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Abstract. Let {e−cH α

/ℜc ≥ 0} be the Dunkl-Hermite semigroup on the real line R, de-
fined by

[e−cH α

f ](x) =
∫

R
K α

c (x,ξ ) f (ξ )dµα (ξ ) , x ∈ R ,

where K α
c (x,ξ ) = ∑

∞
n=0 e−cnHα

n (x)Hα
n (ξ ). Here, Hα

n ,n ∈ N, are the Dunkl-Hermite poly-
nomials which are the eigenfunctions of the operator D2

α − 2xd/dx, Dα being the Dunkl
operator on the real line. For ℜc > 0, we give a representation for inverting the semigroup.
Next, we extend e−cH α

and we give an integral representation of it for ℜc < 0. Moreover,
in this last case, we characterize the domain in which e−cH α

is well defined.
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1. Introduction

The study of Dunkl operators has known a considerable growth during the last two decades
due to their relevance in various fields of mathematics and in physical applications. Also
they give the way to build a parallel to the theory of harmonic analysis based on finite root
systems and depending on a set of real parameters.
In this work we are interesting in the rank one case. Let α ≥−1/2 , the Dunkl operator Dα

acting on smooth functions f on R , is defined by

Dα f (x) = f ′(x)+
2α +1

x

[ f (x)− f (−x)
2

]
.

This operator is associated with the Dunkl-Hermite operator

D2
α −2x

d
dx

.

Its spectral decomposition is given by the Dunkl-Hermite polynomials Hα
n , namely we have

(see [9])
(D2

α −2xd/dx)Hα
n =−2nHα

n .
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These polynomials are given by

Hα
n (x) = 2−

n
2
√

bn(α)
[ n

2 ]

∑
k=0

(−1)k

k!bn−2k(α)
(2x)n−2k,

where bn(α) is the generalized factorial defined by Rosenblum in [8],

bn(α) =
2n([ n

2 ])!
Γ(α +1)

Γ

([
n+1

2

]
+α +1

)
,

where
[
n/2
]

is the integral part of n/2.We point out that these polynomials are expressed in
terms of Laguerre polynomials [8]. More precisely we have

Hα
n (x) = (−1)[

n
2 ] 2

n
2 ([ n

2 ])!√
bn(α)

xθnLα+θn
[ n

2 ] (x2) ,

where θn is defined to be 0 if n is even and 1 if n is odd. It is well known that the system
{Hα

n }n≥0 is complete and orthonormal in L2(µα) , where µα is the Gaussian-Dunkl measure
defined on R , by

dµα(x) =
1

Γ(α +1)
|x|2α+1e−x2

dx.

The system {Hα
n }n≥0 generates a semigroup of linear operators denoted by e−cH α

, c ≥ 0,
on L2(µα) and is defined by

[e−cH α

f ](x) =
∞

∑
n=0

aα
n e−cnHα

n (x), x ∈ R,

when f is expanded in L2(µα) as f = ∑
∞
n=0 aα

n Hα
n , aα

n =
∫
R f (x)Hα

n (x)dµα(x). Obviously
we can extend the operator e−cH α

for every complex number c with ℜc > 0 or c = 0.
In this paper, we prove that for ℜc > 0 , the operator e−cH α

possesses the following
integral representation

[e−cH α

f ](x) =
∫

R
K α

c (x,ξ ) f (ξ )dµα(ξ ),

where

K α
c (x,ξ ) =

∞

∑
n=0

e−cnHα
n (x)Hα

n (ξ ).

Next, for c ∈ C with ℜc > 0 , we characterize the range of L2(µα) under the opera-
tor e−cH α

, as Fock type space, furthermore, we give two representations for inverting the
operator e−cH α

in terms of integrals. These inverse transforms inspire us an extension of
e−cH α

for ℜc < 0. Also, we establish a characterization of the elements in D(e−cH α

), the
domain of e−cH α

. Finally, when a C ∞-function f ∈ L2(µα) is an element in D(e−cH α

),
with ℜc < 0, we give a representation of its analytic extension f̂ in terms of f .

We conclude this introduction by giving the organization of this paper. In the next sec-
tion, we recall some notations and results related to the Dunkl operator on the real line. The
third section deals with the inverse of e−cH α

for ℜc > 0. The last section is devoted to the
study of the extension e−cH α

for ℜc < 0.
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2. Preliminaries

In this section, we recall some notations and results related to the Dunkl operator on the real
line, given by

Dα f (x) = f ′(x)+
2α +1

x

[ f (x)− f (−x)
2

]
, α ≥−1

2
.

For every ξ ∈ C, the equation

Dα f (x) = ξ f (x), f (0) = 1,

has a unique analytic solution Eα(ξ x), called Dunkl Kernel (see [5]), defined by

Eα(ξ x) = jα(ξ x)+
ξ x

2(α +1)
jα+1(ξ x)

where jβ is the modified spherical Bessel function of order β given, for β ≥−1/2, by

jβ (z) = Γ(β +1)
∞

∑
n=0

1
n!Γ(n+β +1)

(z/2)2n .

We define Ee
α(z) = jα(z) the even part of Eα(z) and

Eo
α(z) =

z
2(α +1)

jα+1(z)

the odd part of Eα(z).
We note that

Eα(z) = Vα(exp)(z),
where Vα is the intertwining operator between Dα and the usual derivative d/dx given by

Vα( f )(x) =
2−2α−1Γ(2α +2)
Γ(α + 1

2 )Γ(α + 3
2 )

∫ 1

−1
f (xt)(1− t2)α− 1

2 (1+ t)dt,

this operator is an isomorphism on the space of polynomials.
We remark that

Hα
n =

√
bn(α)

n!
Vα(Hn),

where {Hn}n≥0 is the set of classical normalized Hermite polynomials in L2( 1√
π

e−x2
dx).

We recall the following formulas given in [8]. The formula in (2.1) is the Mehler formula

(2.1)
∞

∑
n=0

Hα
n (x)Hα

n (y)zn =
(

1
1− z2

)α+1

exp
(
− (x2 + y2)z2

1− z2

)
Eα

(
(2xy)z
1− z2

)
, |z|< 1.

∫
R

Eα(xt)Eα(yt)exp(−λ t2)|t|2α+1dt

=
Γ(α +1)

λ α+1 exp
(

x2 + y2

4λ

)
Eα

( xy
2λ

)
, x,y ∈ C and ℜλ > 0.(2.2)

We denote by mα the measure defined on C by

dmα(z) =
1

π2α Γ(α +1)
|z|2α+2Kα(|z|2)dxdy , z = x+ iy,
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where Kα is the Macdonald function, (see [6]), defined by

Kα(z) =
π

2
I−α(z)− Iα(z)

sin(απ)
, α ∈ C\Z , |arg(z)|< π,

for integer n,
Kn(z) = lim

α→n
Kα(z)

and

Iα(z) =
1

Γ(α +1)

( z
2

)α

jα(z).

Since Kα(|z|2) is positive, the measure mα is nonnegative.
For α >− 1

2 , we note
• Fα,e is the Hilbert space of even entire functions on C, with the inner product

defined by 〈 f ,g〉α,e =
∫
C f (z)g(z)dmα(z).

• Fα,o is the Hilbert space of odd entire functions on C, with the inner product de-
fined by 〈 f ,g〉α,o = 2(α +1)

∫
C f (z)g(z)|z|−2dmα+1(z).

Meanwhile, referring to Sifi and Soltani [13] defined, for α > −1/2, the generalized Fock
space Fα as the direct sum of Fα,e and Fα,o, admitting the inner product

〈 f ,g〉α = 〈 fe,ge〉α,e + 〈 fo,go〉α,o ,

where

fe(z) =
f (z)+ f (−z)

2
and fo(z) =

f (z)− f (−z)
2

.

It is also given in [13] that the kernel Zα given for z,ξ ∈ C by

Zα(ξ ,z) = Eα(ξ z),

is a reproducing kernel for the generalized Fock space Fα , that is
(i) For every ξ ∈ C, the function z−→Zα(ξ ,z) belongs to Fα .

(ii) The reproducing property : For every ξ ∈ C and f ∈Fα , we have

〈 f ,Zα(ξ , .)〉α = f (ξ ).

3. The Dunkl-Hermite semigroup for ℜc > 0

Let f ∈ L2(µα) , f = ∑
∞
n=0 aα

n Hα
n , for any complex number c with ℜc > 0, we define the

semigroup e−cH α

of operators by

[e−cH α

f ](x) =
∞

∑
n=0

e−cnaα
n Hα

n (x) , x ∈ R

=
∞

∑
n=0

e−cnHα
n (x)

∫
R

f (y)Hα
n (y)dµα(y) .

Let r > 0 , using the estimates for the classical Hermite polynomials, see [7], the intertwin-
ing operator Vα and the Stirling formula, (see [3]), we deduce the following: there exists a
positive constant C(r) depending on r such that

|Hα
n (x)| ≤C(r)n

α
2 + 1

6 , x ∈ [−r,r].
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Since
∞

∑
n=0

e−ℜcn
∫

R
|Hα

n (x)Hα
n (y) f (y)|dµα(y)

≤
∞

∑
n=0

e−ℜcnC(r)n
α
2 + 1

6 ‖Hα
n ‖α,2‖ f‖α,2 < +∞ ,

we can interchange the order of summation and integration and so

[e−cH α

f ](x) =
∫

R

(
∞

∑
n=0

e−cnHα
n (x)Hα

n (y)

)
f (y)dµα(y) , x ∈ [−r,r].

As r is arbitrary, this relation holds for all x ∈ R. We put

K α
c (x,y) =

∞

∑
n=0

e−cnHα
n (x)Hα

n (y).

Hence, we can write

[e−cH α

f ](x) =
∫

R
K α

c (x,y) f (y)dµα(y) .

In the following we are interesting in inverting these operators, more precisely, we shall
give two representations of the inverse of the operator e−cH α

, c ∈ C , ℜc > 0, in terms of
integrals.

Notation 1. We denote by

N α(z,ξ ,c) = 〈K α
c (z, .),K α

c (ξ , .)〉2,α

=
∫

R
K α

c (z,y)K α
c (ξ ,y)dµα(y).

Lemma 3.1. N α(z,ξ ,c) determines uniquely a reproducing kernel Hilbert space Hα
c ad-

mitting the reproducing kernel N α(z,ξ ,c) given by
(3.1)

N α(z,ξ ,c) =
(

1
1−|ω|4

)α+1

exp
(
−|ω|4

1−|ω|4
z2
)

exp
(
−|ω|4

1−|ω|4
ξ

2
)

Eα

(
2|ω|2

1−|ω|4
zξ

)
,

where ω = e−c.

Proof. From the Mehler formula (2.1), we have

K α
c (x,ξ ) =

∞

∑
n=0

Hα
n (x)Hα

n (ξ )e−nc

=
(

1
1−ω2

)α+1

exp
(
− ω2

1−ω2 (x2 +ξ
2)
)

Eα

(
2

ω

1−ω2 xξ

)
.

For (z,ξ ) ∈ C×C , we have

N α(z,ξ ,c) =
∫

R
K α

c (z,y)K α
c (ξ ,y)dµα(y)

=
1

Γ(α +1)
(
(1−ω2)(1−ω

2)
)α+1
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×
∫

R
exp
(
− ω2

1−ω2 (z2 + y2)
)

Eα

(
2

ω

1−ω2 zy
)

exp
(
− ω

2

1−ω
2 (ξ

2
+ y2)

)
Eα

(
2

ω

1−ω
2 ξ y

)
|y|2α+1e−y2

dy

=
1

Γ(α +1)
(
(1−ω2)(1−ω

2)
)α+1

× exp
(
− ω2

1−ω2 z2
)

exp
(
− ω

2

1−ω
2 ξ

2
)
×Aα(z,ξ ,c)

with

Aα(z,ξ ,c) =
∫

R
exp
(
− 1−|ω|4

(1−ω2)(1−ω
2)

y2
)

Eα

(
2

ω

1−ω2 zy
)

Eα

(
2

ω

1−ω
2 ξ y

)
|y|2α+1e−y2

dy

and by formula (2.2) we have

Aα(z,ξ ,c) = Γ(α +1)
(

(1−ω2)(1−ω
2)

1−|ω|4

)α+1

× exp

{
(1−ω2)(1−ω

2)
4(1−|ω|4)

((
2ω

1−ω2 z
)2

+
(

2ω

1−ω
2 ξ

)2
)}

×Eα

(
2|ω|2

1−|ω|4
zξ

)
.

So

N α(z,ξ ,c) =
( 1

1−|ω|4
)α+1

exp
{ −|ω|4

1−|ω|4
z2
}

exp
{ −|ω|4

1−|ω|4
ξ

2}
Eα

{ 2|ω|2

1−|ω|4
zξ

}
.

Since N α(z,ξ ,c) is a positive matrix on C in the sense of Moore [1], i.e. for q ∈ N and
finite sets {ξn}1≤n≤q , {γn}1≤n≤q in C

q

∑
n=1

q

∑
m=1

γnγmN α(ξn,ξ m,c)≥ 0 ,

using the results in [1, p. 344] we deduce that it uniquely determines the reproducing kernel
Hilbert space Hα

c admitting the reproducing kernel N α(z,ξ ,c).

Notation 2. We denote by
• ‖ f‖2

2,α =
∫
R | f |2dµα .

• ‖g‖2
c,α =

4|ω|2α+4

πΓ(α +1)(1−|ω|4)
×

∫
C

{
Kα

( 2|ω|2

1−|ω|4
|z|2
)
|ge(z)|2 +Kα+1

( 2|ω|2

1−|ω|4
|z|2
)
|go(z)|2

}
exp
{ 2|ω|4

1−|ω|4
(x2−

y2)
}
|z|2α+2dxdy,
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where z = x+ iy, Kα is the Macdonald function.

Theorem 3.1. For c ∈ C with ℜc > 0 , the range of L2(µα) under the operator e−cH α

coincides with the Hilbert space Hα
c consisting of entire functions with finite norms ‖.‖c,α .

Moreover, the isometrical identity

‖e−cH α

f‖2
c,α = ‖ f‖2

2,α

holds.

Proof. For any fixed complex number c with ℜc > 0 , applying the dominated convergence
theorem and Morera’s theorem to the integral representation

[e−cH α

f ](x) =
∫

R
K α

c (x,ξ ) f (ξ )dµα(ξ ),

we see that every element in the range of the operator e−cH α

can be analytically extended
to the complex plane C.

Hence we shall consider the operator e−cH α

as the linear operator of L2(µα) into an
entire function space. Then, following the method of characterizing the ranges of inte-
gral transforms established by Saitoh in [11] and Lemma 3.1, the space Hα

c is the range
of L2(µα) under the operator e−cH α

. The family {K α
c (z,ξ ),z ∈ C} being complete in

L2(µα), hence we have the isometrical identity.
Thus, it is sufficient to prove that the elements in Hα

c are characterized as entire functions
with finite norms. Using the well known results of Aronszajn (see [1]), if g ∈ Hα

c , then g
can be expressed in the form

(3.2) g(z) =
(

1
1−|ω|4

)α+1

exp
{
−|ω|4

1−|ω|4
z2
}

g1(z),

where z ∈ C and g1 is a member in the reproducing kernel Hilbert space F̃α admitting the

reproducing kernel Eα

{
2|ω|2

1−|ω|4
zξ

}
. Moreover, the following isometrical identity holds

(3.3) ‖g‖2
c,α =

(
1

1−|ω|4

)α+1

‖g1‖2
F̃α

.

By change of variable, we have

‖g1‖2
F̃α

=
4

πΓ(α +1)

(
|ω|2

1−|ω|4

)α+2

×
∫

C

{
Kα

(
2|ω|2

1−|ω|4
|z|2
)
|g1,e(z)|2

+Kα+1

(
2|ω|2

1−|ω|4
|z|2
)
|g1,o(z)|2

}
|z|2α+2dxdy,

which completes the proof.

Remark 3.1. For two complex numbers c1 , c2 with ℜc1 > 0 and ℜc2 > 0, we shall discuss
a relation between Hα

c1
and Hα

c2
. Put g1 = e−c1H α

f and g2 = e−c2H α

f for some f ∈ L2(µα).
If ℜc1 > ℜc2 , then

g1 = e−c1H α

f = e−(c1−c2)H α

e−c2H α

f = e−(c1−c2)H α

g2 ,
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and so we can directly obtain a representation of g1 in terms of g2 by using the integral
representation of e−cH α

. However, if ℜc1 ≤ℜc2, it is not obvious to represent g1 in terms
of g2. Hence we are interested in this case.

Theorem 3.2. For ℜc1 > 0, ℜc2 > 0 and f ∈ L2(µα), let g1 = e−c1H α

f and g2 = e−c2H α

f .
Then g1 is expressible in the form

g1(ξ ) =
4|ω2|2α+4

πΓ(α +1)(1−|ω2|4)

(
1

1−ω2
1 ω

2
2

)α+1

exp

(
− ω2

1 ω
2
2

1−ω2
1 ω

2
2

ξ
2

)

×
∫

C

(
Kα

(
2|ω2|2

1−|ω2|4
|z|2
)

g2,e(z)Ee
α

(
2ω1ω2

1−ω2
1 ω

2
2

zξ

)

+Kα+1

(
2|ω2|2

1−|ω2|4
|z|2
)

g2,o(z)Eo
α

(
2ω1ω2

1−ω2
1 ω

2
2

zξ

))

× exp

(
− ω2

1 ω
2
2

1−ω2
1 ω

2
2

z2

)
exp
(

2|ω2|4

1−|ω2|4
(x2− y2)

)
|z|2α+2dxdy, ξ ∈ R,(3.4)

where ω1 = e−c1 and ω2 = e−c2 .

Proof. We assume that T α
c1

is the inverse operator of e−c1H α

from Hα
c1

into L2(µα). In
addition, let Sα

c1,c2
be the linear operator of Hα

c1
into Hα

c2
defined by

Sα
c1,c2

g = e−c2H α

T α
c1

g , g ∈H α
c1

then we have
Sα

c1,c2
g1 = g2 .

It follows

‖Sα
c1,c2

g1‖c2,α = ‖e−c2H α

f‖c2,α = ‖ f‖2,α = ‖e−c1H α

f‖c1,α = ‖g1‖c1,α .

Hence the operator Sα
c1,c2

is an isometry from Hα
c1

onto Hα
c2

, so the adjoint operator S∗,αc1,c2 of
Sα

c1,c2
is its inverse. Thus, for ξ ∈ R we get the representation

g1(ξ ) =
[
S∗,αc1,c2

g2
]
(ξ ) = 〈S∗,αc1,c2

g2,N
α(.,ξ ,c1)〉c1,α

= 〈g2,Sα
c1,c2

N α(.,ξ ,c1)〉c2,α .

Meanwhile, for z ∈ C, the following is valid[
Sα

c1,c2
N α(.,ξ ,c1)

]
(z) =

[
e−c2H α

T α
c1

N α(.,ξ ,c1)]
]
(z)

now
N α(z,ξ ,c1) =

[
e−c1H α

K α
c1

(ξ , .)]
]
(z),

so
K α

c1
(ξ ,z) =

[
T α

c1
N α(.,ξ ,c1)

]
(z)

and [
Sα

c1,c2
N α(.,ξ ,c1)

]
(z) =

[
e−c2H α

K α
c1

(ξ , .)]
]
(z)

=
∫

R
K α

c2
(z,y)K α

c1
(ξ ,y)dµα(y)
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=
1

Γ(α +1)

(
1

(1−ω2
2 )(1−ω1

2)

)α+1

× exp
(
− ω

2
1

1−ω
2
1

ξ
2
)

exp
(
− ω2

2

1−ω2
2

z2
)

Bα(z,ξ ,c)

with

Bα(z,ξ ,c) =
∫

R
exp

(
− 1−ω

2
1ω2

2

(1−ω
2
1)(1−ω2

2 )
y2

)

×Eα

(
2

ω2

1−ω2
2

zy
)

Eα

(
2

ω1

1−ω
2
1

ξ y
)
|y|2α+1dy

from the formula (2.2), we have

Bα(z,ξ ,c) = Γ(α +1)

(
(1−ω

2
1)(1−ω2

2 )
1−ω

2
1ω2

2

)α+1

exp

{
ω2

2 (1−ω
2
1)

(1−ω2
2 )(1−ω

2
1ω2

2 )
z2

}

× exp

(
ω

2
1(1−ω2

2 )
(1−ω

2
1)(1−ω

2
1ω2

2 )
ξ

2

)
Eα

{
2ω1ω2

1−ω
2
1ω2

2
zξ

}
,

so

[
Sα

c1,c2
N α(.,ξ ,c1)

]
(z) =

(
1

1−ω
2
1ω2

2

)α+1

exp

{
− ω

2
1ω2

2

1−ω
2
1ω2

2
ξ

2

}

× exp

{
− ω

2
1ω2

2

1−ω
2
1ω2

2
z2

}
Eα

(
2ω1ω2

1−ω
2
1ω2

2
zξ

)
.

Thus

g1(ξ ) = 〈g2,Sα
c1,c2

N α(.,ξ ,c1)〉c2,α

=
4|ω2|2α+4

πΓ(α +1)(1−|ω2|4)

∫
C

(
Kα

(
2|ω2|2

1−|ω2|4
|z|2
)

g2,e(z)
(
Sα

c1,c2
N α

)
e(z)

+Kα+1

(
2|ω2|2

1−|ω2|4
|z|2
)

g2,o(z)
(
Sα

c1,c2
N α

)
o(z)

)
× exp

(
2|ω2|4

1−|ω2|4
(x2− y2)

)
|z|2α+2dxdy

with
(
Sα

c1,c2
N α

)
e and

(
Sα

c1,c2
N α

)
o are respectively the even and the odd part of Sα

c1,c2

N α(.,ξ ,c1). So we obtain the identity (3.4).

From the definition of e−c2H α

and the identity (3.4), we deduce the following.

Corollary 3.1. Under the same assumptions in the previous theorem, f is given by

f (ξ ) = lim
r→1

4|ω2|2α+4

πΓ(α +1)(1−|ω2|4)

(
1

1− r2ω
2
2

)α+1

exp
(
− r2ω

2
2

1− r2ω
2
2

ξ
2
)
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×
∫

C

{
Kα

(
2|ω2|2

1−|ω2|4
|z|2
)

g2,e(z)Ee
α

(
2rω2

1− r2ω
2
2

zξ

)
+Kα+1

(
2|ω2|2

1−|ω2|4
|z|2
)

g2,o(z)Eo
α

(
2rω2

1− r2ω
2
2

zξ

)}
× exp

(
− r2ω

2
2

1− r2ω
2
2

z2
)

exp
{

2|ω2|4

1−|ω2|4
(x2− y2)

}
|z|2α+2dxdy , ξ ∈ R,(3.5)

the convergence holds in L2(µα).

Remark 3.2. For any n ∈ N , Hα
n (z) denotes the analytic extension of Hα

n (x) to C, then we
see that, for ℜc > 0, the family

{
e−cnHα

n (z)
}

n≥0 is a complete orthonormal system in Hα
c

because e−cH α

: L2(µα)−→Hα
c is an isometric isomorphism. Hence, the expression

K α
c (z,ξ ) =

∞

∑
n=0

e−cnHα
n (z)Hα

n (ξ )

and Theorem 3.1 suggest the representation of T α
c , for fixed ξ , in the form

[T α
c g] (ξ ) = 〈g,K α

c (.,ξ )〉c,α , g ∈Hα
c .

Indeed

T α
c g(ξ ) =

∞

∑
n=0
〈T α

c g,Hα
n 〉2,α Hα

n (ξ )

=
∞

∑
n=0
〈g,e−cHα

Hα
n 〉c,α Hα

n (ξ )

=
∞

∑
n=0
〈g,e−cnHα

n 〉c,α Hα
n (ξ )

=
∞

∑
n=0
〈g,Hα

n 〉c,α e−cnHα
n (ξ )

= 〈g,K α
c (.,ξ )〉c,α .

However, the integral in the right-hand side need not converge. Following the method given
in [2, p. 202] (also one can see [10] and [12]), we can obtain another representation of (3.5)

f (ξ ) = lim
σ→∞

4|ω2|2α+4

πΓ(α +1)(1−|ω2|4)

×
∫
|z|≤σ

(
Kα

(
2|ω2|2

1−|ω2|4
|z|2
)

g2,e(z)(Kα
c2

(z,ξ ))e

+Kα+1

(
2|ω2|2

1−|ω2|4
|z|2
)

g2,o(z)(Kα
c2

(z,ξ ))o

)
× exp

(
2|ω2|4

1−|ω2|4
(x2− y2)

)
|z|2α+2dxdy , ξ ∈ R

= lim
σ→∞

4|ω2|2α+4

πΓ(α +1)(1−|ω2|4)

( 1
1−ω

2
2

)α+1
exp
(
− ω

2
2

1−ω
2
2

ξ
2
)
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×
∫
|z|≤σ

{
Kα

( 2|ω2|2

1−|ω2|4
|z|2
)

g2,e(z)Ee
α

( 2ω2

1−ω
2
2

zξ

)
+Kα+1

( 2|ω2|2

1−|ω2|4
|z|2
)

g2,o(z)Eo
α

( 2ω2

1−ω
2
2

zξ

)}
× exp

(
− ω

2
2

1−ω
2
2

z2
)

exp
{ 2|ω2|4

1−|ω2|4
(x2− y2)

}
|z|2α+2dxdy , ξ ∈ R.(3.6)

4. Extension of e−cH α for ℜc < 0

The inverse transform (3.5) inspires us an extension of e−cH α

for ℜc < 0. Indeed, let
g2(x) = ∑

∞
n=0 aα

n Hα
n (x) then f (x) has the representation ∑

∞
n=0 aα

n e−(−c2)nHα
n (x) in L2(µα).

Hence, for any c with ℜc < 0 , we define the linear operator e−cH α

in the form

e−cH α

f (x) =
∞

∑
n=0

aα
n e−cnHα

n (x).

So, in the expression (3.5) replacing ω2 by ec , we obtain the representation of e−cH α

.
However, since the expression (3.5) requires the analytic extension form of a member in
L2(µα), we shall give its representation in terms of real variable. For any fixed c with
ℜc < 0 , we first establish a characterization of the elements in D(e−cH α

) , the domain of
the operator. Since the family

{
ecnHα

n (z)
}

n≥0 is a complete orthonormal system in Hα
−c ,

for a given f ∈ L2(µα) , f ∈ D(e−cH α

) if and only if f is almost everywhere equal to the
restriction of an element in Hα

−c to R with respect to µα .

Theorem 4.1. For any c with ℜc < 0, let ω = ec.
If f is a C ∞-function in L2(µα), then the following are equivalent:

(i) f is an element in D(e−cH α

).

(ii) The integral

∫
C

(
Kα

(
2|ω|6

(1−|ω|4)(|ω|8 + |ω|4 +1)
|z|2
)

∣∣∣∣∫R
f (ξ )exp

(
− 1

1−|ω|4
ξ

2
)

Ee
α

(
2|ω|2

1−|ω|4
zξ

)
|ξ |2α+1dξ

∣∣∣∣2
+Kα+1

(
2|ω|6

(1−|ω|4)(|ω|8 + |ω|4 +1)
|z|2
)

∣∣∣∣∫R
f (ξ )exp

(
− 1

1−|ω|4
ξ

2
)

Eo
α

(
2|ω|2

1−|ω|4
zξ

)
|ξ |2α+1dξ

∣∣∣∣2)
× exp

(
− 2|ω|4(|ω|4 +1)

(1−|ω|4)(|ω|8 + |ω|4 +1)
(x2− y2)

)
|z|2α+2dxdy

is finite.

Proof. We prove that f is the restriction of an element in Hα
−c to R if and only if f satisfies

the condition (ii). For simplicity, let Xα be the restriction operator to R. Then Xα is a
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bounded operator of Hα
−c into L2(µα) , in fact, we have ‖Xα‖ = 1. Moreover, the adjoint

operator X ∗
α of Xα has the following representation, for all h ∈ L2(µα)

[X ∗
α h](z) = 〈X ∗

α h,N α(.,z,−c)〉−c,α

= 〈h,XαN α(.,z,−c)〉2,α , z ∈ C .(4.1)

Since
{

ecnHα
n (z)

}
n≥0 is a complete orthonormal system in Hα

−c, the range Xα(Hα
−c) is

dense in L2(µα), so the operator X ∗
α is one-to-one. Hence, f can be extended as the member

in Hα
−c if and only if X ∗

α f is contained in the range X ∗
α Xα(Hα

−c). If g is an element in
X ∗

α Xα(Hα
−c), then g is expressible in the form

g(z) = 〈X ∗
α Xα G,N α(.,z,−c)〉−c,α

= 〈G,X ∗
α XαN α(.,z,−c)〉−c,α , z ∈ C(4.2)

where G is in Hα
−c with X ∗

α Xα G = g.
Following a general method, given in [11], we shall give a characterization of the members
in X ∗

α Xα(Hα
−c) .

From the representation (4.2) of X ∗
α Xα , we calculate the kernel form

Ñ α(z,u,c) = 〈X ∗
α XαN α(.,u,−c),X ∗

α XαN α(.,z,−c)〉−c,α

= 〈XαN α(.,u,−c),XαX ∗
α XαN α(.,z,−c)〉2,α .(4.3)

Meanwhile, for all z′ ∈ C, we have from (4.1)

[X ∗
α XαN α(.,z,−c)] (z′)

= 〈XαN α(.,z,−c),XαN α(.,z′,−c)〉2,α

=
(

1
1−|ω|4

)2α+2

exp
(
− |ω|4

1−|ω|4
(z′)2

)
exp
(
− |ω|4

1−|ω|4
z2
)

×
∫

R
exp
(
− 2|ω|4

1−|ω|4
ξ

2
)

Eα

(
2|ω|2

1−|ω|4
ξ z
)

Eα

(
2|ω|2

1−|ω|4
ξ z′
)

dµα(ξ ).

By formula (2.2), we have

[X ∗
α XαN α(.,z,−c)] (z′) =

(
1

1−|ω|8

)α+1

exp
(
−|ω|8

1−|ω|8
(z′)2

)
exp
(
−|ω|8

1−|ω|8
z2
)

Eα

(
2|ω|4

1−|ω|8
z′z
)

.(4.4)

Hence, the desired kernel form is deduced from (4.3).

Ñ α(z,u,c) = 〈XαN α(.,u,−c),XαX ∗
α XαN α(.,z,−c)〉2,α

=
1

((1−|ω|4)(1−|ω|8))α+1
Γ(α +1)

exp
(
− |ω|4

1−|ω|4
u2
)

exp
(
−|ω|8

1−|ω|8
z2
)

×
∫

R
exp
(
−1+ |ω|4 + |ω|8

1−|ω|8
ξ

2
)

Eα

(
2|ω|2

1−|ω|4
uξ

)
Eα

(
2|ω|4

1−|ω|8
zξ

)
|ξ |2α+1dξ .

Also by formula (2.2), we have

Ñ α(z,u,c) =
(

1
(1−|ω|4)(|ω|8 + |ω|4 +1)

)α+1

exp
(

−|ω|12

(1−|ω|4)(|ω|8 + |ω|4 +1)
z2
)
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× exp
(

−|ω|12

(1−|ω|4)(|ω|8 + |ω|4 +1)
u2
)

Eα

(
2|ω|6

(1−|ω|4)(|ω|8 + |ω|4 +1)
zu
)

.(4.5)

Then the range X ∗
α Xα(Hα

−c) coincides with the reproducing kernel Hilbert space Hα
1,c

admitting the reproducing kernel Ñ α(z,u,c) and X ∗
α Xα is an isometry of Hα

−c onto Hα
1,c.

Let Hα
2,c be the reproducing kernel Hilbert space determined by the positive matrix

Eα

(
2|ω|6

(1−|ω|4)(|ω|8 + |ω|4 +1)
zu
)

as in the proof of Theorem 3.1 , we obtain the factorization for g ∈X ∗
α Xα(Hα

−c)

g(z) =
(

1
(1−|ω|4)(|ω|8 + |ω|4 +1)

)α+1

exp
(

−|ω|12

(1−|ω|4)(|ω|8 + |ω|4 +1)
z2
)

g1(z)

for an entire function g1 ∈Hα
2,c.

So, it gives the norm identity

‖g‖2
Hα

1,c
=
( 1

(1−|ω|4)(|ω|8 + |ω|4 +1)

)α+1
‖g1‖2

Hα
2,c

,

where

‖g1‖2
Hα

2,c
=

4
πΓ(α +1)

(
|ω|6

(1−|ω|4)(|ω|8 + |ω|4 +1)

)α+2

×
∫

C

(
Kα

(
2|ω|6

(1−|ω|4)(|ω|8 + |ω|4 +1)
|z|2
)
|g1,e(z)|2

+Kα+1

(
2|ω|6

(1−|ω|4)(|ω|8 + |ω|4 +1)
|z|2
)
|g1,o(z)|2

)
|z|2α+2dxdy.

Note that Hα
2,c is the totality of entire functions with finite norms ‖g1‖Hα

2,c
. The space Hα

1,c
consists of entire functions with finite norms given by

‖g‖2
Hα

1,c
=

4|ω|6α+12

πΓ(α +1)(1−|ω|4)(|ω|8 + |ω|4 +1)

×
∫

C

{
Kα

(
2|ω|6

(1−|ω|4)(|ω|8 + |ω|4 +1)
|z|2
)
|g1,e(z)|2

+Kα+1

(
2|ω|6

(1−|ω|4)(|ω|8 + |ω|4 +1)
|z|2
)
|g1,o(z)|2

}
× exp

(
2|ω|12(x2− y2)

(1−|ω|4)(|ω|8 + |ω|4 +1)

)
|z|2α+2dxdy.(4.6)

By formula (4.1) X ∗
α f is expressible in the form

[X ∗
α f ](z) =

1
Γ(α +1)

(
1

1−|ω|4

)α+1

exp
(
− |ω|4

1−|ω|4
z2
)

×
∫

R
f (ξ )exp

(
− 1

1−|ω|4
ξ

2
)

Eα

(
2|ω|2

1−|ω|4
zξ

)
|ξ |2α+1dξ .(4.7)
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So X ∗
α f ∈Hα

1,c if ‖X ∗
α f‖Hα

1,c
< +∞, then our claim has been proved.

Remark 4.1. When a C ∞-function f ∈ L2(µα) satisfies (ii) in Theorem 4.1, we shall give
the representation of its analytic extension f̂ in terms of f . By the isometry X ∗

α Xα of Hα
−c

onto Hα
1,c, we have the following.

Theorem 4.2. Let c,ω and f be as in Theorem 4.1. If f satisfies (ii) in Theorem 4.1 and f̂
denotes the analytic extension of f to C, then f̂ is represented by

f̂ (z) =
4|ω|6α+12

πΓ(α +1)2(1−|ω|4)(|ω|8 + |ω|4 +1)

(
1

(1−|ω|4)(1−|ω|8)

)α+1

× exp
(
− |ω|8

1−|ω|8
z2
)∫

C

{
Kα

(
2|ω|6

(1−|ω|4)(|ω|8 + |ω|4 +1)
|z′|2

)
×
(∫

R
f (ξ )exp

(
− 1

1−|ω|4
ξ

2
)

Ee
α

(
2|ω|2

1−|ω|4
z′ξ
)
|ξ |2α+1dξ

)
Ee

α

(
2|ω|4

1−|ω|8
z′z
)

+Kα+1

(
2|ω|6

(1−|ω|4)(|ω|8 + |ω|4 +1)
|z′|2

)
×
(∫

R
f (ξ )exp

(
− 1

1−|ω|4
ξ

2
)

Eo
α

(
2|ω|2

1−|ω|4
z′ξ
)
|ξ |2α+1dξ

)
Eo

α

(
2|ω|4

1−|ω|8
z′z
)}

× exp
(
− |ω|4

1−|ω|8
(z′)2

)
exp
(
− 2|ω|8

(1−|ω|8)(|ω|8 + |ω|4 +1)
(
(x′)2− (y′)2))

|z′|2α+2dx′dy′ ,
(4.8)

where z′ = x′+ iy′.

Proof. Let Sα be the adjoint operator of X ∗
α Xα from Hα

1,c to Hα
−c . Then X ∗

α Xα is an
isometry of Hα

−c onto Hα
1,c , the operator Sα is the inverse of X ∗

α Xα . Hence, X ∗
α f =

X ∗
α Xα SαX ∗

α f and f = Xα SαX ∗
α f , since

f̂ (z) = [SαX ∗
α f ](z)

= 〈SαX ∗
α f ,N α(.,z,−c)〉−c,α

= 〈X ∗
α f ,X ∗

α XαN α(.,z,−c)〉Hα
1,c

,

from formula (4.4), (4.6) and (4.7) we obtain the desired representation (4.8).
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