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Abstract. Let {¢=”" /%c > 0} be the Dunkl-Hermite semigroup on the real line R, de-
fined by
AW = [ A D)) dalE), xR,

where % (x,&) =Y ge  "H* (x)HZ(E). Here, HY ,n € N, are the Dunkl-Hermite poly-
nomials which are the eigenfunctions of the operator D2, — 2xd /dx, D¢ being the Dunkl
operator on the real line. For Re > 0, we give a representation for inverting the semigroup.

Next, we extend e

. . . . . . o
in this last case, we characterize the domain in which e e
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and we give an integral representation of it for Re < 0. Moreover,
is well defined.

Keywords and phrases: Dunkl operator, Dunkl-Hermite polynomials, Dunkl-Hermite semi-

group.

1. Introduction

The study of Dunkl operators has known a considerable growth during the last two decades
due to their relevance in various fields of mathematics and in physical applications. Also
they give the way to build a parallel to the theory of harmonic analysis based on finite root

systems and depending on a set of real parameters.

In this work we are interesting in the rank one case. Let @ > —1/2 , the Dunkl operator Dy

acting on smooth functions f on R , is defined by

200+ 1 1f(x) = f(—x
This operator is associated with the Dunkl-Hermite operator
d
Cox—
xdx

Its spectral decomposition is given by the Dunkl-Hermite polynomials
(see [9])
(D2, —2xd /dx)H* = —2nHY.

Communicated by Saburou Saitoh.
Received: October 16, 2009; Revised: May 18, 2010.

HY, namely we have
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These polynomials are given by
[%] (_ 1 )k
k=0 k!bnfzk(a)

where by, () is the generalized factorial defined by Rosenblum in [8],

ba(0t) = l%:gi])ll)l"qn; 1} +a+ 1) ;

H%(x) =277 /by(0)

n

(2)6)’1_2](,

where [n / 2] is the integral part of n/2.We point out that these polynomials are expressed in
terms of Laguerre polynomials [8]. More precisely we have

123 ([3)!
o — (_ [7]7 6, o+6,
Hn ()C) ( l) bn(Ol) L[z] (x )7
where 6, is defined to be 0 if n is even and 1 if n is odd. It is well known that the system

{H%} >0 is complete and orthonormal in L? (i) , where (g is the Gaussian-Dunkl measure
defined on R , by

1 2
d — 200+1 —x dx.
The system {H*},>0 generates a semigroup of linear operators denoted by e >0,
on L?(g) and is defined by

=

[e—cffo‘ Z a° —anoc XER,

when f is expanded in L?(Ug) as f = Yo qalHY , a% = [ f(x)H* (x)dUg/(x). Obviously
we can extend the operator e for every complex number c w1th Re >0o0rc=0.

In this paper, we prove that for Re > 0 , the operator e~ * possesses the following
integral representation

0 = [ A ES E)dualE),

where

A (x,6) = Y e THT (T (E).
n=0

Next, for ¢ € C with Re > 0, we characterize the range of L?(i) under the opera-
tor e~ “** as Fock type space, furthermore, we give two representations for inverting the
operator e~ “ in terms of integrals. These inverse transforms inspire us an extension of
e=* for Re < 0. Also, we establish a characterization of the elements in 2 (e a), the
domain of e~*“. Finally, when a ¢*-function f € L?(1g) is an element in 2 (e "),
with Re < 0, we give a representation of its analytic extension fin terms of f.

We conclude this introduction by giving the organization of this paper. In the next sec-
tion, we recall some notations and results related to the Dunkl operator on the real line. The
third section deals with the inverse of e for Re > 0. The last section is devoted to the
study of the extension e~/ * for Re < 0.
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2. Preliminaries

In this section, we recall some notations and results related to the Dunkl operator on the real
line, given by

2a+1[f(x)—f(—x)] o 1

X

Do f(x) = f'(x)+
For every £ € C, the equation

Dof(x) =6 f(x), f(0)=1,
has a unique analytic solution Eq(&x), called Dunkl Kernel (see [5]), defined by
. X .
BulE) = ju(E0)+ s i (89
where jg is the modified spherical Bessel function of order 3 given, for § > —1/2, by

oo

1
@ =TB+D Y e gD

We define ES (z) = juo(z) the even part of E4(z) and
Eq(z) =

(z/2)*

mﬁxﬂ(z)

the odd part of Eq ().
We note that

Eq(z2) = Va(exp)(z),
where Vy, is the intertwining operator between Dy, and the usual derivative d /dx given by
220~ 1F 2a +2)

/ S

ValDW) = £

)(1—1%) 11+ 1)dt,
this operator is an isomorphism on the space of polynomials.
We remark that

b,(a
HY = 7’5! )Voc(Hn)a

n

where {H, },>0 is the set of classical normalized Hermite polynomials in Lz(ﬁe*xzdx).
We recall the following formulas given in [8]. The formula in (2.1) is the Mehler formula

1\ (2 +y7)2 (2xy)z
(1 — —
2.1) ZH H*(y)" = (1—z2) eXp( - )Ea<1_z> 2] < 1.
/ Eo(x1)Eq (y1) exp(—=A2)[12% i
R
_ T(a+1) X +y?
2.2) = exp( o ) e (21)’ x,y € Cand KA > 0.
We denote by m, the measure defined on C by

1
72T (o + 1)

dmg(z) = 2% Ko (j2)dxdy | z=x+iy,
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where K, is the Macdonald function, (see [6]), defined by

_ mla(z) —1u(2)

Ka(2) 2 sin(om)

, 0 €C\Z, |arg(z)| < m,

for integer n,
Ky(z) = lim Kg(z2)

a—n
and .
Z\ &%
== (5 a0
a(2) Mot 1) \2 Ja(2)
Since Ky (|z|?) is positive, the measure m,, is nonnegative.
For o > —%, we note

e F4. is the Hilbert space of even entire functions on C, with the inner product

defined by (f,8)a.e = [ f(2)8(z)dmal(z).
e F4, is the Hilbert space of odd entire functions on C, with the inner product de-

fined by (f,g)a.0 = 2(a+1) Jo f(2)g(2)|z] dme1(2).
Meanwhile, referring to Sifi and Soltani [13] defined, for o > —1/2, the generalized Fock
space # as the direct sum of F4 , and % ,, admitting the inner product

<fag>a = <fe>ge>a,e+ <f0>g0>ot70 )

where
f@)+f(=2)
2

f@) —f(=2)

fe(Z) = )

and  f,(z) =

It is also given in [13] that the kernel 2%, given for z,& € C by
Za(&.2) = Ea(&2),

is a reproducing kernel for the generalized Fock space %, that is
(i) Forevery & € C, the function z — %4 (&, z) belongs to %y, .

(ii) The reproducing property : For every & € C and f € %, , we have
(fs 2a(S,))a = f(8)
3. The Dunkl-Hermite semigroup for Rc > 0

Let f € L*(Uq) » f = Yo ga?HY, for any complex number ¢ with e > 0, we define the
semigroup e~ “of operators by

T @) = Y e MalHI(x) , x € R
n=0

= T HE) [ SO O)dnal).

Let r > 0, using the estimates for the classical Hermite polynomials, see [7], the intertwin-
ing operator V,, and the Stirling formula, (see [3]), we deduce the following: there exists a
positive constant C(r) depending on r such that

|[H* (x)| SC(r)n%’L% , x€[-nr].
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Since

=

Y e [ 2 OHE ()0 dpa ()

n=0
- 1
< Y (IS HY aall fllaa < e
n=0
we can interchange the order of summation and integration and so

e = [ (i e HE (H <y>> PO ) 3 € 1]
b n=0

As ris arbitrary, this relation holds for all x € R. We put

=)

S (x,y) = ge"'”Hf () Hy (y)-

Hence, we can write
74
[~ f] /Ji/axy v)due(y) -

In the following we are interesting in inverting these operators, more precisely, we shall
give two representations of the inverse of the operator e~ “ ,ceC, Re >0, in terms of
integrals.

Notation 1. We denote by
N (z,8,¢) = (A (2,), HH(E, )20

—/%“zy HEE y)dpa(y).

Lemma 3.1. . %(z,&,¢) determines uniquely a reproducing kernel Hilbert space H* ad-
mitting the reproducing kernel N %(z,& c) given by
G.1)

= () e (o ()  (2055).

c

where @ = e~

Proof. From the Mehler formula (2.1), we have

- 20 HE () HE(E)e ™

= (1 lwz)aﬂ exp (— 1 ?;2 (x2+§2)) Eq (21@(02):5) .
For (z,&) € C x C, we have
N0 Eo0) = [ A ) HEE D) dpaly)

1
T(a+1) (1-0?)(1-a>)*""
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X /Rexp (— 0 ﬁ);z ( +y2)) Eq (21 _wwzzy>
exp ( | wz)z & +y2)> Eq <21ww2<§y) VP e dy
1
CDla+ 1) ((1-0?)(1-a2)*"

2 =
o ®° 22 -
Xexp(_l—w222>exp<_lw2 > X Aa(z6.c)

- 1—|o* ) 1)
Aa(Zf,C):/ReXP (_(l—wz)(l—wz)y Eo 27— 7%
o < 2
B (272 B ) PO ey

l-@

and by formula (2.2) we have

with

) o, A
Aa(Z,é,C)ZF(O"i'l)((I fo—)|(al>|4w)>

ool S (259 (59}
><Ea< 2|w6|02|4 5)

Loyet —|of* —|of* } o 2|of? £)
N80 = (1—|a)|4> eXp{ \a)|4z} { |w|45 oS
Since A4 %(z,&,¢) is a positive matrix on C in the sense of Moore [1], i.e. for g € N and
finite sets {&, }1<n<g » {}1<n<g in C

Z Zyn’}/m gn’ m )— ’

n=1m=1

So

using the results in [1, p. 344] we deduce that it uniquely determines the reproducing kernel
Hilbert space H* admitting the reproducing kernel .4 *(z,&,¢). 1

Notation 2. We denote by
o 1130 = JelfPdua:

4‘w|2a+4
nF((x+ 1)(1— |a)|4)

Je (R (12 ) e K (2 o eno { 22

off off off
) 2o+ dxy.

o |IglZ o=
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where z = x+ iy, K is the Macdonald function.

Theorem 3.1. For ¢ € C with Re > 0, the range of L* (L) under the operator e~
coincides with the Hilbert space HY consisting of entire functions with finite norms ||.||¢.a-

Moreover, the isometrical identity

H 7L)V"‘

||f||2a
holds.

Proof. For any fixed complex number ¢ with Re > 0, applying the dominated convergence
theorem and Morera’s theorem to the integral representation

0 = [ A0S EdalE),
we see that every element in the range of the operator e~“* “
to the complex plane C.

Hence we shall consider the operator e as the linear operator of L?(i) into an
entire function space. Then, following the method of characterizing the ranges of inte-
gral transforms established by Saitoh in [11] and Lemma 3.1, the space H? is the range
of L*(lg) under the operator e “. The family {.#,%(z,&),z € C} being complete in
L?(14), hence we have the isometrical identity.

Thus, it is sufficient to prove that the elements in HY are characterized as entire functions
with finite norms. Using the well known results of Aronszajn (see [1]), if g € H?, then g
can be expressed in the form

3.2) g(z) = <1_1|w4)a exp{ _|a|)|4z }g1( ),

where z € C and g; is a member in the reproducing kernel Hilbert space % admitting the

2
0}
1||42§ } Moreover, the following isometrical identity holds

1 o+1
(3.3) Igll? o = (1_> el -

|of*

can be analytically extended

—cH*

reproducing kernel Ey {

By change of variable, we have

2
+ o2 \* 2|o]?
2 2 2
= X K
llg1ll5 « wl(a+1) <1—|(D4) %C o 1—|(D\4|Z| |g1.6(2)]
o 2042
+Ko+1 1— | |4‘ | | 10( )| |Z‘ dXdy7

which completes the proof. 1

Remark 3.1. For two complex numbers ¢ , ¢ with Rey > 0 and Reyp > 0, we shall discuss
arelation between HZ and H,. Put g = e 17 fand gy = e~ f for some f € L2(UUy).
If Rey > Rey , then

_ o0 _ _ 7 741 — _ 2P0
gl —e Clﬁg f:e (C] Cz)Jf e L‘z-}i( f:e (C] Cz)Jf g27
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and so we can directly obtain a representation of g; in terms of g, by using the integral
representation of e, However, if Re; < Rey, it is not obvious to represent g; in terms
of g». Hence we are interested in this case.

Theorem 3.2. For R >0, Rey >0and f € L (Ug), let g1 = e fand gy = e 2 f.
Then g, is expressible in the form

+1
(é) 4‘a)2|2a+4 1 ¢ (1)126% éZ
= exp| ———=
81 (e + 1)(1— @) \ 1— ol P\ oa?
2|an|? 2> 20,@)
w [ Ky (212, JES [ =222 7
/<c<a<1 [t 1) 824(2) 1—00126%é
2Janl* | 201@y _
K —_— ,(2)E°
i () aneto)e (e

22 4
0wy 2|an| 2 2 20042
34 xexp | ——=257% | ex < xX°— Z dxdy, & € R,
P\ oa Pli o™ 7)) Y, &

where @) = e ! and W, = e~ 2.
Proof. We assume that 7% is the inverse operator of e 1% from HZ into L*(Ug). In

addition, let S¢ . be the linear operator of HZ, into HZ, defined by

C1,62
S L‘z/ﬁ T(Xg 7g6%(lx

1,08 =
then we have

Se 81 =82 -
It follows

e Y —c1 %
158 281l = 11”2 flley.a = Ifllze = e flleya = 181 ]ley .-

Hence the operator S , 1s an isometry from HO‘ onto HO‘ so the adjoint operator S:;%z of
S% _ is its inverse. Thus for & € R we get the representatlon

C1,C2
81(8) = [55%,82] (&) = (5%, 82,/ %(.&.¢1))er
= <g27 c1 cz‘/Va( é )>£‘27UC'
Meanwhile, for z € C, the following is valid

[S% eV (o Esen)] () = [ TN (& )] ()

now
Nz 8 er) = [ HTE D) @),
'%/c(lx(gaz> = [TC?,/VO‘(,7§7CI)] (z)
and

[S% eV (8 sen)] (1) = [ 2 (E ]| (@
= [ A HFENdbaly)
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1 1 o+1
CED) ((16022)(1(012)>

—2 2
01 42 W
xXexp| ——= ex By (z,6,
P( 1 %5) P( 1 221) a(z,6,¢)

1 — ®*w?
Balz.,¢) = [ exp |~ i 2
* R (1-})(1 - o3)
) [ 20+1
XEy | 2————= E 2 d
a< 1_w22zy) a< l_w%éy) [F dy

from the formula (2.2), we have

(z 5 ) (OlJrl) ((1—(0%)(1—2(1)22)> a+lexp{( w22(1 _wi) )Zz}

1- o]0 1-3)(1 -0l

o7(1— o 20
X €Xp :2( 2) 2 52 EOZ %Z)ZZZ& )
(1-op)(1-o 1("2) 1 — 07w

with

o)
| a+1
70
¢=/Va 7) = ex _ 1% 2
=22
[ox ) 20
X exp{ — Lzz 2Z2 Eq s ¢
1 — 070 1 —o70;
Thus
81(8) = (82,58, e,V “ (. 6,¢1))era
4‘(02|2a+4 / 2|(02|2 ) [
= Ko | ———3 , N
ﬁr(a+l)(l—|a)2|4) C a l_|a)2‘4‘z| gz,@(z)( C1,C2 ) ( )
| Toa gy
ke (LRI 6205 7,0
20en* 5 ) 2a+2
xXexp| ———z(x" — Z dxd
)
with ( o C2JVO‘)e and ( o LzJV“)O are respectively the even and the odd part of SL1 o
N %(.,&,c1). So we obtain the identity (3.4). 1

—cp Y

From the definition of e and the identity (3.4), we deduce the following.

Corollary 3.1. Under the same assumptions in the previous theorem, f is given by

) 4 w 20+4 1 o+1 r262
f(é) = lim ‘ | 4 2 exXp | — 212 52
r—1al(a+1)(1—|;|*) \1- o 2
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2|an|? 2) ( 2roy )
X K Z Ei | —=2
[ ke (R s (1275,

|a)2| ) o 2r@y }
K, _— o )Ey | ———
+ Ka+1 (1 > |4‘Z| 22.0(2) 1 2@%Z€

er 2 2|t } 2042
3.5 XexXp| ———==57 |expy ——5 (x" — z dxdy , § € R,
6:5) (T w8 =) P sy

the convergence holds in L*(ly,).

Remark 3.2. For any n € N, H%*(z) denotes the analytic extension of H%(x) to C, then we
see that, for Re > 0, the family {e”"H%(z)} _, is a complete orthonormal system in H?

because e~ L?(Ug) — HY is an isometric isomorphism. Hence, the expression
K8 = ) e "HT (HT (&)
n=0
and Theorem 3.1 suggest the representation of 7,%, for fixed £ , in the form
[T78](6) = (&, A (- 8))eas g €HL.
Indeed

I
ngk

T73(8) (108, Hy )2.aHy ()

3
Il
=]

(g6 H )} (E)

1
[ ngk

3
Il
=}

Il
agk

(86" "Hy)e.aly'(S)

3
I
o

Il
J§ aok

<g,Hn Jeae "H(E)

= <g7‘%/ca('76)>c7a'

However, the integral in the right-hand side need not converge. Following the method given
in [2, p. 202] (also one can see [10] and [12]), we can obtain another representation of (3.5)

- 4|a)2‘206+4
f(§) = lim al(a+1)(1— | ]*)

. (K( "|°2w'2|4|z|2)g26< JKE (2, 8)),

Ko (1“’2'2'4|z|2) (G0,

3
Il

2] |*
X exp (1_||w|2|4(x2 —y2)> |2)2*dxdy , € €R

) 4|a)2‘205+4 1 a+1 6% 5
= Jim 1 ( —2) eXp(_ifzé )
I et (o) \ 12 s
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<[ {Ke(P wal” S IIEA Zwizzg)

2| |? 20, _
o (= olel e @S (5% )}
o+1 | |4| | 82, )( ) 1—6%
@3 20an* 5 o\ |pas2
(3.6) ><exp(—1 2Z)exp{w(x —y)}|z| dxdy , & eR.

4. Extension of ¢~ for %ic < 0

The inverse transform (3.5) inspires us an extension of e for Re < 0. Indeed, let
22(x) = X ga?H (x) then f(x) has the representation Y= a%e~(~2"H%(x) in L (1g).
Hence, for any ¢ with Re < 0, we define the linear operator =" in the form

e fx) = Y afe "HY(x).
n=0
So, in the expression (3.5) replacing @, by e , we obtain the representation of e~ ‘.
However, since the expression (3.5) requires the analytic extension form of a member in
L?(1q), we shall give its representation in terms of real variable. For any fixed ¢ with
Re < 0, we first establish a characterization of the elements in Z(e~*) , the domain of
the operator. Since the family {¢“"H%(z )}n>0 is a complete orthonormal system in H%, ,

for a given f € L*(Ug) , f € Z(e —c ) if and only if f is almost everywhere equal to the
restriction of an element in H*, to R with respect to [q.

Theorem 4.1. For any ¢ with Re < 0, let 0 = €.
If f is a € -function in Lz(/.ta), then the following are equivalent:

(i) fis an element in D(e="").

(ii) The integral

J. <K"‘ <<1 - |w|4><TL>afs6+ @[+ 1) 'Z'2>

oo (- igne) 2 ()
6

e ((1 = w|4><TL>w%l+|w|4+1> 'Z'Z)

for@row (e ()

(_ 2of*(of* +1)
PU 0= lo(of +loff+1
is finite.

)

) (X2 _y2)> |z\2a+2dxdy

Proof. We prove that f is the restriction of an element in H%,. to R if and only if f satisfies
the condition (ii). For simplicity, let Zy be the restriction operator to R. Then 2 is a
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bounded operator of H*,. into L?(Ug) , in fact, we have || 2|| = 1. Moreover, the adjoint
operator 2, of 2 has the following representation, for all & € L (i)
[(Zahl(z) = (Zah, A (.2 =C))ca
@.1) = (h, ZuV (%, —C))2a, z€C.
Since {eC"H o ( } >0 is a complete orthonormal system in H%* , the range Zy(H?,) is

Zes
dense in L%(1y), so the operator 2 is one-to-one. Hence, f can be extended as the member
in H%, if and only if 2 f is contained in the range 2, Zx(H%,). If g is an element in
Xy Zou(H?,), then g is expressible in the form

g(Z) = <%;%QG,</V“(.,Z, 7C)>*L,05
(42) = <G, %&k %’a:/i/a(.,z, _C)>7C.,(Xa zE C

where G is in H®, with 2} Z,G = g.

Following a general method, given in [11], we shall give a characterization of the members
in 25 Zu(H%,) .

From the representation (4.2) of % 2, we calculate the kernel form

N2 00,¢) = (XF DV (i —C), X XV (7 —C)) e
(4.3) = (Za N0, —), Za Xy XaH (7, —C))2a
Meanwhile, for all 7 € C, we have from (4.1)
(2 ZaV (7, —0)| (2)
= (LN (7, —C), ZaNV (7 —C))aa

(o) on (e )en(-952)
< o () e (e e (st

By formula (2.2), we have
* ol = AN 1 *r _|w|8
(25 Zah (20 () = (st exp 1_|w|8<>

2 4

Hence, the desired kernel form is deduced from (4.3).

N(z00,¢) = (Zg N (1, ), ZaZg Zah (7 —C))2a
_ | exp (190 o (1002
(1= o)1= |o[*)* ' T(a+1) L-]of* — |l

X/ReXp (Wéz)]g ( 2|a)|2|4§) ( 2|a)|4|8 §> e

Also by formula (2.2), we have

o | o+l 7‘w|12
Feno = (amrareerrn) (e o)
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o2 2) < 2|wl° >
*+3) XeXp((1—|w|4)(co|8+|co|4+1)u Fel T oM (ef of ™)

Then the range 27 Zo(H?.) coincides with the reproducing kernel Hilbert space Hf .

admitting the reproducing kernel ﬂ(z,ﬁ, c) and Z; 2 is an isometry of H* . onto HY .
Let HY . be the reproducing kernel Hilbert space determined by the positive matrix

E 2|w|® _
2u
N -lof)(of +]of*+1)
as in the proof of Theorem 3.1 , we obtain the factorization for g € 25 Zo(H%,)

1 a+1 12
g(z) = exp o] a2
(1-lof*)(|of®+|o[*+1) (1—-|of*)(of®+|o[*+1)
for an entire function g; € HY ..
So, it gives the norm identity

5 1 a+1 2
||g||Hf‘_c = ((1 — ‘(D|4)(|w‘8_~_ |a)\4+ 1)) llg1 Hch,

where

) 4 |(I)|6 o+2
lsllng, = e ((1—|w4><w|8+|w|4+1>>

' 2|o|®
: -/C (Ka ((1 — o) (Jof +|w[*+1) Z|2) g1.6(2)?

2|w|6 2 2 200+
+ K 2dxd .
o+1 ((1 | |4)(‘(D|8 |(1)|4 1)|Z| |gl,g(Z)| |Z‘ Y

Note that HY . is the totality of entire functions with finite norms [|g1 ||ch. The space HY,

consists of entire functions with finite norms given by

) 4|w‘6a+12
Il = Zria 11— JoP)(JoF + [0F + 1)
2|60|6 2) 2
X K
4 (oo rramem )l
2|w|6 2 2
K
oot (o s ) 10
2ol2(2 — 2
o 20 )
(1= oM)(of + |l + 1)
(4.6) |2|*% 2 dxdy.

By formula (4.1) 2 f is expressible in the form

260 = Fg T (1_1|w4)aﬂexp (— 1 '_“]f,ﬁ)
@ < [ r@enp (— o) B (et ) e

1-|of* 1-|of*
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So Zg f € HY if |2 f|lna_ < oo, then our claim has been proved. i

Remark 4.1. When a ¢~-function f € L?(1,) satisfies (ii) in Theorem 4.1, we shall give

the representation of its analytic extension f in terms of f. By the isometry 2, 2 of H*,

onto Hff » we have the following.

Theorem 4.2. Let c,w and f be as in Theorem 4.1. If f satisfies (ii) in Theorem 4.1 and f
denotes the analytic extension of f to C, then f is represented by

o 4|w|6(x+12 1 a+l
&) = Tt 20— P (oF + ol + 1) ((1—|w|4>(1—|w|8>)

- <_1|j)l‘i'822) J {K“ (0 - |w4><2c|ua|)€l6+ o[+ 1) W)

: </Rf(é)eXp (‘1]|w|452> 2 (1271;4%5) |€2“+‘d§)Eg, (12|“|’(':|8z/z>

+ Kot ((1_|w|4)(2(|ga|16+|w|4+1)Z’Iz)

<([r@ew (g o (2528 ) 1 ae o () }
X exp (—1|_w|;|8(2’)2> exp (- - |w|g)(Twa|)g|8+ @ T ()%= (y/)2)>

‘Z/|2oc+2dx/dy/ ,

(4.8)

where 7 = x' +1iy'.

Proof. Let S be the adjoint operator of 2 2 from HY . to H%. . Then 275 Z¢ is an
isometry of H%_ onto HY, , the operator S* is the inverse of Z; Zy. Hence, Z;f =
Ly ZaS* X5 f and f = ZoS* 2, f, since

f(2) =18 25 £1(z)
= (S 2o f; N (7 =C))—ca
= (DS 2 XN (F D
from formula (4.4), (4.6) and (4.7) we obtain the desired representation (4.8). 1
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