$, a contradiction.

Consequently we have established $Y_{6}=O$ or $Y_{7}=O$. A parallel argument shows that $Y_{3}=O$ or $Y_{8}=O$. Suppose that $Y_{6}=O$. Then $Y_{3} \neq O$ because T preserves term rank $k+1$. Hence $Y_{8}=O$ and so $T(J)=\left[\begin{array}{lll}Y_{1} & Y_{2} & Y_{3} \\ Y_{4} & Y_{5} & O \\ Y_{7} & O & O\end{array}\right]$. Clearly $Y_{5} \neq O$ and $Y_{7} \neq O$. Hence there are three cells F_{3}, F_{5} and F_{7} in Y_{3}, Y_{5} and Y_{7}, respectively such that

$$
F_{3} \sqsubseteq T\left(E_{a_{3}, b_{3}}\right), \quad F_{5} \sqsubseteq T\left(E_{a_{5}, b_{5}}\right) \quad \text { and } \quad F_{7} \sqsubseteq T\left(E_{a_{7}, b_{7}}\right)
$$

for some cells $E_{a_{i}, b_{i}}$ that are not dominated by X. By Lemma 2.2 and Proposition 3.2, we loss no generality in assuming that

$$
\begin{equation*}
\operatorname{cov}\left(T\left(X+R_{a_{3}}\right)\right)=S_{1} \quad \text { and } \quad \operatorname{cov}\left(T\left(X+C_{b_{3}}\right)\right)=S_{4} \tag{3.2}
\end{equation*}
$$

Again by Lemma 2.2, Proposition 3.2 and (3.2), we have

$$
\begin{equation*}
\operatorname{cov}\left(T\left(X+R_{a_{7}}\right)\right)=S_{3} \quad \text { and } \quad \operatorname{cov}\left(T\left(X+C_{b_{7}}\right)\right)=S_{4} \tag{3.3}
\end{equation*}
$$

If $b_{3} \neq b_{7}$, then $t\left(T\left(X+C_{b_{3}}+C_{b_{7}}\right)\right)=k$, while $t\left(X+C_{b_{3}}+C_{b_{7}}\right)=k+1$, a contradiction. Hence $b_{3}=b_{7}$. But then $b_{5} \neq b_{3}$ by Lemma 2.2. Thus $\operatorname{cov}\left(T\left(X+C_{b_{5}}\right)\right)=S_{2}$ by (3.2), (3.3) and Proposition 3.2. Since $t(X)=k-1$ and $k \leq m-2$, we can choose a full row matrix R_{t} that is not dominated by $X+R_{a_{3}}+R_{a_{7}}$. It follows from (3.2), $\operatorname{cov}\left(T\left(X+C_{b_{5}}\right)\right)=S_{2}$ and Proposition 3.2 that $\operatorname{cov}\left(T\left(X+R_{t}\right)\right)=S_{1}$ or S_{3}. Say that $\operatorname{cov}\left(T\left(X+R_{t}\right)\right)=S_{1}$. But then $t\left(T\left(X+R_{a_{3}}+R_{t}\right)\right)=k$, while $t\left(X+R_{a_{3}}+R_{t}\right)=k+1$, a contradiction. Similarly, we get a contradiction for the case of $Y_{7}=O$.

Theorem 3.1. Let T be a linear operator on $\mathbb{M}_{m, n}$, where $m \geq 3$. Then T preserves term rank if and only if T preserves term ranks 2 and 3.

Proof. Suppose that T preserves term ranks 2 and 3 . Let X be a matrix in $\mathbb{M}_{m, n}$ with $t(X)=$ 1. Then $t(T(X))=1$ or 2 by Lemma 3.3. Hence $T(X)$ does not have a proper covering or has a pure proper covering. It follows from Lemmas 3.4 and 3.5 that $t(T(X))=1$. Thus T preserves term rank 1. Therefore T preserves term rank by Theorem 1.1. The converse is obvious.

Theorem 3.2. Let T be a linear operator on $\mathbb{M}_{m, n}$. Then T preserves term rank if and only if T preserves term ranks $m-1$ and m.

Proof. Assume that T preserves term ranks $m-1$ and m. Let X be a matrix in $\mathbb{M}_{m, n}$ with $t(X)=m$. Then $t(T(X))=m$ by hypothesis. Oppositely, let $t(T(X))=m$ for some X. If $t(X)<m$, take a matrix Y such that $t(X+Y)=m-1$. But then $m-1=t(T(X+Y)) \geq$ $t(T(X))=m$, impossible. It follows that $t(T(X))=m$ if and only if $t(X)=m$ for all X. Thus T strongly preserves term rank m. Therefore T preserves term rank by Theorem 1.2. The converse is obvious.

Let $\mathbb{P}_{m, n}$ be the set of all matrix X in $\mathbb{M}_{m, n}$ which either do not have a proper covering or have a pure proper covering. Clearly, $X \in \mathbb{P}_{m, n}$ for all $X \in \mathbb{M}_{m, n}$ with $t(X) \leq 2$. But if $X \in \mathbb{M}_{m, n}$ and $t(X) \geq 3$, then $X \in \mathbb{P}_{m, n}$ may be true or false. For examples, consider two matrices $X=\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right] \oplus O_{m-3, n-3}$ and $Y=\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right] \oplus O_{m-3, n-3}$, where $A \oplus B$ denotes the direct sum of matrices A and B. Then $t(X)=t(Y)=3$ and $X \in \mathbb{P}_{m, n}$, while $Y \notin \mathbb{P}_{m, n}$.
Lemma 3.6. Suppose that T is a linear operator on $\mathbb{M}_{m, n}$. If T preserves $\mathbb{P}_{m, n}$ and term ranks k and $k+1$, where $2 \leq k \leq m-1$, then T preserves term rank $k-1$.
Proof. If $k=m-1$, then T preserves term rank $m-2$ by Theorem 3.2. Suppose that $k \leq m-2$. Let A be a matrix in $\mathbb{M}_{m, n}$ with $t(A)=k-1$. Then $A \sqsubseteq X$ for some X in $\mathbb{M}_{m, n}$, where X is a sum of $k-1$ distinct full line matrices. Clearly $X \in \mathbb{P}_{m, n}$ and hence $T(X) \in \mathbb{P}_{m, n}$ by hypothesis. Thus $T(X)$ does not have a proper covering or has a pure proper covering. Hence $t(T(X))=k-1$ by Lemmas 3.4 and 3.5. Since $t(T(A)) \leq t(T(X))$, it follows from Lemma 3.3 that $t(T(A))=k-1$. Therefore T preserves term rank $k-1$.
Theorem 3.3. Let T be a linear operator on $\mathbb{M}_{m, n}$. Then T preserves term rank if and only if T preserves $\mathbb{P}_{m, n}$ and term ranks k and $k+1$, where $1 \leq k \leq m-1$.
Proof. Assume that T preserves $\mathbb{P}_{m, n}$ and term ranks k and $k+1$, where $1 \leq k \leq m-1$. If $k=1$, then T preserves term rank by Theorem 1.1. For the case of $k \geq 2, T$ preserves term ranks 1 and 2 by applying Lemma $3.6 k$ times. Thus T preserves term rank by Theorem 1.1. The converse is obvious.

The following is an immediate consequence of Theorem 3.3.
Corollary 3.1. Let T be a linear operator on $\mathbb{P}_{m, n}$. Then T preserves term rank if and only if T preserves term ranks k and $k+1$, where $1 \leq k \leq m-1$.
Theorem 3.4. Let T be a linear operator on $\mathbb{M}_{m, n}$. Then T preserves term rank if and only if T strongly preserves term rank $m-1$.

Proof. Assume that T strongly preserves term rank $m-1$. First suppose that X is a matrix in $\mathbb{M}_{m, n}$ with $t(X)=m$. Take a matrix Y such that $Y \sqsubseteq X$ and $t(Y)=m-1$. Then $t(T(X)) \geq$ $t(T(Y))=t(Y)=m-1$. Hence $t(T(X))=m$ by hypothesis. Next, suppose that $t(T(X))=$ m for some X in $\mathbb{M}_{m, n}$. By hypothesis, $t(X)=m$ or $t(X) \leq m-2$. If $t(X) \leq m-2$, take a matrix Z such that $t(X+Z)=m-1$. But then $m=t(T(X)) \leq t(T(X+Z))=m-1$, which is impossible. Hence $t(X)=m$. Therefore T strongly preserves term rank m. Hence T preserves term rank by Theorem 1.2.

The converse is obvious.
Theorem 3.5. Let T be a linear operator on $\mathbb{M}_{m, n}$. Then T preserves term rank if and only if T preserves $\mathbb{P}_{m, n}$ and strongly preserves term rank k, where $1 \leq k \leq m$.

Proof. Suppose that T preserves $\mathbb{P}_{m, n}$ and strongly preserves term rank k, where $1 \leq k \leq m$. If $k=1$ or m, then T preserves term rank by Theorem 1.2. Assume that $2 \leq k \leq m-1$. Let X be a matrix in $\mathbb{M}_{m, n}$ with $t(X)=k-1$. By the same pattern of the proof in Lemma 3.3, we have $t(T(X))=k-1$ or k. But then $t(T(X))=k-1$ by hypothesis. Therefore T preserves term rank $k-1$. Thus T preserves term rank by Theorem 3.3. The converse is obvious.

The following is an immediate consequence of Theorem 3.5.
Corollary 3.2. Let T be a linear operator on $\mathbb{P}_{m, n}$. Then T preserves term rank if and only if T strongly preserves term rank k, where $1 \leq k \leq m$.
Acknowledgement. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No.2011-0006095). The second author, Seok-Zun Song, is the corresponding author.

References

[1] L. B. Beasley, D. E. Brown and A. E. Guterman, Preserving regular tournaments and term rank-1, Linear Algebra Appl. 431 (2009), no. 5-7, 926-936.
[2] L. B. Beasley and N. J. Pullman, Boolean-rank-preserving operators and Boolean-rank-1 spaces, Linear Algebra Appl. 59 (1984), 55-77.
[3] L. B. Beasley and N. J. Pullman, Term-rank, permanent, and rook-polynomial preservers, Linear Algebra Appl. 90 (1987), 33-46.
[4] R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Encyclopedia of Mathematics and its Applications, 39, Cambridge Univ. Press, Cambridge, 1991.
[5] S.-Z. Song, Linear operators that preserve column rank of Boolean matrices, Proc. Amer. Math. Soc. 119 (1993), no. 4, 1085-1088.

