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1. Introduction

Recently, the existence of positive solutions for Sturm-Liouville-like boundary value prob-
lems with p-Laplacian has received considerable attention [1–8]. The main tools to study
this kind of problems are monotone iterative technique [1–3], fixed point theorem on a cone
[4–8], Lerary-Schauder degree [8], upper and lower solution method [8], and so on.

Although, there are many authors considered discrete problems with p-Laplacian [9–
12], there are no results referring the discrete Sturm-Liouville-like boundary value problems
with p-Laplacian. The main difficulties are that when we define the operator of the problems
in a common method, we can’t guarantee that there exists integer t0 ∈ [a,b]∩N such that
∆u(t0) = 0, if a, b are integers with a < b, ∆u(a) > 0, ∆u(b) < 0. So in [14], Zhang et al.
try to study this kind of problems on time scales by imposing a special point θ .

Motivated by the above works, we consider the following Sturm-Liouville-like four-point
boundary value problem

(1.1) ∆(ϕp(∆u(n)))+h(n) f (u(n)) = 0, n ∈N [0,N],

(1.2) αu(0)−β∆u(ξ ) = 0, γu(N +2)+δ∆u(η) = 0,
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where ∆ denotes the forward difference operator with stepsize 1, ϕp(u) = |u|p−2u, p >
1, α > 0, β > 0, γ > 0, δ > 0, N [0,N] = {0,1, · · ·N}, N is an integer with 0 < ξ ≤
δ/γ < max{2δ/γ,N + 2− β/α,N +2/2 + δ/2γ} ≤ η < N, and we denote (ϕp)−1 = ϕq
with 1/p+1/q = 1.

By using a new method to express the operator of BVP (1.1), (1.2) and Krasnosel’skii’s
fixed point theorem, the special point doesn’t need, and some new results for the existence
of positive solution of BVP (1.1), (1.2) are obtained.

In this paper, we always assume that ∑
t
i=s ai = 0, if t < s. And we list the following

hypotheses:
(C1) f : [0,∞)→ [0,∞) is continuous.
(C2) h is a nonnegative value function defined on N [0,N +2].

2. Preliminaries

In order to give our main results, first we give some conclusions with respect to the following
boundary value problem

(2.1) ∆(ϕp(∆u(n)))+ x(n) = 0, n ∈N [0,N],

(2.2) αu(0)−β∆u(ξ ) = 0, γu(N +2)+δ∆u(η) = 0,

where x(n) ∈C ([0,N +2], [0,∞)) , α, β , γ, δ , ξ , η are same to the coefficients in boundary
condition (1.2)

Lemma 2.1.

(2.3) u(n) =
β

α
ϕq

(
Ax−

ξ−1

∑
j=0

x( j)

)
+

n−1

∑
i=0

ϕq

(
Ax−

i−1

∑
j=0

x( j)

)
, n ∈N [0,N +2],

is a solution of BVP (2.1),(2.2), where Ax depends on x only is the unique solution of the
following equation

(2.4) β

α
ϕq

(
y−∑

ξ−1
j=0 x( j)

)
= δ

γ
ϕq

(
∑

η−1
j=0 x( j)− y

)
+∑

N+1
i=0 ϕq

(
∑

i−1
j=0 x( j)− y

)
.

Proof. Let

Fx(y) = β

α
ϕq

(
y−∑

ξ−1
j=0 x( j)

)
− δ

γ
ϕq

(
∑

η−1
j=0 x( j)− y

)
−∑

N+1
i=0 ϕq

(
∑

i−1
j=0 x( j)− y

)
.

It follows that

Fx(y) = β

α
ϕq

(
y−∑

ξ−1
j=0 x( j)

)
+ δ

γ
ϕq

(
y−∑

η−1
j=0 +x( j)

)
+∑

N+1
i=0 ϕq

(
y−∑

i−1
j=0 x( j)

)
,

so Fx is increasing on (−∞,∞). Since

Fx(0) =−β

α
ϕq

(
ξ−1

∑
j=0

x( j)

)
− δ

γ
ϕq

(
η−1

∑
j=0

x( j)

)
−

N+1

∑
i=0

ϕq

(
i−1

∑
j=0

x( j)

)
< 0,

and

Fx
(
∑

N
i=0 x( j)

)
= β

α
ϕq

(
∑

N
j=ξ

x( j)
)

+ δ

γ
ϕq
(
∑

N
j=η x( j)

)
+∑

N+1
i=0 ϕq

(
∑

N+1
j=i x( j)

)
> 0,

we get that there exists unique Ax such that (2.4) hold. It’s easy to verify that (2.3) is a
solution of BVP (2.1) and (2.2).
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Lemma 2.2. Suppose that Ax is given in Lemma 2.1. Then

ξ−1

∑
j=0

x( j)≤ Ax ≤
η−1

∑
j=0

x( j).

Proof. We only need to prove

Fx(
ξ−1

∑
j=0

x( j))≤ 0 and Fx(
η−1

∑
j=0

x( j))≥ 0.

Fx(
ξ−1

∑
j=0

x( j)) =−δ

γ
ϕq

(
η−1

∑
j=ξ

x( j)

)
+

ξ−1

∑
i=0

ϕq

(
ξ−1

∑
j=i

x( j)

)
−

N+1

∑
i=ξ

ϕq

(
i−1

∑
j=ξ

x( j)

)

≤−δ

γ
ϕq

(
η−1

∑
j=ξ

x( j)

)
+ξ ϕq

(
ξ−1

∑
j=0

x( j)

)
.

Since 0 < ξ ≤ δ/γ < max{2δ/γ,N + 2−β/α,N +2/2 + δ/2γ} ≤ η < N, then δ/γ ≥ ξ

and ξ ≤ η/2. So, Fx

(
∑

ξ−1
j=0 x( j)

)
≤ 0. Similarly, we can also prove Fx

(
∑

η−1
j=0 x( j)

)
≥ 0.

The proof is complete.
Lemma 2.2 implies u(0) ≥ 0, ∆u(N + 2) ≥ 0. Let E = {u : N [0,N + 2] → R+} be

endowed with the ordering u1 ≤ u2, if u1(n) ≤ u2(n) for all n ∈ N [0,N + 2], define the
norm ‖u‖ = maxn∈N [0,N+2] |u(n)|. It’s easy to see that E is a semi-ordered real Banach
space. Choose cone P⊂ E

P = {u : u ∈ E, u(n)≥ 0, n ∈N [0,N +2], ∆2u(n)≤ 0, n ∈N [0,N], there exists
n0 such that ∆u(n)≥ 0, n ∈N [0,n0], ∆u(n)≤ 0, n ∈N [n0 +1,N +1]} .

Clearly, ‖u‖= u(n0 +1) for u ∈ P. We define the operator A : P→ E by

Au(n) =
β

α
ϕq

(
Au−

ξ−1

∑
j=0

h( j) f (u( j))

)
+

n−1

∑
i=0

ϕq

(
Au−

i−1

∑
j=0

h( j) f (u( j))

)
,n∈N [0,N +2],

where Au depends on u only is the unique solution of the following equation

β

α
ϕq

(
y−∑

ξ−1
j=0 h( j) f (u( j))

)
= δ

γ
ϕq

(
∑

η−1
j=0 h( j) f (u( j))− y

)
+∑

N+1
i=0 ϕq

(
∑

i−1
j=0 h( j) f (u( j))− y

)
,

From the definition of A, for each u∈ P, we claim that Au∈ P, and ‖Au‖= Au(n0 +1). In
fact, ∆Au(n) = ϕq

(
Au−∑

n−1
j=0 h( j) f (u( j))

)
is decreasing on n ∈N [0,N +1]. If ∆Au(n) >

0 for all n ∈N [0,N +1], then

Au(0) =
β

α
ϕq

(
Au−

ξ−1

∑
j=0

h( j) f (u( j))

)
> 0,

and

Au(N +2) =−δ

γ
ϕq

(
Au−

η−1

∑
j=0

h( j) f (u( j))

)
< 0,
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which contradicts ∆Au(n)> 0 for all n∈N [0,N+1]. Similarly, we can also prove ∆Au(n)<
0 does not hold for all n∈N [0,N+1]. Hence, there exists n0 ∈N [0,N] such that ∆Au(n0)≥
0, and ∆Au(n0 +1)≤ 0. Similarly with Lemma 2.2, we know that Au(0)≥ 0, Au(N +2)≥ 0.
So, Au(n)≥ 0, n ∈N [0,N +2], and we have A : P→ P. Furthermore, it’s easy to prove that
A : P→ P is completely continuous.

Lemma 2.3. If u∈P, then u(n)≥ n‖u‖/(n0 +1) for n∈N [0,n0 +1], and u(n)≥ (N +2−n)
‖u‖/(N +2−n0) for n ∈N [n0 +1,N +2].

Proof. Since ∆2u(n)≤ 0, it follows that ∆u(n) is nonincreasing. Hence, for n ∈N [1,n0 +
1],

u(n)−u(0) =
n−1

∑
i=0

∆u(i)≥ n∆u(n−1)≥ n∆u(n),

and

u(n0 +1)−u(n) =
n0

∑
i=n

∆u(i)≤ (n0 +1−n)∆u(n),

from which we have
u(n)≥ n

n0 +1
‖u‖, n ∈N [1,n0 +1].

For n ∈N [n0 +1,N +1],

u(N +2)−u(n) =
N+1

∑
i=n

∆u(i)≤ (N +2−n)∆u(n),

and

u(n)−u(n0 +1)≥ u(n+1)−u(n0 +1) =
n

∑
i=n0+1

∆u(i)≥ (n−n0)∆u(n),

we know

u(n)≥ N +2−n
N +2−n0

‖u‖, n ∈N [n0 +1,N +2].

Clearly, when n = 0, N +2, Lemma 2.3 also hold. The proof is complete.

Lemma 2.4. [3] Let P be a cone in a Banach space E. Assume Ω1, Ω2 are open subsets of
E with 0 ∈Ω1, Ω1 ⊂Ω2. If A : P∩ (Ω2 \Ω1)→ P is a completely continuous operator such
that either

(i) ‖Ax‖ ≤ ‖x‖,∀x ∈ P∩∂Ω1 and ‖Ax‖ ≥ ‖x‖,∀x ∈ P∩∂Ω2, or
(ii) ‖Ax‖ ≥ ‖x‖,∀x ∈ P∩∂Ω1 and ‖Ax‖ ≤ ‖x‖,∀x ∈ P∩∂Ω2.

Then A has a fixed point in P∩ (Ω2 \Ω1).

3. Main results

In this section, we present our main results with respect to BVP (1.1) and (1.2). For the
notational convenience, we denote

L1 = β

α
ϕq

(
∑

n0
j=ξ

h( j)
)

+∑
n0
i=0 ϕq

(
∑

n0
j=i h( j)

)
,

L2 = β

α
ϕq

(
∑

n0−1
j=ξ

h( j)
)

+∑
n0
i=ξ−1 ϕq

(
∑

n0−1
j=i h( j)

)
,
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where n0 ∈ N [0,N] and we define as [9] f0 = limu→0+
f (u)

ϕp(u) , f∞ = limu→∞
f (u)

ϕp(u) , i0 =
number of zeros in the set { f0, f∞}, i∞ = number of ∞ in the set { f0, f∞}. Clearly, i0, i∞ =
0,1,or 2 and there are six possible cases:

(i) i0 = 0 and i∞ = 0;
(ii) i0 = 0 and i∞ = 1;

(iii) i0 = 0 and i∞ = 2;
(iv) i0 = 1 and i∞ = 0;
(v) i0 = 1 and i∞ = 1;

(vi) i0 = 2 and i∞ = 0.

Theorem 3.1. The BVP (1.1) and (1.2) has at least one positive solution in the case i0 = 1
and i∞ = 1.

Proof. First, we consider the case f0 = 0 and f∞ = ∞. Since f0 = 0, then there exists H1 > 0
such that f (u) ≤ ϕp(ε)ϕp(u) = ϕp(εu), 0 < u ≤ H1, where ε satisfies εL1 ≤ 1. If u ∈ P
with ‖u‖= H1, then

‖Au‖=Au(n0 +1) =
β

α
ϕq

(
Au−

ξ−1

∑
j=0

h( j) f (u( j))

)

+
n0

∑
i=0

ϕq

(
Au−

i−1

∑
j=0

h( j) f (u( j))

)

≤β

α
ϕq

(
n0

∑
j=0

h( j) f (u( j))−
ξ−1

∑
j=0

h( j) f (u( j))

)

+
n0

∑
i=0

ϕq

(
n0

∑
j=0

h( j) f (u( j))−
i−1

∑
j=0

h( j) f (u( j))

)

=
β

α
ϕq

(
n0

∑
j=ξ

h( j) f (u( j))

)
+

n0

∑
i=0

ϕq

(
n0

∑
j=i

h( j) f (u( j))

)
≤‖u‖ εL1

≤‖u‖.
It follows that if ΩH1 = {u ∈ E : ‖u‖ < H1}, then ‖Au‖ ≤ ‖u‖ for u ∈ P∩ ∂ΩH1 . Since
f∞ = ∞, then there exists H ′2 > 0 such that f (u) ≥ ϕp(k)ϕp(u) = ϕp(ku), u ≥ H ′2, where
k > 0 is chosen such that

k
ξ −1
n0 +1

ξ −1
n0 +1

≥ 1.

Set H2 = max{2H1, n0 +1/ξ −1H ′2}, and ΩH2 = {u ∈ E : ‖u‖< H2}. If u ∈ P with ‖u‖=
H2, then

min
n∈N [ξ−1,n0]

u(n) = u(ξ −1)≥ ξ −1
n0 +1

‖u‖ ≥ H ′2.

So that

‖Au‖=Au(n0 +1) =
β

α
ϕq

(
Au−

ξ−1

∑
j=0

h( j) f (u( j))

)
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+
n0

∑
i=0

ϕq

(
Au−

i−1

∑
j=0

h( j) f (u( j))

)

≥β

α
ϕq

(
n0−1

∑
j=0

h( j) f (u( j))−
ξ−1

∑
j=0

h( j) f (u( j))

)

+
n0

∑
i=0

ϕq

(
n0−1

∑
j=0

h( j) f (u( j))−
i−1

∑
j=0

h( j) f (u( j))

)

≥β

α
ϕq

(
n0−1

∑
j=ξ

h( j) f (u( j))

)

+
n0

∑
i=ξ−1

ϕq

(
n0−1

∑
j=i

h( j) f (u( j))

)

=‖u‖ k
ξ −1
n0 +1

‖u‖L2

≥‖u‖.

In other words, if u ∈ P∩∂ΩH2 , then ‖Au‖ ≥ ‖u‖. Thus by (i) if Lemma 2.4, it follows
that A has a fixed point in P∩ (ΩH2 \ΩH1) with H1 ≤ ‖u‖ ≤ H2.

Now we consider the case f0 = ∞ and f∞ = 0. Since f0 = ∞, there exists H3 > 0 such
that f (u) ≥ ϕp(m)ϕp(u) = ϕp(mu) for 0 < u ≤ H3 where m is such that mL2

ξ−1
n0+1 ≥ 1. If

u ∈ P with ‖u‖= H3, then we have

‖Au‖=Au(n0 +1) =
β

α
ϕq

(
Au−

ξ−1

∑
j=0

h( j) f (u( j))

)

+
n0

∑
i=0

ϕq

(
Au−

i−1

∑
j=0

h( j) f (u( j))

)

≤β

α
ϕq

(
n0−1

∑
j=0

h( j) f (u( j))−
ξ−1

∑
j=0

h( j) f (u( j))

)

+
n0

∑
i=0

ϕq

(
n0−1

∑
j=0

h( j) f (u( j))−
i−1

∑
j=0

h( j) f (u( j))

)

≤β

α
ϕq

(
n0−1

∑
j=ξ

h( j) f (u( j))

)

+
n0

∑
i=ξ−1

ϕq

(
n0−1

∑
j=i

h( j) f (u( j))

)

=mL2
ξ −1
n0 +1

‖u‖

≤‖u‖.
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Thus, we let ΩH3 = {u∈E : ‖u‖< H3}, so that ‖Au‖≥ ‖u‖ for u∈P∩∂ΩH3 . Next consider
f∞ = 0. By definition, there exists H ′4 > 0 such that f (u)≤ ϕp(ε)ϕp(u) = ϕp(εu) for u≥H ′4
where ε > 0 satisfies

(3.1) εL1 ≤ 1.

Suppose f is bounded. Then f (u)≤ ϕp(K) for all u≥ 0, pick

H4 = max{2H3, KL1}.

If u ∈ P with ‖u‖= H4, then

‖Au‖=Au(n0 +1) =
β

α
ϕq

(
Au−

ξ−1

∑
j=0

h( j) f (u( j))

)

+
n0

∑
i=0

ϕq

(
Au−

i−1

∑
j=0

h( j) f (u( j))

)

≤β

α
ϕq

(
n0

∑
j=0

h( j) f (u( j))−
ξ−1

∑
j=0

h( j) f (u( j))

)

+
n0

∑
i=0

ϕq

(
n0

∑
j=0

h( j) f (u( j))−
i−1

∑
j=0

h( j) f (u( j))

)

=
β

α
ϕq

(
n0

∑
j=ξ

h( j) f (u( j))

)
+

n0

∑
i=0

ϕq

(
n0

∑
j=i

h( j) f (u( j))

)
≤KL1

≤H4 = ‖u‖.

Now suppose f is unbounded. From condition (C1), it’s easy to know that f (u) ≤ f (H4)
for 0≤ u≤ H4. If u ∈ P with ‖u‖= H4, then by using (3.1) we have

‖Au‖=Au(n0 +1) =
β

α
ϕq

(
Au−

ξ−1

∑
j=0

h( j) f (u( j))

)

+
n0

∑
i=0

ϕq

(
Au−

i−1

∑
j=0

h( j) f (u( j))

)

≤β

α
ϕq

(
n0

∑
j=0

h( j) f (u( j))−
ξ−1

∑
j=0

h( j) f (u( j))

)

+
n0

∑
i=0

ϕq

(
n0

∑
j=0

h( j) f (u( j))−
i−1

∑
j=0

h( j) f (u( j))

)

=
β

α
ϕq

(
n0

∑
j=ξ

h( j) f (u( j))

)
+

n0

∑
i=0

ϕq

(
n0

∑
j=i

h( j) f (u( j))

)
=H4εL1

≤H4 = ‖u‖.
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Consequently, in either case we take

ΩH4 = {u ∈ E : ‖u‖< H4},
so that for u ∈ P∩ ∂ΩH4 , we have ‖Au‖ ≥ ‖u‖. Thus by (ii) of Lemma 2.4, it follows that
A has a fixed point u in P∩ (ΩH4 \ΩH3) with H3 ≤ ‖u‖ ≤ H4.
The proof is complete.

Theorem 3.2. Suppose the following conditions hold:
(C3) there exist constant p′ > 0 such that f (u) ≤ ϕp(p′A1) for 0 ≤ u ≤ p′, where A1 =

L−1
1 ,

(C4) there exist constant q′ > 0 such that f (u)≥ ϕp(q′A2) for ξ −1/n0 +1q′ ≤ u≤ q′,
where A2 = L−1

2 , furthermore, p′ 6= q′. Then BVP (1.1) and (1.2) has at least one
positive solution u such that ‖u‖ lies between p′ and q′.

Proof. Without loss of generality, we may assume that p′< q′. Let Ωp′ = {u∈E : ‖u‖< p′}.
Then for any u ∈ P∩∂Ωp′ . In view of (C3) we have

‖Au‖= Au(n0 +1) =
β

α
ϕq

(
Au−

ξ−1

∑
j=0

h( j) f (u( j))

)

+
n0

∑
i=0

ϕq

(
Au−

i−1

∑
j=0

h( j) f (u( j))

)

≤β

α
ϕq

(
n0

∑
j=0

h( j) f (u( j))−
ξ−1

∑
j=0

h( j) f (u( j))

)

+
n0

∑
i=0

ϕq

(
n0

∑
j=0

h( j) f (u( j))−
i−1

∑
j=0

h( j) f (u( j))

)

=
β

α
ϕq

(
n0

∑
j=ξ

h( j) f (u( j))

)
+

n0

∑
i=0

ϕq

(
n0

∑
j=i

h( j) f (u( j))

)
=p′A1L1

≤p′,

which yields

(3.2) ‖Au‖ ≤ ‖u‖ for u ∈ P∩∂Ωp′ .

Now set Ωq′ = {u ∈ E : ‖u‖< q′} for u ∈ P∩∂Ωq′ , we have

ξ −1
n0 +1

q′ ≤ u(n)≤ q′ for n ∈N [ξ −1,n0].

Hence by condition (C4), we can get

‖Au‖=Au(n0 +1) =
β

α
ϕq

(
Au−

ξ−1

∑
j=0

h( j) f (u( j))

)

+
n0

∑
i=0

ϕq

(
Au−

i−1

∑
j=0

h( j) f (u( j))

)
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≥β

α
ϕq

(
n0−1

∑
j=0

h( j) f (u( j))−
ξ−1

∑
j=0

h( j) f (u( j))

)

+
n0

∑
i=0

ϕq

(
n0−1

∑
j=0

h( j) f (u( j))−
i−1

∑
j=0

h( j) f (u( j))

)

≥β

α
ϕq

(
n0−1

∑
j=ξ

h( j) f (u( j))

)

+
n0

∑
i=ξ−1

ϕq

(
n0−1

∑
j=i

h( j) f (u( j))

)
=q′A2L2

≥q′.

So if we take Ωq′ = {u ∈ E : ‖u‖< q′}, then

(3.3) ‖Au‖ ≥ ‖u‖, u ∈ P∩∂Ωq′ .

Consequently, in view of p′ < q′, (3.2) and (3.3), it follows from Lemma 2.3 that A has a
fixed point u in P∩ (Ωq′ \Ωp′). Moreover, it is a positive solution of (1.1) and (1.2) and
p′ < u < q′. The proof is complete.

Theorem 3.3. If f0 ∈ [0,ϕp(A1)) and f∞ ∈ (ϕp(n0 +1/ξ −1A2),∞) , then the BVP (1.1)
and (1.2) has at least one positive solution.

Proof. It is easy to see that under the assumptions, the conditions (C3) and (C4) in Theorem
3.2 are satisfied. So the proof is easy and we omit it here.

Theorem 3.4. If f0 ∈ (ϕp(n0 +1/ξ −1A2),∞) and f∞ ∈ [0,ϕp(A1)), then the BVP (1.1)
and (1.2) has at least one positive solution.

Proof. In view of f0 ∈ (ϕp(n0 +1/ξ −1A2),∞) , for ε = f0−ϕp(n0 +1/ξ −1A2) ≤ f0−
ϕp (n0 +1/ξ −1A2) , there exists a sufficiently small q′ such that

f (u)/ϕp(u)≥ f0− ε ≥ ϕp

(
n0 +1
ξ −1

A2

)
, 0 < u≤ q′.

Thus, if ξ −1/n0 +1q′ < u≤ q′, then we have

f (u)≥ ϕp(u)ϕp (n0 +1/ξ −1A2)≥ ϕp(q′A2).

So, for ξ −1/n0 +1q′ ≤ u ≤ q′, we have f (u) ≥ ϕp(q′A2), which yields condition (C4) in
Theorem 3.2.

Next, by f∞ ∈ [0,ϕp(A1)), for ε = ϕp(A1)− f∞, there exists a sufficiently large p′′(> q′)
such that

(3.4) f (u)/ϕp(u)≤ f∞ + ε = ϕp(A1), u≥ p′′.

We consider two cases:
Case (i). Suppose that f is bounded, say

(3.5) f (u)≤ ϕp(K), u≥ 0.
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In this case, take sufficiently large p′ such that p′ ≥ max{K/A1, p′′}, then from (3.5), we
know f (u)≤ϕp(K)≤ϕp(A1 p′) for 0 < u≤ p′, which yields condition (C3) in Theorem 3.2.

Case (ii). Suppose that f is unbounded. It’s easy to know that there is p′ > p′′ such that

(3.6) f (u)≤ f (p′), 0≤ u≤ p′.

Since p′ > p′′ then from (3.4) and (3.6), we get

f (u)≤ f (p′)≤ ϕp(p′A1), 0≤ u≤ p′.

Thus, the condition (C3) of Theorem 3.2 is satisfied. Hence, from Theorem 3.2, the BVP
(1.1) and (1.2) has at least one positive solution. The proof is complete.

From Theorems 3.3 and 3.4, we have the following two results.

Corollary 3.1. If f0 = 0 and the condition (C4) in Theorem 3.2 hold, then the BVP (1.1)
and (1.2) has at least one positive solution.

Corollary 3.2. If f∞ = 0 and the condition (C4) in Theorem 3.2 hold, then the BVP (1.1)
and (1.2) has at least one positive solution.

Theorem 3.5. If f0 ∈ (0,ϕp(A1)) and f∞ = ∞ hold, then the BVP (1.1) and (1.2) has at
least one positive solution.

Proof. In view of f∞ = ∞, similar to the first part of Theorem 3.1, we have

‖Au‖ ≥ ‖u‖, u ∈ P∩∂ΩH2 .

Since f0 ∈ (0,ϕp(A1)), for ε = ϕp(A1)− f0 > 0, there exists a sufficiently small p′ ∈ (0,H2)
such that

f (u)≤ ( f0 + ε)ϕp(u) = ϕp(A1u)≤ ϕp(A1 p′), 0≤ u≤ p′.
Similar to the proof of Theorem 3.2, we obtain

‖Au‖ ≤ ‖u‖, u ∈ P∩∂Ωp′ .

The result is obtained and the proof is complete.

Theorem 3.6. If f∞ ∈ (0,ϕp(A1)) and f0 = ∞, then the BVP (1.1) and (1.2) has at least one
positive solution.

Proof. Since f0 = ∞, similar to the second part of Theorem 3.1 we have ‖Au‖ ≥ ‖u‖ for
u ∈ P∩∂ΩH3 .

By f∞ ∈ (0,ϕp(A1)), similar to the second part of proof of Theorem 3.4, we have ‖Au‖≤
‖u‖ for u ∈ P∩∂Ωp′ , where p′ > H3. Thus the BVP (1.1) and (1.2) has at least one positive
solution.The proof is complete.

From Theorem 3.5 and Theorem 3.6, we can get the following corollaries.

Corollary 3.3. If f∞ = ∞ and the condition (C3) in Theorem 3.2 hold, then the BVP (1.1)
and (1.2) has at least one positive solution.

Corollary 3.4. If f0 = ∞ and the condition (C3) in Theorem 3.2 hold, then the BVP (1.1)
and (1.2) has at least one positive solution.

Theorem 3.7. If i0 = 0, i∞ = 2, and the condition (C3) of Theorem 3.2 hold. Then the BVP
(1.1) and (1.2) has at least two positive solutions u1,u2 ∈ P such that 0 < ‖u1‖< p′ < ‖u2‖.
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Proof. By using the method of proving Theorem 3.1 and Theorem 3.2, we can deduce the
conclusion easily, so we omit it here.

Theorem 3.8. If i0 = 2, i∞ = 0, and the condition (C4) of Theorem 3.2 hold. Then the BVP
(1.1) and (1.2) has at least two positive solutions u1,u2 ∈ P such that 0 < ‖u1‖< q′ < ‖u2‖.

Proof. Combining the proof of Theorem 3.1 and Theorem 3.2, the conclusion is easy to see,
and we omit it here.

4. Example

(4.1) ∆(ϕp(∆u(n)))+4− arctanu = 0, n ∈N [0,8],

(4.2) u(0)−6∆u(1) = 0, u(10)+2∆u(6) = 0,

where p = 1.5, q = 3, h(n)≡ 1, f (u) = 4− arctanu, α = γ = ξ = 1, β = 6, δ = 2, η = 6.

f0 = lim
u→0+

f (u)
ϕp(u)

= ∞,and f∞ = lim
u→∞

f (u)
ϕp(u)

= 0.

Therefore, by Theorem 3.1, the boundary value problem (4.1), and (4.2) has at least a posi-
tive solution.
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