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1. Introduction

The concept of frame was introduced by Duffin and Schaeffer [2] to study nonharmonic
Fourier series in 1952. Frames are generalizations of orthonormal bases in Hilbert spaces.
If H is a Hilbert space, H ⊕H is called super Hilbert space in literatures [1, 3, 4] and
have been widely studied recently. For example, Balan [1] introduced the concept of super
frames and presented some density results for Weyl-Heisenberg super frames. In [4], Han
and Larson derived necessary and sufficient conditions for the direct sum of two frames to
be a super frame, and in [3], Gu and Han investigated the connection between decomposable
Parseval wavelet frames and super wavelet frames, and gave some necessary and sufficient
conditions for extendable Parseval wavelet frames. In [6], a generalization of the frame
concept was introduced. Sun introduced a g-frame in a Hilbert space and showed that this
includes more other cases of generalizations of frame concept and proved that many basic
properties can be derived within this more general context. G-frames and g-Riesz bases in
complex Hilbert spaces have some properties similar to those of frames, Riesz bases, but
not all the properties are similar (see [6]). In [7], some properties of g-frames for super
Hilbert space H ⊕H with respect to C2 were studied. The authors showed that a g-frame
associated with a frame for H ⊕H remains a g-frame whenever any one of its elements
is removed. Furthermore, they showed that the excess of such a g-frame is at least dimH .
In this paper we study the relationship between g-frames for super Hilbert space H ⊕K
and g-frames for H and K and frames for H , K and H ⊕K . Also we characterize g-
frames operators for supper Hilbert space H ⊕K via the g-frame operators for H and K .
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Throughout this paper H , K are separable Hilbert spaces and {Hi}i∈J is a sequence
of separable Hilbert spaces, where J is a subset of Z, L (H ,Hi) is the collection of all
bounded linear operators from H to Hi. For each sequence {Hi}i∈J , we define the space⊕

i∈J Hi by ⊕
i∈J

Hi = {{ fi}i∈J : fi ∈Hi, i ∈ J and ∑
i∈J
‖ fi‖2 < ∞}.

With the inner product defined by

〈{ fi},{gi}〉= ∑
i∈J
〈 fi,gi〉,

it is clear that
⊕

i∈J Hi is a Hilbert space.
A frame for a complex Hilbert space H is a family of vectors { fi}i∈J so that there are

two positive constants A and B satisfying

A‖ f‖2 ≤∑
i∈J
|〈 f , fi〉|2 ≤ B‖ f‖2, f ∈H .

The constants A and B are called lower and upper frame bounds.
We say that the frame pairs ({ fi},{gi}) and ({hi},{ki}) are similar if there are bounded

invertible operators T1 and T2 such that fi = T1hi and gi = T2ki for all i ∈ J. A pair of frames
{ fi : i ∈ J} and {gi : i ∈ J} is called disjoint if {( fi,gi) : i ∈ J} is a frame for H ⊕K .
A pair of normalized tight frames { fi : i ∈ J} and {gi : i ∈ J} is called strongly disjoint
if {( fi,gi) : i ∈ J} is a normalized tight frame for H ⊕K , and a pair of general frames
{ fi : i ∈ J} and {gi : i ∈ J} is called strongly disjoint if it is similar to a strongly disjoint pair
of normalized tight frames.

Let { fi : i ∈ J} be a normalized tight frame for H . If there exists a Hilbert space K and
a normalized tight frame {gi : i ∈ J} for K such that {( fi,gi) : i ∈ J} is an orthonormal
basis for H ⊕K , we call {gi : i ∈ J} a strong complementary frame to { fi : i ∈ J} , and
we call ({ fi},{gi}) a strong complementary pair. If { fi : i ∈ J} is a general frame, we will
define a strong complement to { fi : i ∈ J} to be any frame {gi : i ∈ J} such that the pair
({ fi},{gi}) is similar to a strong complementary pair of normalized tight frames.

We say that { fi}i∈J is a Riesz basis for H , if { fi}i∈J is complete in H and there exist
constants 0 < A≤ B < ∞, such that for all sequences of scalars c = {ci}i∈J ,

A∑
i∈J
|ci|2 ≤ ‖∑

i∈J
ci fi‖2 ≤ B∑

i∈J
|ci|2.

Riesz bases are special cases of frames.
A sequence {Λi ∈L (H ,Hi) : i∈ J} is called a generalized frame, or simply a g-frame,

for H with respect to {Hi}i∈J if there exist two positive constants A and B such that for
all f ∈H ,

A‖ f‖2 ≤∑
i∈J
‖Λi f‖2 ≤ B‖ f‖2.

The constants A and B are called the lower and upper g-frame bounds, respectively. If A = B
we call this g-frame a tight g-frame and if A = B = 1 it is called a normalized tight g-frame.
We say simply a g-frame for H whenever the space sequence Hi is clear. If we only have
the upper bound, we call {Λi}i∈J a g-Bessel sequence with bound B. We say that {Λi}i∈J is
g-complete, if { f : Λi f = 0,∀i ∈ J}= {0} and is called g-orthonormal basis for H , if

〈Λ?
i gi,Λ

?
jg j〉= δi, j〈gi,g j〉, i, j ∈ J, gi ∈Hi, g j ∈H j,
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and

∑
i∈J
‖Λi f‖2 = ‖ f‖2.

We say that {Λi ∈L (H ,Hi) : i ∈ J} is a g- Riesz basis for H , if it is g-complete and
there exist constants 0 < A≤ B < ∞, such that for any finite subset I ⊆ J and gi ∈Hi, i ∈ I,

A∑
i∈I
‖gi‖2 ≤ ‖∑

i∈I
Λ

?
i gi‖2 ≤ B∑

i∈I
‖gi‖2.

Theorem 1.1. [6] Let {Λi ∈ L (H ,Hi) : i ∈ J} be a g-frame for H with respect to
{Hi}i∈J . The operator

S : H →H ,S f = ∑
i∈J

Λ
?
i Λi f ,

is a positive invertible operator and every f ∈H has an expansion

f = ∑
i∈J

S−1
Λ

?
i Λi f = ∑

i∈J
Λ

?
i ΛiS−1 f .

So {Λ̃i = ΛiS−1 ∈L (H ,Hi) : i ∈ J} is a g-frame for H with respect to {Hi}i∈J and is
called canonical dual g-frame of {Λi ∈L (H ,Hi) : i ∈ J}. The operator S is called the
g-frame operator of {Λi}i∈J .

Definition 1.1. [5] Let {Λi ∈L (H ,Hi) : i ∈ J} be a g-frame for H . Then the synthesis
operator for {Λi ∈L (H ,Hi) : i ∈ J} is the operator

T :
⊕
i∈J

Hi −→H ,

defined by
T ({ fi}i∈J) = ∑

i∈J
Λ

?
i ( fi).

We call the adjoint T ? of the synthesis operator the analysis operator. The analysis operator
for {Λi ∈L (H ,Hi) : i ∈ J} is the operator

T ? : H −→
⊕
i∈J

Hi,

defined by
T ?( f ) = {Λi( f )}i∈J .

Proposition 1.1. [5] Let {Λi}i∈J be a sequence in L (H ,Hi). Then the following are
equivalent:

(i) {Λi}i∈J is a g-frame for H ;
(ii) The operator T : ({ fi}i∈J) 7→∑i∈J Λ?

i ( fi) is well-defined and bounded from (
⊕

i∈J Hi)l2
onto H ;

(iii) The operator S : f 7→ ∑i∈J Λ?
i Λi f is well-defined and bounded from H onto H .

In order to present the main results of this paper, we need the following Theorem which
can be found in [6] and gives a characterization of g-frames.

Theorem 1.2. Let {Λi}i∈J be a sequence in L (H ,Hi), {ei,k : k ∈ Ki} be an orthonormal
basis for Hi, i ∈ J where Ki is a subset of Z and let ψi,k = Λ?

i ei,k. Then we have the
followings.
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(i) Λi f = ∑k∈Ki〈 f ,ψi,k〉ei,k, and {Λi ∈L (H ,Hi) : i∈ J} is a g-frame (resp. g-Bessel
sequence, tight g-frame, g-Riesz basis, g-orthonormal basis) for H if and only if
{ψi,k : i ∈ J,k ∈ Ki} is a frame (resp. Bessel sequence, tight frame, Riesz basis,
orthonormal basis) for H .

(ii) The g-frame operator for {Λi ∈L (H ,Hi) : i ∈ J} coincides with the frame oper-
ator for {ψi,k : i ∈ J,k ∈ Ki}.

(iii) Moreover, {Λi ∈ L (H ,Hi) : i ∈ J} and {Λ̃i ∈ L (H ,Hi) : i ∈ J} are a pair
of (canonical) dual g-frames if and only if the induced sequences are a pair of
(canonical) dual frames.

We call {ψi,k : i ∈ J,k ∈ Ki} the sequence induced by {Λi ∈ L (H ,Hi) : i ∈ J} with
respect to {ei,k : k ∈ Ki}.

The paper is organized as follows. In section 2 we study the relationship between g-
frames for super Hilbert spaces H ⊕K with respect to Hi⊕H ′

i, Hi and g-frames for
H and K with respect to Hi and H ′

i and frames for H , K and H ⊕K . Also we
give generalized version of disjoint frames and strong complementary frame and the con-
cepts of disjoint g-frames and strong complementary g-frame are introduced and studied.
We show that strong complementary g-frames to a given g-frame are similar and strongly
disjoint pairs of g-frames on the same Hilbert space have some useful additional structural
properties. Also we give some other properties of g-frames.

2. Main results

The following Proposition is proved in [5, Theorem 2.20], we give another proof.

Proposition 2.1. Let {Λi ∈L (H ,Hi) : i ∈ J} be a normalized tight g-frame for H with
respect to {Hi}i∈J . Then there exists a Hilbert space K ⊇H and a g-orthonormal basis
{Θi ∈L (K ,Hi) : i ∈ J} for K with respect to {Hi}i∈J such that Λi = ΘiP, where P is
the orthogonal projection from K onto H .

Proof. By using Theorem 1.2, Λi f = ∑k∈Ki〈 f ,ψi,k〉ei,k where {ψi,k} is a normalized tight
frame for H , by [4, Proposition 1.1] there exists a Hilbert space K ⊇H and an orthonor-
mal basis {φi,k} for K such that ψi,k = Pφi,k, where P is the orthogonal projection from
K onto H . Let Θi f = ∑k∈Ki〈 f ,φi,k〉ei,k. By Theorem 1.2, {Θi ∈L (K ,Hi) : i ∈ J} is a
g-orthonormal basis for K with respect to {Hi}i∈J , and

ΘiP f = ∑
k∈Ki

〈P f ,φi,k〉ei,k = ∑
k∈Ki

〈 f ,ψi,k〉ei,k = Λi f .

Corollary 2.1.
(i) Suppose that {Λi ∈L (H ,Hi) : i ∈ J} is a g-orthonormal basis for H , and V is

a partial isometry in L (H ). Then {ΛiV} is a normalized tight g-frame for the
range of V .

(ii) Let {Λi ∈L (H ,Hi) : i ∈ J} be a normalized tight g-frame for H with respect to
{Hi}i∈J and {Θi ∈L (K ,Hi) : i∈ J} be a g-orthonormal basis for a Hilbert space
K with respect to {Hi}i∈J . If T is the isometry defined by T ( f ) = ∑i∈J Θ?

i Λi f , then
ΘiT = Λi, and ΛiT ? = ΘiP for all i ∈ J, where P is the projection from K onto the
range of T . More generally, if {Λi ∈L (H ,Hi) : i ∈ J} is a general frame for H ,
then T defined above is a bounded linear operator and ΘiT = Λi for all i ∈ J.



Generalized Frames on Super Hilbert Spaces 811

(iii) Suppose that {Λi ∈L (H ,Hi) : i ∈ J} is a normalized tight g-frame for H with
respect to {Hi}i∈J and {ei,k : k ∈ Ki} is an orthonormal basis for Hi, i ∈ J where
Ki is a subset of Z. Then we have ∑i∈J ∑k∈Ki ‖Λ

?
i ei,k‖2 is equal to the dimension of

H .

Proof. (i) Statement (i) follows from the definition.
(ii) By using Theorem 1.2, Λi f = ∑k∈Ki〈 f ,ψi,k〉ei,k, where {ψi,k} is a normalized tight

frame for H , and Θ?
i fi = ∑k∈Ki〈 fi,ei,k〉φi,k, where {φi,k} is an orthonormal basis for K .

Hence we have
T ( f ) = ∑

i∈J
Θ

?
i Λi f = ∑

i∈J
∑

k∈Ki

〈 f ,ψi,k〉φi,k.

Further, by [4, Corollary 1.2], T ?φi,k = ψi,k and T ψi,k = Pφi,k, and it follows

ΘiT ( f ) = ∑
k∈Ki

〈T f ,φi,k〉ei,k = ∑
k∈Ki

〈 f ,ψi,k〉ei,k = Λi f ,

and
ΛiT ?( f ) = ∑

k∈Ki

〈T ? f ,ψi,k〉ei,k = ∑
k∈Ki

〈 f ,Pφi,k〉ei,k = ΘiP f ,

for all i ∈ J.
(iii) Since ψi,k = Λ?

i ei,k, the conclusion follows from [4, Corollary 1.2].

Let (ϕi,ψi) ∈H ⊕H and Λi f = (〈 f ,ϕi〉,〈 f ,ψi〉)⊥ , ∀ f ∈H , the authors in [7] have
proved {Λi}i∈J is a g-frame for H with respect to C2 if and only if {ϕi}i∈J ∪{ψi}i∈J is a
frame for H . The following Proposition is its extension to g-frames.

Proposition 2.2. Let {Λi}i∈J and {Γi}i∈J be sequences in L (H ,Hi), {ei,k : k ∈Ki} be an
orthonormal basis for Hi, Θi f = (Λi f ,Γi f ), ψi,k = Λ?

i ei,k, and φi,k = Γ?
i ei,k. Then {ψi,k : i∈

J,k ∈ Ki}∪{φi,k : i ∈ J,k ∈ Ki} is a frame (resp. Bessel sequence, tight frame, Riesz basis,
orthonormal basis ) for H if and only if {Θi ∈L (H ,Hi⊕Hi) : i ∈ J} is a g-frame (resp.
g-Bessel sequence, tight g-frame, g-Riesz basis, g-orthonormal basis) for H .

Proof. By using Theorem 1.2 we have Λi f = ∑k∈Ki〈 f ,ψi,k〉ei,k and Γi f = ∑k∈Ki〈 f ,φi,k〉ei,k.
Since

∑
i∈J
‖(Λi⊕Γi)( f )‖2 = ∑

i∈J
‖Λi( f )‖2 +∑

i∈J
‖Γi( f )‖2

= ∑
i∈J

∑
k∈Ki

|〈 f ,ψi,k〉|2 +∑
i∈J

∑
k∈Ki

|〈 f ,φi,k〉|2

= ∑
i∈J

∑
k∈Ki

(|〈 f ,ψi,k〉|2 + |〈 f ,φi,k〉|2),

we conclude {ψi,k : i ∈ J,k ∈ Ki}∪{φi,k : i ∈ J,k ∈ Ki} is a frame (resp. Bessel sequence,
tight frame ) for H if and only if {Θi ∈L (H ,Hi⊕Hi) : i ∈ J} is a g-frame (resp. g-
Bessel sequence, tight g-frame) for H .

Since {ei,k : k ∈ Ki} is an orthonormal basis for Hi, every fi,gi ∈Hi have expansions
of the form gi = ∑k∈Ki ci,kei,k and fi = ∑k∈Ki c′i,kei,k, where {ci,k,c′i,k : k ∈ Ki} ∈ l2(Ki). It
follows that∥∥∥∥∥∑i∈I

Θ
?
i (gi, fi)

∥∥∥∥∥
2

=

∥∥∥∥∥∑i∈I
Λ

?
i gi +Γ

?
i fi

∥∥∥∥∥
2

=

∥∥∥∥∥∑i∈I
∑

k∈Ki

ci,kψi,k + c′i,kφi,k

∥∥∥∥∥
2

,
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hence {ψi,k : i ∈ J,k ∈ Ki} ∪ {φi,k : i ∈ J,k ∈ Ki} is a Riesz basis if and only if {Θi ∈
L (H ,Hi⊕Hi) : i ∈ J} is a g-Riesz basis.

On the other hand if gi,p,gi,p′ ∈Hi and g j,q,g j,q′ ∈H j we have Λ?
i gi,p = ∑k∈Ki〈gi,p,ei,k〉ψi,k

and Γ?
i gi,p′ = ∑k∈Ki〈gi,p′ ,ei,k〉φi,k,

〈〈Θ?
i (gi,p,gi,p′),Θ

?
j(g j,q,g j,q′)〉〉

= 〈Λ?
i gi,p +Γ

?
i gi,p′ ,Λ

?
jg j,q +Γ

?
jg j,q′〉

= 〈Λ?
i gi,p,Λ

?
jg j,q〉+ 〈Γ?

i gi,p′ ,Γ
?
jg j,q′〉+ 〈Λ?

i gi,p,Γ
?
jg j,q′〉+ 〈Γ?

i gi,p′ ,Λ
?
jg j,q〉

= ∑
k∈Ki

∑
l∈K j

〈gi,p,ei,k〉〈e j,l ,g j,q〉〈ψi,k,ψ j,l〉+ ∑
k∈Ki

∑
l∈K j

〈gi,p′ ,ei,k〉〈e j,l ,g j,q′〉〈φi,k,φ j,l〉

+ ∑
k∈Ki

∑
l∈K j

〈gi,p,ei,k〉〈e j,l ,g j,q′〉〈ψi,k,φ j,l〉+ ∑
k∈Ki

∑
l∈K j

〈gi,p′ ,ei,k〉〈e j,l ,g j,q〉〈φi,k,ψ j,l〉.

Then if {ψi,k : i ∈ J,k ∈ Ki}∪{φi,k : i ∈ J,k ∈ Ki} is an orthonormal basis we conclude
{Θi ∈L (H ,Hi⊕Hi) : i ∈ J} is a g-orthonormal basis.

If {Θi ∈L (H ,Hi⊕Hi) : i∈ J} is a g-orthonormal basis, since 〈ψi,k,ψ j,l〉= 〈Λ?
i ei,k,Λ

?
je j,l〉

and 〈ψi,k,φ j,l〉= 〈Λ?
i ei,k,Γ

?
je j,l〉 and

〈〈Θ?
i (gi,k,gi,k′),Θ

?
j(g j,l ,g j,l′)〉〉= 〈Λ?

i gi,k +Γ
?
i gi,k′ ,Λ

?
jg j,l +Γ

?
jg j,l′〉

= 〈Λ?
i gi,k,Λ

?
jg j,l〉+ 〈Γ?

i gi,k,Γ
?
jg j,l′〉

+ 〈Λ?
i gi,k′ ,Γ

?
jg j,l〉+ 〈Γ?

i gi,k,Λ
?
jg j,l′〉,

if let gi,k = g j,l = 0 and gi,k′ = ei,k′ , g j,l′ = e j,l′ we have

〈Θ?
i (gi,k,gi,k′),Θ

?
j(g j,l ,g j,l′)〉= 〈φi,k,φ j,l〉= δi, jδk,l ,

and if let gi,k′ = g j,l′ = 0 and gi,k = ei,k, g j,l = e j,l we have

〈Θ?
i (gi,k,gi,k′),Θ

?
j(g j,l ,g j,l′)〉= 〈ψi,k,ψ j,l〉= δi, jδk,l ,

also if let gi,k′ = ei,k′ , g j,l′ = 0 and gi,k = ei,k, g j,l = e j,l we have

δi, j〈ei,ke j,l〉= 〈Θ?
i (gi,k,gi,k′),Θ

?
j(g j,l ,g j,l′)〉= 〈ψi,k,ψ j,l〉+ 〈ψi,k,φ j,l〉.

Then {ψi,k : i ∈ J,k ∈ Ki}∪{φi,k : i ∈ J,k ∈ Ki} is an orthonormal basis for H .

The following is an immediate consequence.

Corollary 2.2. Let {Λi}i∈J and {Γi}i∈J be sequences in L (H ,Hi) and Θi f = (Λi f ,Γi f ).
Then {Λi ∈ L (H ,Hi) : i ∈ J}∪ {Γi ∈ L (H ,Hi) : i ∈ J} is a g-frame (resp. g-Bessel
sequence, tight g-frame, g-Riesz basis, g-orthonormal basis ) for H if and only if {Θi ∈
L (H ,Hi⊕Hi) : i∈ J} is a g-frame (resp. g-Bessel sequence, tight g-frame, g-Riesz basis,
g-orthonormal basis) for H .

Putting Definition 1.2 and Corollary 2.2 together, we get

Proposition 2.3. Let {Θi ∈L (H ,Hi⊕Hi) : i ∈ J}, {Λi ∈L (H ,Hi) : i ∈ J} and {Γi ∈
L (H ,Hi) : i ∈ J} be g-frames where Θi( f ) = (Λi f ,Γi f ). Then the synthesis operator for
{Θi ∈L (H ,Hi⊕Hi) : i ∈ J} is the operator

T :
⊕
i∈J

(Hi⊕Hi)−→H ,
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defined by
T ({( fi,gi)}i∈J) = ∑

i∈J
(Λ?

i fi +Γ
?
i gi).

The analysis operator for {Θi ∈L (H ,Hi⊕Hi) : i ∈ J} is the operator

T ? : H −→
⊕
i∈J

(Hi⊕Hi),

defined by
T ? f = {(Λi f ,Γi f )}i∈J .

Also the g-frame operator for {Θi ∈L (H ,Hi⊕Hi) : i ∈ J} is the operator

SΘ : H →H

defined by
SΘ f = ∑

i∈J
Λ

?
i Λi f +∑

i∈J
Γ

?
i Γi f = SΛ f +SΓ f .

Proposition 2.4. Let {Λi}i∈J and {Γi}i∈J be sequences in L (H ,Hi) and L (K ,H ′
i)

respectively. Then {Λi ∈L (H ,Hi) : i ∈ J} and {Γi ∈L (K ,H ′
i) : i ∈ J} are g-frames

(resp. g-Bessel sequences, tight g-frames, g-Riesz bases, g-orthonormal bases ) for H and
K if and only if {Λi⊕Γi ∈L (H ⊕K ,Hi⊕H ′

i) : i ∈ J} is a g-frame (resp. g-Bessel
sequence, tight g-frame, g-Riesz basis, g-orthonormal basis) for H ⊕K .

Proof. Since

∑
i∈J
‖(Λi⊕Γi)( f ,g)‖2 = ∑

i∈J
‖Λi( f )‖2 +∑

i∈J
‖Γi(g)‖2,

then {Λi ∈L (H ,Hi) : i ∈ J} and {Γi ∈L (K ,H ′
i) : i ∈ J} are g-frames (resp. g-Bessel

sequences, tight g-frames) for H and K if and only if {Λi⊕Γi ∈L (H ⊕K ,Hi⊕H ′
i) :

i ∈ J} is a g-frame (resp. g-Bessel sequence, tight g-frame) for H ⊕K . For any finite
subset I ⊆ J, fi ∈H ′

i , gi ∈Hi we have∥∥∥∥∥∑i∈I
(Λi⊕Γi)?(gi, fi)

∥∥∥∥∥
2

=

∥∥∥∥∥∑i∈I
(Λ?

i gi,Γ
?
i fi)

∥∥∥∥∥
2

=

∥∥∥∥∥(∑i∈I
Λ

?
i gi,∑

i∈I
Γ

?
i fi)

∥∥∥∥∥
2

=

∥∥∥∥∥∑i∈I
Λ

?
i gi

∥∥∥∥∥
2

+

∥∥∥∥∥∑i∈I
Γ

?
i fi

∥∥∥∥∥
2

,

and so {Λi ∈L (H ,Hi) : i ∈ J} and {Γi ∈L (K ,H ′
i) : i ∈ J} are g-Riesz bases for H

and K if and only if {Λi⊕Γi ∈ L (H ⊕K ,Hi⊕H ′
i) : i ∈ J} is a g-Riesz basis for

H ⊕K .
On the other hand if gi,l ∈Hi, gi,k ∈H ′

i and g j,l′ ∈H j, g j,k′ ∈H ′
j we have

〈(Λi⊕Γi)?(gi,l ,gi,k),(Λ j⊕Γ j)?(g j,l′ ,g j,k′)〉= 〈(Λ?
i gi,l ,Γ

?
i gi,k),(Λ?

jg j,l′ ,Γ
?
jg j,k′)〉

= 〈Λ?
i gi,l ,Λ

?
jg j,l′〉+ 〈Γ?

i gi,k,Γ
?
jg j,k′〉

then {Λi ∈L (H ,Hi) : i ∈ J} and {Γi ∈L (K ,H ′
i) : i ∈ J} are g-orthonormal bases for

H and K if and only if {Λi⊕Γi ∈ L (H ⊕K ,Hi⊕H ′
i) : i ∈ J} is a g-orthonormal

basis for H ⊕K .
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Corollary 2.3. A set {Λi ∈L (H ,Hi) : i ∈ J} is a normalized tight g-frame for H with
respect to {Hi}i∈J if and only if there exists a Hilbert space M and a normalized tight
g-frame {Γi ∈L (M ,Hi) : i ∈ J} for M such that {Λi⊕Γi ∈L (H ⊕M ,Hi⊕Hi) : i ∈
J} is a normalized tight g-frame for H ⊕M with respect to {Hi⊕Hi}i∈J and we have
〈(Λi⊕Γi)?( fi, fi),(Λ j⊕Γ j)?( f j, f j)〉= δi, j〈 fi, f j〉.

Proof. If {Λi ∈L (H ,Hi) : i ∈ J} is a normalized tight g-frame for H , by using Proposi-
tion 2.1, there exists a Hilbert space K ⊇H and a g-orthonormal basis {Θi ∈L (K ,Hi) :
i ∈ J} for K such that Λi = ΘiP, where P is the orthogonal projection from K onto
H . Let M = (I − P)K and Γi = Θi(I − P). Then, by Proposition 2.4, {Λi ⊕ Γi ∈
L (H ⊕M ,Hi⊕Hi) : i ∈ J} is a normalized tight g-frame for H ⊕M . Also we have

〈(Λi⊕Γi)?( fi, fi),(Λ j⊕Γ j)?( f j, f j)〉= 〈Λ?
i fi,Λ

?
j f j〉+ 〈Γ?

i fi,Γ
?
j f j〉

= 〈PΘ
?
i fi,PΘ

?
j f j〉+ 〈(I−P)Θ?

i fi,(I−P)Θ?
j f j〉

= 〈Θ?
i fi,Θ

?
j f j〉= δi, j〈 fi, f j〉.

Proposition 2.5. Let {Θi ∈L (H ⊕K ,Hi⊕H ′
i) : i ∈ J}, {Λi ∈L (H ,Hi) : i ∈ J} and

{Γi ∈L (K ,H ′
i) : i ∈ J}i∈J be g-frames where Θi( f ,g) = (Λi f ,Γig). Then the synthesis

operator for {Θi ∈L (H ⊕K ,Hi⊕H ′
i) : i ∈ J} is the operator

T :
⊕
i∈J

(Hi⊕H ′
i)−→H ⊕K ,

defined by
T ({( fi,gi)}i∈J) = (∑

i∈J
Λ

?
i fi,∑

i∈J
Γ

?
i gi).

The analysis operator for {Θi ∈L (H ⊕K ,Hi⊕H ′
i) : i ∈ J} is the operator

T ? : H ⊕K −→
⊕
i∈J

(Hi⊕H ′
i),

defined by
T ?( f ,g) = {(Λi f ,Γig)}i∈J .

Also the g-frame operator for {Θi ∈L (H ⊕K ,Hi⊕H ′
i) : i ∈ J} is the operator

SΘ : H ⊕K →H ⊕K ,

defined by
SΘ( f ,g) = (∑

i∈J
Λ

?
i Λi f ,∑

i∈J
Γ

?
i Γig) = (SΛ f ,SΓg).

Proposition 2.6. Let {Λi}i∈J and {Γi}i∈J be sequences in L (H ,Hi) and L (K ,Hi)
respectively, and {(e′i,k,e′′i,k) : k ∈ Ki} be an orthonormal basis for Hi⊕Hi, i ∈ J where Ki

is a subset of Z and let ψi,k = Λ?
i e′i,k, φi,k = Γ?

i e′′i,k. Then {(ψi,k,φi,k) : i ∈ J,k ∈ Ki} is a
frame (resp. Bessel sequence, tight frame, Riesz basis, orthonormal basis ) for H ⊕K if
and only if {Λi⊕Γi ∈L (H ⊕K ,Hi⊕Hi) : i ∈ J} is a g-frame (resp. g-Bessel sequence,
tight g-frame, g-Riesz basis, g-orthonormal basis) for H ⊕K .

Proof. Since (Λi ⊕ Γi)? = Λ?
i ⊕ Γ?

i and {(e′i,k,e′′i,k) : k ∈ Ki} is an orthonormal basis for
Hi⊕Hi, i ∈ J we have (Λ?

i ⊕Γ?
i )(e

′
i,k,e

′′
i,k) = (ψi,k,φi,k), and hence {(ψi,k,φi,k) : i ∈ J,k ∈

Ki} is the sequence induced by {Λi⊕Γi ∈L (H ⊕K ,Hi⊕Hi) : i ∈ J} with respect to
{(e′i,k,e′′i,k) : i ∈ J,k ∈ Ki}. So, by Theorem 1.2, {(ψi,k,φi,k) : i ∈ J,k ∈ Ki} is a frame (resp.
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Bessel sequence, tight frame, Riesz basis, orthonormal basis) for H ⊕K if and only if
{Λi ⊕ Γi ∈ L (H ⊕K ,Hi ⊕Hi) : i ∈ J} is a g-frame (resp. g-Bessel sequence, tight
g-frame, g-Riesz basis, g-orthonormal basis) for H ⊕K .

Proposition 2.7.
(i) If T is a co-isometry and {Λi ∈ L (H ,Hi) : i ∈ J} is a g-frame for H , then
{ΛiT ?}i∈J is a g-frame. Moreover, {ΛiT ?}i∈J is a normalized tight g-frame if
{Λi}i∈J is.

(ii) Suppose that {Λi ∈L (H ,Hi) : i ∈ J} and {Γi ∈L (H ,Hi) : i ∈ J} are normal-
ized tight g-frames, and suppose that T is a bounded linear operator which satisfies
ΛiT ? = Γi for all i ∈ J. Then T is a co-isometry. If T is invertible, then it is unitary.

Proof. (i) Since T is a co-isometry, T ? is an isometry. Hence, for all f ∈H ,

A‖ f‖2 = A‖T ? f‖2 ≤∑
i∈J
‖ΛiT ? f‖2 ≤ B‖T ? f‖2 = B‖ f‖2.

(ii) If {Λi ∈L (H ,Hi) : i ∈ J} and {Γi ∈L (H ,Hi) : i ∈ J} are normalized tight g-
frames, the induced sequences {ψi,k : i ∈ J,k ∈ Ki} and {φi,k : i ∈ J,k ∈ Ki} by {Λi}i∈J and
{Γi}i∈J respectively, are normalized tight frames. Since ΛiT ? = Γi we conclude T ψi,k = φi,k,
and so by Proposition 1.9(ii) of [4], T is a co-isometry and if T is invertible, then it is
unitary.

Proposition 2.8. Let {Λi}i∈J and {Γi}i∈J be sequences in L (H ,Hi) and L (K ,Hi)
respectively, and {ei,k : k ∈ Ki} be an orthonormal basis for Hi, i ∈ J where Ki is a subset
of Z and let ψi,k = Λ?

i ei,k, φi,k = Γ?
i ei,k and Θi( f ,g) = Λi f + Γig. Then {(ψi,k,φi,k) : i ∈

J,k ∈Ki} is a frame (resp. Bessel sequence, tight frame, Riesz basis, orthonormal basis) for
H ⊕K if and only if {Θi ∈L (H ⊕K ,Hi) : i∈ J} is a g-frame (resp. g-Bessel sequence,
tight g-frame, g-Riesz basis, g-orthonormal basis) for H ⊕K with respect to {Hi}i∈J .

Proof. Since Θ?
i ei,k = (ψi,k,φi,k), by using Theorem 1.2, we have {(ψi,k,φi,k) : i ∈ J,k ∈ Ki}

is a frame (resp. Bessel sequence, tight frame, Riesz basis, orthonormal basis ) for H ⊕K
if and only if {Θi ∈L (H ⊕K ,Hi) : i ∈ J} is a g-frame (resp. g-Bessel sequence, tight
g-frame, g-Riesz basis, g-orthonormal basis) for H ⊕K with respect to {Hi}i∈J .

Proposition 2.9. Let {Θi ∈L (H ⊕K ,Hi) : i ∈ J}, {Λi ∈L (H ,Hi) : i ∈ J} and {Γi ∈
L (K ,Hi) : i∈ J}i∈J be g-frames where Θi( f ,g) = Λi f +Γig. Then the synthesis operator
for {Θi ∈L (H ⊕K ,Hi) : i ∈ J} is the operator

T :
⊕
i∈J

Hi −→H ⊕K ,

defined by
T ({ fi}i∈J) = (∑

i∈J
Λ

?
i fi,∑

i∈J
Γ

?
i fi).

The analysis operator for {Θi ∈L (H ⊕K ,Hi) : i ∈ J} is the operator

T ? : H ⊕K −→
⊕
i∈J

Hi,

defined by
T ?( f ,g) = {(Λi f +Γig)}i∈J .
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Also the g-frame operator for {Θi ∈L (H ⊕K ,Hi) : i ∈ J} is the operator

SΘ : H ⊕K →H ⊕K

defined by
SΘ( f ,g) = (∑

i∈J
(Λ?

i Λi f +Λ
?
i Γig),∑

i∈J
(Γ?

i Λi f +Γ
?
i Γig)).

We say that the g-frame pairs ({Λi},{Γi}) and ({ϒi},{Θi}) are similar if there are
bounded invertible operators T1 and T2 such that Λi = ϒiT1 and Γi = ΘiT2 for all i∈ J. A pair
of g-frames {Λi ∈L (H ,Hi) : i ∈ J} and {Γi ∈L (K ,Hi) : i ∈ J}i∈J is called disjoint if
{Θi ∈L (H ⊕K ,Hi) : i∈ J}where Θi( f ,g) = Λi f +Γig is a g-frame for H ⊕K . A pair
of normalized tight g-frames {Λi ∈L (H ,Hi) : i ∈ J} and {Γi ∈L (K ,Hi) : i ∈ J}i∈J is
called strongly disjoint if {Θi ∈L (H ⊕K ,Hi) : i ∈ J} is a normalized tight g-frame for
H ⊕K , and a pair of general g-frames {Λi ∈L (H ,Hi) : i ∈ J} and {Γi ∈L (K ,Hi) :
i ∈ J} is called strongly disjoint if it is similar to a strongly disjoint pair of normalized tight
g-frames.

Corollary 2.4. A pair of g-frames {Λi ∈ L (K ,Hi) : i ∈ J} and {Γi ∈ L (H ,Hi) : i ∈
J}i∈J is disjoint (resp. strongly disjoint) if and only if {ψi,k : i∈ J,k∈Ki} and {φi,k : i∈ J,k∈
Ki} is a pair of disjoint (resp. strongly disjoint) frames where ψi,k = Λ?

i ei,k and φi,k = Γ?
i ei,k.

Corollary 2.5. If a pair of normalized tight frames {Λi ∈ L (K ,Hi) : i ∈ J} and {Γi ∈
L (H ,Hi) : i ∈ J}i∈J is strongly disjoint, then for all f ∈H and g ∈K we have

∑
i∈J

Λ
?
i Γig = 0 , ∑

i∈J
Γ

?
i Λi f = 0.

Han and Larson in [4] have proved that {ϕi}i∈J is a normalized tight frame in a Hilbert
space H if and only if there is a Hilbert space K and a normalized tight frame {ψi}i∈J in
K such that {(ϕi,ψi)}i∈J is an orthonormal basis for H ⊕K . We extend this this result
for g-frames.

Proposition 2.10. A set {Λi ∈ L (H ,Hi) : i ∈ J} is a normalized tight g-frame for H
with respect to {Hi}i∈J if and only if there exists a Hilbert space K and a normalized tight
g-frame {Γi ∈L (K ,Hi) : i ∈ J} for K such that {Θi ∈L (H ⊕K ,Hi) : i ∈ J}, where
Θi( f ,g) = Λi f +Γig is a g-orthonormal basis for H ⊕K with respect to {Hi}i∈J .

Proof. If {Λi ∈ L (H ,Hi) : i ∈ J} is a normalized tight g-frame for H then by using
Theorem 1.2, we have Λi f = ∑k∈Ki〈 f ,ψi,k〉ei,k where {ψi,k} is a normalized tight frame
for H and, by Corollary 1.3 of [4], there exists a Hilbert space K and a normalized tight
frame {φi,k : i ∈ J,k ∈ Ki} for K such that {(ψi,k,φi,k) : i ∈ J,k ∈ Ki} is an orthonormal
basis for H ⊕K . If Γi f = ∑k∈Ki〈 f ,φi,k〉ei,k, by Theorem 1.2, {Γi ∈L (H ,Hi) : i ∈ J}
is a normalized tight frame for K with respect to {Hi}i∈J . So, by Proposition 2.8, {Θi ∈
L (H ⊕K ,Hi) : i ∈ J} is a g-orthonormal basis for H ⊕K with respect to {Hi}i∈J .

Proposition 2.11. The extension of a tight g-frame to a g-orthonormal basis described in
the statement of Proposition 2.10 is unique up to unitary equivalence. That is if N is
another Hilbert space and {ϒi ∈ L (N ,Hi) : i ∈ J} is a tight g-frame for N such that
{Λi⊕ϒi ∈L (H ⊕N ,Hi) : i ∈ J} is a g-orthonormal basis for H ⊕N with respect to
{Hi}i∈J , then there is a unitary transformation U mapping K onto N such that ΓiU? = ϒi
for all i ∈ J. In particular, dimK = dimN .
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Proof. If {ϒi ∈ L (N ,Hi) : i ∈ J} is a normalized tight g-frame for N then, by using
Theorem 1.2, we have ϒi f = ∑k∈Ki〈 f ,ϕi,k〉ei,k where {ϕi,k} is a normalized tight frame for
N and by Proposition 2.8 we know {(ψi,k,ϕi,k) : i ∈ J,k ∈ Ki} is an orthonormal basis for
H ⊕N so by [4, Corollary 1.4] there is a unitary transformation U mapping K onto N
such that Uφi,k = ϕi,k and dimK = dimN . Therefore

ΓiU? f = ∑
k∈Ki

〈U? f ,φi,k〉ei,k = ∑
k∈Ki

〈 f ,Uφi,k〉ei,k = ∑
k∈Ki

〈 f ,ϕi,k〉ei,k = ϒi f .

Proposition 2.12. If a set {Λi ∈L (H ,Hi) : i ∈ J} is a g-frame then there exists a Hilbert
space K and a normalized tight g-frame {Γi ∈ L (K ,Hi) : i ∈ J} for K such that
{Θi( f ,g) ∈ L (H ⊕K ,Hi) : i ∈ J}, where Θi( f ,g) = Λi f + Γig is a g-Riesz basis for
H ⊕K with respect to {Hi}i∈J .

Proof. If {Λi ∈ L (H ,Hi) : i ∈ J} is a g-frame for H by using Theorem 1.2, we have
Λi f = ∑k∈Ki〈 f ,ψi,k〉ei,k, where {ψi,k} is a frame for H and by [4, Corollary 1.6] there
exists a Hilbert space K and a normalized tight frame {φi,k : i ∈ J,k ∈ Ki} for K such that
{(ψi,k,φi,k) : i∈ J,k ∈Ki} is a Riesz basis for H ⊕K . Now set Γi f = ∑k∈Ki〈 f ,φi,k〉ei,k. By
Theorem 1.2, {Γi ∈L (H ,Hi) : i ∈ J} is a normalized tight g-frame for K with respect
to {Hi}i∈J , and so by Proposition 2.8, we have {Θi ∈L (H ⊕K ,Hi) : i ∈ J} is a g-Riesz
basis for H ⊕K with respect to {Hi}i∈J .

Proposition 2.13. If {Λi ∈L (H ,Hi) : i∈ J} and {Γi ∈L (H ,Hi) : i∈ J} are normalized
tight g-frames such that {Θi ∈L (H ⊕H ,Hi) : i ∈ J}, where Θi( f ,g) = Λi f + Γig, is a
normalized tight g-frame for H ⊕H with respect to {Hi}i∈J and if {ϒi ∈L (H ,Hi) : i ∈
J} is a normalized tight frame which is unitarily equivalent to {Γi ∈L (H ,Hi) : i ∈ J},
then {Ωi ∈L (H ⊕H ,Hi) : i∈ J}, where Ωi( f ,g) = Λi f +ϒig, is also a normalized tight
g-frame for H ⊕H with respect to {Hi}i∈J .

Proof. We know that the induced sequences {ψi,k : i ∈ J,k ∈ Ki}, {φi,k : i ∈ J,k ∈ Ki} and
{ϕi,k : i∈ J,k∈Ki} by {Λi}i∈J , {Γi}i∈J and {ϒi}i∈J respectively, are normalized tight frames
and {φi,k : i ∈ J,k ∈ Ki} unitarily equivalent to {ϕi,k : i ∈ J,k ∈ Ki}. Since {Θi ∈L (H ⊕
H ,Hi) : i ∈ J} is a normalized tight g-frame for H ⊕H with respect to {Hi}i∈J by
Proposition 2.8, {(ψi,k,φi,k) : i ∈ J,k ∈ Ki} is normalized tight frame for H ⊕H and so by
Corollary 1.9 of [4] {(ψi,k,ϕi,k) : i ∈ J,k ∈ Ki} is normalized tight frame for H ⊕H and
therefore {Ωi ∈L (H ⊕H ,Hi) : i ∈ J} is also a normalized tight g-frame for H ⊕H
with respect to {Hi}i∈J .

Let {Λi ∈ L (H ,Hi) : i ∈ J} be a normalized tight g-frame for H with respect to
{Hi}i∈J . By Proposition 2.10 there exists a Hilbert space K and a normalized tight g-
frame {Γi ∈L (K ,Hi) : i∈ J} for K such that {Θi( f ,g)∈L (H ⊕K ,Hi) : i∈ J}where
Θi( f ,g) = Λi f +Γig is a g-orthonormal basis for H ⊕K with respect to {Hi}i∈J . We will
call {Γi ∈L (K ,Hi) : i ∈ J} a strong complementary g-frame to {Λi ∈L (H ,Hi) : i ∈
J}, and we will call ({Λi},{Γi}) a strong complementary pair. Proposition 2.11 says that
the strong complement of a normalized tight g-frame is unique up to unitary equivalence.
If {Λi ∈ L (H ,Hi) : i ∈ J} is a g-frame, we will define a strong complement to {Λi ∈
L (H ,Hi) : i∈ J} be any g-frame {Γi ∈L (K ,Hi) : i∈ J} such that the pair ({Λi},{Γi})
is similar to a strong complementary pair of normalized tight g-frames.
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Corollary 2.6. A pair of g-frames {Λi ∈ L (K ,Hi) : i ∈ J} and {Γi ∈ L (H ,Hi) : i ∈
J}i∈J is strong complementary pair of g-frames if and only if {ψi,k : i ∈ J,k ∈ Ki} and
{φi,k : i ∈ J,k ∈ Ki} is complementary pair of frames.

Proposition 2.14. Let {Λi ∈L (H ,Hi) : i∈ J} be a g-frame for H and {Γi ∈L (M ,Hi) :
i ∈ J}, {Θi ∈L (N ,Hi) : i ∈ J} be strong complementary g-frame to {Λi ∈L (H ,Hi) :
i ∈ J} in Hilbert spaces M and N , respectively. Then there exists an invertible operator
T ∈L (M ,N ) such that Θi = ΓiT ?.

Proof. By using Theorem 1.2, we have

Λi f = ∑
k∈Ki

〈 f ,ψi,k〉ei,k and Γig = ∑
k∈Ki

〈g,φi,k〉ei,k and Θih = ∑
k∈Ki

〈h,ϕi,k〉ei,k,

where {ψi,k} , {φi,k} and {ϕi,k} are frames in H , M and N , respectively. So by Corollary
2.6 and [4, Proposition 2.1], there exists an invertible operator T ∈ L (M ,N ) such that
T φi,k = ϕi,k and hence Θi = ΓiT ?.

Proposition 2.15. Suppose that {Λi ∈L (H ,Hi) : i∈ J} and {Γi ∈L (H ,Hi) : i∈ J} are
strongly disjoint g-frames for the same Hilbert space H . Then {Λi +Γi ∈L (H ,Hi) : i ∈
J} is a g-frame for H . In particular, if {Λi ∈L (H ,Hi) : i ∈ J} and {Γi ∈L (H ,Hi) :
i ∈ J} are strongly disjoint proper normalized tight g-frames for H , then {Λi + Γi ∈
L (H ,Hi) : i ∈ J} is a tight g-frame with g-frame bound 2.

Proof. Conclusion follows from Theorem 1.2, Corollary 2.4 and [4, Proposition 2.19].

Proposition 2.16. If {Λi ∈L (H ,Hi) : i ∈ J} and {Γi ∈L (H ,Hi) : i ∈ J} are disjoint
g-frames for H , then {Λi +Γi ∈L (H ,Hi) : i ∈ J} is a g-frame for H .

Proof. The assertion follows from Theorem 1.2, Corollary 2.4 and [4, Proposition 2.20].

Proposition 2.17. Suppose that {Λi ∈L (H ,Hi) : i ∈ J} and {Γi ∈L (H ,Hi) : i ∈ J}
are strongly disjoint normalized tight g-frames for H and A,B ∈ L (H ) are operators
such that AA? +BB? = I. Then {ΛiA? +ΓiB?} is a normalized tight g-frame for H .

Proof. Conclusion follows from Theorem 1.2, Corollary 2.4 and [4, Proposition 2.21].
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