BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

Generalized Frames on Super Hilbert Spaces

A. ABDOLLAHI AND E. RAHIMI

Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71454, Iran abdollahi@shirazu.ac.ir, erh@iaushiraz.net

Abstract. In this paper we study the relationship between g-frames for super Hilbert space $\mathscr{H} \oplus \mathscr{H}$ and g-frames for \mathscr{H} and \mathscr{H} and frames for \mathscr{H} , \mathscr{K} and $\mathscr{H} \oplus \mathscr{K}$. Also the concepts of disjoint g-frames and strong complementary g-frame are introduced and studied.

2010 Mathematics Subject Classification: Primary: 41A58; Secondary: 42C15

Keywords and phrases: g-frames, g-orthonormal bases, g-Riesz bases, disjoint g-frames, complementary g-frame.

1. Introduction

The concept of frame was introduced by Duffin and Schaeffer [2] to study nonharmonic Fourier series in 1952. Frames are generalizations of orthonormal bases in Hilbert spaces. If \mathcal{H} is a Hilbert space, $\mathcal{H} \oplus \mathcal{H}$ is called super Hilbert space in literatures [1, 3, 4] and have been widely studied recently. For example, Balan [1] introduced the concept of super frames and presented some density results for Weyl-Heisenberg super frames. In [4], Han and Larson derived necessary and sufficient conditions for the direct sum of two frames to be a super frame, and in [3], Gu and Han investigated the connection between decomposable Parseval wavelet frames and super wavelet frames, and gave some necessary and sufficient conditions for extendable Parseval wavelet frames. In [6], a generalization of the frame concept was introduced. Sun introduced a g-frame in a Hilbert space and showed that this includes more other cases of generalizations of frame concept and proved that many basic properties can be derived within this more general context. G-frames and g-Riesz bases in complex Hilbert spaces have some properties similar to those of frames, Riesz bases, but not all the properties are similar (see [6]). In [7], some properties of g-frames for super Hilbert space $\mathscr{H} \oplus \mathscr{H}$ with respect to \mathbb{C}^2 were studied. The authors showed that a g-frame associated with a frame for $\mathcal{H} \oplus \mathcal{H}$ remains a g-frame whenever any one of its elements is removed. Furthermore, they showed that the excess of such a g-frame is at least dim \mathcal{H} . In this paper we study the relationship between g-frames for super Hilbert space $\mathscr{H} \oplus \mathscr{K}$ and g-frames for \mathcal{H} and \mathcal{K} and frames for \mathcal{H}, \mathcal{K} and $\mathcal{H} \oplus \mathcal{K}$. Also we characterize gframes operators for supper Hilbert space $\mathscr{H} \oplus \mathscr{H}$ via the g-frame operators for \mathscr{H} and \mathscr{H} .

Communicated by Mohammad Sal Moslehian.

Received: May 7, 2010; Revised: August 18, 2010.

A. Abdollahi and E. Rahimi

Throughout this paper \mathcal{H} , \mathcal{H} are separable Hilbert spaces and $\{\mathcal{H}_i\}_{i \in J}$ is a sequence of separable Hilbert spaces, where J is a subset of \mathbb{Z} , $\mathcal{L}(\mathcal{H}, \mathcal{H}_i)$ is the collection of all bounded linear operators from \mathcal{H} to \mathcal{H}_i . For each sequence $\{\mathcal{H}_i\}_{i \in J}$, we define the space $\bigoplus_{i \in J} \mathcal{H}_i$ by

$$\bigoplus_{i\in J} \mathscr{H}_i = \{\{f_i\}_{i\in J} : f_i \in \mathscr{H}_i, \ i \in J \ and \ \sum_{i\in J} \|f_i\|^2 < \infty\}.$$

With the inner product defined by

$$\langle \{f_i\}, \{g_i\} \rangle = \sum_{i \in J} \langle f_i, g_i \rangle,$$

it is clear that $\bigoplus_{i \in J} \mathscr{H}_i$ is a Hilbert space.

A frame for a complex Hilbert space \mathscr{H} is a family of vectors $\{f_i\}_{i\in J}$ so that there are two positive constants A and B satisfying

$$A||f||^2 \leq \sum_{i \in J} |\langle f, f_i \rangle|^2 \leq B||f||^2, f \in \mathscr{H}.$$

The constants A and B are called lower and upper frame bounds.

We say that the frame pairs $(\{f_i\}, \{g_i\})$ and $(\{h_i\}, \{k_i\})$ are similar if there are bounded invertible operators T_1 and T_2 such that $f_i = T_1h_i$ and $g_i = T_2k_i$ for all $i \in J$. A pair of frames $\{f_i : i \in J\}$ and $\{g_i : i \in J\}$ is called disjoint if $\{(f_i, g_i) : i \in J\}$ is a frame for $\mathscr{H} \oplus \mathscr{H}$. A pair of normalized tight frames $\{f_i : i \in J\}$ and $\{g_i : i \in J\}$ is called strongly disjoint if $\{(f_i, g_i) : i \in J\}$ is a normalized tight frame for $\mathscr{H} \oplus \mathscr{H}$, and a pair of general frames $\{f_i : i \in J\}$ and $\{g_i : i \in J\}$ is called strongly disjoint if it is similar to a strongly disjoint pair of normalized tight frames.

Let $\{f_i : i \in J\}$ be a normalized tight frame for \mathscr{H} . If there exists a Hilbert space \mathscr{H} and a normalized tight frame $\{g_i : i \in J\}$ for \mathscr{H} such that $\{(f_i, g_i) : i \in J\}$ is an orthonormal basis for $\mathscr{H} \oplus \mathscr{H}$, we call $\{g_i : i \in J\}$ a strong complementary frame to $\{f_i : i \in J\}$, and we call $(\{f_i\}, \{g_i\})$ a strong complementary pair. If $\{f_i : i \in J\}$ is a general frame, we will define a strong complement to $\{f_i : i \in J\}$ to be any frame $\{g_i : i \in J\}$ such that the pair $(\{f_i\}, \{g_i\})$ is similar to a strong complementary pair of normalized tight frames.

We say that $\{f_i\}_{i\in J}$ is a Riesz basis for \mathcal{H} , if $\{f_i\}_{i\in J}$ is complete in \mathcal{H} and there exist constants $0 < A \le B < \infty$, such that for all sequences of scalars $c = \{c_i\}_{i\in J}$,

$$A\sum_{i\in J} |c_i|^2 \le \|\sum_{i\in J} c_i f_i\|^2 \le B\sum_{i\in J} |c_i|^2.$$

Riesz bases are special cases of frames.

A sequence $\{\Lambda_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ is called a generalized frame, or simply a g-frame, for \mathscr{H} with respect to $\{\mathscr{H}_i\}_{i\in J}$ if there exist two positive constants A and B such that for all $f \in \mathscr{H}$,

$$A||f||^2 \le \sum_{i\in J} ||\Lambda_i f||^2 \le B||f||^2.$$

The constants A and B are called the lower and upper g-frame bounds, respectively. If A = B we call this g-frame a tight g-frame and if A = B = 1 it is called a normalized tight g-frame. We say simply a g-frame for \mathscr{H} whenever the space sequence \mathscr{H}_i is clear. If we only have the upper bound, we call $\{\Lambda_i\}_{i \in J}$ a g-Bessel sequence with bound B. We say that $\{\Lambda_i\}_{i \in J}$ is g-complete, if $\{f : \Lambda_i f = 0, \forall i \in J\} = \{0\}$ and is called g-orthonormal basis for \mathscr{H} , if

$$\langle \Lambda_i^{\star} g_i, \Lambda_j^{\star} g_j \rangle = \delta_{i,j} \langle g_i, g_j \rangle, \ i, j \in J, \ g_i \in \mathscr{H}_i, \ g_j \in \mathscr{H}_j,$$

and

$$\sum_{i \in J} \|\Lambda_i f\|^2 = \|f\|^2.$$

We say that $\{\Lambda_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ is a g- Riesz basis for \mathscr{H} , if it is g-complete and there exist constants $0 < A \leq B < \infty$, such that for any finite subset $I \subseteq J$ and $g_i \in \mathscr{H}_i$, $i \in I$,

$$A\sum_{i\in I} \|g_i\|^2 \le \|\sum_{i\in I} \Lambda_i^* g_i\|^2 \le B\sum_{i\in I} \|g_i\|^2.$$

Theorem 1.1. [6] Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ be a g-frame for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in J}$. The operator

$$S: \mathscr{H} \to \mathscr{H}, Sf = \sum_{i \in J} \Lambda_i^* \Lambda_i f,$$

is a positive invertible operator and every $f \in \mathcal{H}$ has an expansion

$$f = \sum_{i \in J} S^{-1} \Lambda_i^* \Lambda_i f = \sum_{i \in J} \Lambda_i^* \Lambda_i S^{-1} f.$$

So $\{\widetilde{\Lambda}_i = \Lambda_i S^{-1} \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ is a g-frame for \mathscr{H} with respect to $\{\mathscr{H}_i\}_{i \in J}$ and is called canonical dual g-frame of $\{\Lambda_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$. The operator S is called the g-frame operator of $\{\Lambda_i\}_{i \in J}$.

Definition 1.1. [5] Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ be a g-frame for \mathcal{H} . Then the synthesis operator for $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is the operator

$$T:\bigoplus_{i\in J}\mathscr{H}_i\longrightarrow \mathscr{H},$$

defined by

$$T(\{f_i\}_{i\in J}) = \sum_{i\in J} \Lambda_i^\star(f_i).$$

We call the adjoint T^* of the synthesis operator the analysis operator. The analysis operator for $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is the operator

$$T^{\star}:\mathscr{H}\longrightarrow \bigoplus_{i\in J}\mathscr{H}_i,$$

defined by

$$T^{\star}(f) = \{\Lambda_i(f)\}_{i \in J}.$$

Proposition 1.1. [5] Let $\{\Lambda_i\}_{i\in J}$ be a sequence in $\mathcal{L}(\mathcal{H}, \mathcal{H}_i)$. Then the following are equivalent:

- (i) $\{\Lambda_i\}_{i\in J}$ is a g-frame for \mathscr{H} ;
- (ii) The operator $T : (\{f_i\}_{i \in J}) \mapsto \sum_{i \in J} \Lambda_i^*(f_i)$ is well-defined and bounded from $(\bigoplus_{i \in J} \mathscr{H}_i)_{l_2}$ onto \mathscr{H} ;
- (iii) The operator $S: f \mapsto \sum_{i \in J} \Lambda_i^* \Lambda_i f$ is well-defined and bounded from \mathscr{H} onto \mathscr{H} .

In order to present the main results of this paper, we need the following Theorem which can be found in [6] and gives a characterization of g-frames.

Theorem 1.2. Let $\{\Lambda_i\}_{i\in J}$ be a sequence in $\mathscr{L}(\mathscr{H}, \mathscr{H}_i)$, $\{e_{i,k} : k \in K_i\}$ be an orthonormal basis for \mathscr{H}_i , $i \in J$ where K_i is a subset of \mathbb{Z} and let $\psi_{i,k} = \Lambda_i^* e_{i,k}$. Then we have the followings.

A. Abdollahi and E. Rahimi

- (i) Λ_if = Σ_{k∈Ki} ⟨f, ψ_{i,k}⟩e_{i,k}, and {Λ_i ∈ ℒ(ℋ, ℋ_i) : i ∈ J} is a g-frame (resp. g-Bessel sequence, tight g-frame, g-Riesz basis, g-orthonormal basis) for ℋ if and only if {ψ_{i,k} : i ∈ J, k ∈ K_i} is a frame (resp. Bessel sequence, tight frame, Riesz basis, orthonormal basis) for ℋ.
- (ii) The g-frame operator for $\{\Lambda_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ coincides with the frame operator for $\{\psi_{i,k} : i \in J, k \in K_i\}$.
- (iii) Moreover, $\{\Lambda_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ and $\{\widetilde{\Lambda}_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ are a pair of (canonical) dual g-frames if and only if the induced sequences are a pair of (canonical) dual frames.

We call $\{\psi_{i,k} : i \in J, k \in K_i\}$ the sequence induced by $\{\Lambda_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ with respect to $\{e_{i,k} : k \in K_i\}$.

The paper is organized as follows. In section 2 we study the relationship between gframes for super Hilbert spaces $\mathcal{H} \oplus \mathcal{K}$ with respect to $\mathcal{H}_i \oplus \mathcal{H}'_i$, \mathcal{H}_i and g-frames for \mathcal{H} and \mathcal{K} with respect to \mathcal{H}_i and \mathcal{H}'_i and frames for \mathcal{H} , \mathcal{K} and $\mathcal{H} \oplus \mathcal{K}$. Also we give generalized version of disjoint frames and strong complementary frame and the concepts of disjoint g-frames and strong complementary g-frame are introduced and studied. We show that strong complementary g-frames to a given g-frame are similar and strongly disjoint pairs of g-frames on the same Hilbert space have some useful additional structural properties. Also we give some other properties of g-frames.

2. Main results

The following Proposition is proved in [5, Theorem 2.20], we give another proof.

Proposition 2.1. Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ be a normalized tight g-frame for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i\in J}$. Then there exists a Hilbert space $\mathcal{H} \supseteq \mathcal{H}$ and a g-orthonormal basis $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i\in J}$ such that $\Lambda_i = \Theta_i P$, where P is the orthogonal projection from \mathcal{H} onto \mathcal{H} .

Proof. By using Theorem 1.2, $\Lambda_i f = \sum_{k \in K_i} \langle f, \psi_{i,k} \rangle e_{i,k}$ where $\{\psi_{i,k}\}$ is a normalized tight frame for \mathscr{H} , by [4, Proposition 1.1] there exists a Hilbert space $\mathscr{H} \supseteq \mathscr{H}$ and an orthonormal basis $\{\phi_{i,k}\}$ for \mathscr{H} such that $\psi_{i,k} = P\phi_{i,k}$, where *P* is the orthogonal projection from \mathscr{H} onto \mathscr{H} . Let $\Theta_i f = \sum_{k \in K_i} \langle f, \phi_{i,k} \rangle e_{i,k}$. By Theorem 1.2, $\{\Theta_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ is a g-orthonormal basis for \mathscr{H} with respect to $\{\mathscr{H}_i\}_{i \in J}$, and

$$\Theta_i Pf = \sum_{k \in K_i} \langle Pf, \phi_{i,k} \rangle e_{i,k} = \sum_{k \in K_i} \langle f, \psi_{i,k} \rangle e_{i,k} = \Lambda_i f.$$

Corollary 2.1.

- (i) Suppose that {Λ_i ∈ L(ℋ, ℋ_i) : i ∈ J} is a g-orthonormal basis for ℋ, and V is a partial isometry in L(ℋ). Then {Λ_iV} is a normalized tight g-frame for the range of V.
- (ii) Let {Λ_i ∈ ℒ(ℋ, ℋ_i) : i ∈ J} be a normalized tight g-frame for ℋ with respect to {ℋ_i}_{i∈J} and {Θ_i ∈ ℒ(ℋ, ℋ_i) : i ∈ J} be a g-orthonormal basis for a Hilbert space ℋ with respect to {ℋ_i}_{i∈J}. If T is the isometry defined by T(f) = Σ_{i∈J} Θ_i^{*} Λ_i f, then Θ_iT = Λ_i, and Λ_iT^{*} = Θ_iP for all i ∈ J, where P is the projection from ℋ onto the range of T. More generally, if {Λ_i ∈ ℒ(ℋ, ℋ_i) : i ∈ J} is a general frame for ℋ, then T defined above is a bounded linear operator and Θ_iT = Λ_i for all i ∈ J.

(iii) Suppose that $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a normalized tight g-frame for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i\in J}$ and $\{e_{i,k} : k \in K_i\}$ is an orthonormal basis for \mathcal{H}_i , $i \in J$ where K_i is a subset of \mathbb{Z} . Then we have $\sum_{i\in J} \sum_{k\in K_i} \|\Lambda_i^* e_{i,k}\|^2$ is equal to the dimension of \mathcal{H} .

Proof. (i) Statement (i) follows from the definition.

(ii) By using Theorem 1.2, $\Lambda_i f = \sum_{k \in K_i} \langle f, \psi_{i,k} \rangle e_{i,k}$, where $\{\psi_{i,k}\}$ is a normalized tight frame for \mathscr{H} , and $\Theta_i^* f_i = \sum_{k \in K_i} \langle f_i, e_{i,k} \rangle \phi_{i,k}$, where $\{\phi_{i,k}\}$ is an orthonormal basis for \mathscr{H} . Hence we have

$$T(f) = \sum_{i \in J} \Theta_i^* \Lambda_i f = \sum_{i \in J} \sum_{k \in K_i} \langle f, \psi_{i,k} \rangle \phi_{i,k}.$$

Further, by [4, Corollary 1.2], $T^*\phi_{i,k} = \psi_{i,k}$ and $T\psi_{i,k} = P\phi_{i,k}$, and it follows

$$\Theta_i T(f) = \sum_{k \in K_i} \langle Tf, \phi_{i,k} \rangle e_{i,k} = \sum_{k \in K_i} \langle f, \psi_{i,k} \rangle e_{i,k} = \Lambda_i f,$$

and

$$\Lambda_i T^*(f) = \sum_{k \in K_i} \langle T^* f, \Psi_{i,k} \rangle e_{i,k} = \sum_{k \in K_i} \langle f, P\phi_{i,k} \rangle e_{i,k} = \Theta_i P f,$$

for all $i \in J$.

(iii) Since $\psi_{i,k} = \Lambda_i^* e_{i,k}$, the conclusion follows from [4, Corollary 1.2].

Let $(\varphi_i, \psi_i) \in \mathscr{H} \oplus \mathscr{H}$ and $\Lambda_i f = (\langle f, \varphi_i \rangle, \langle f, \psi_i \rangle)^{\perp}$, $\forall f \in \mathscr{H}$, the authors in [7] have proved $\{\Lambda_i\}_{i \in J}$ is a g-frame for \mathscr{H} with respect to \mathbb{C}^2 if and only if $\{\varphi_i\}_{i \in J} \cup \{\psi_i\}_{i \in J}$ is a frame for \mathscr{H} . The following Proposition is its extension to g-frames.

Proposition 2.2. Let $\{\Lambda_i\}_{i\in J}$ and $\{\Gamma_i\}_{i\in J}$ be sequences in $\mathscr{L}(\mathscr{H}, \mathscr{H}_i)$, $\{e_{i,k} : k \in K_i\}$ be an orthonormal basis for \mathscr{H}_i , $\Theta_i f = (\Lambda_i f, \Gamma_i f)$, $\psi_{i,k} = \Lambda_i^* e_{i,k}$, and $\phi_{i,k} = \Gamma_i^* e_{i,k}$. Then $\{\psi_{i,k} : i \in J, k \in K_i\} \cup \{\phi_{i,k} : i \in J, k \in K_i\}$ is a frame (resp. Bessel sequence, tight frame, Riesz basis, orthonormal basis) for \mathscr{H} if and only if $\{\Theta_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i \oplus \mathscr{H}_i) : i \in J\}$ is a g-frame (resp. g-Bessel sequence, tight g-frame, g-Riesz basis, g-orthonormal basis) for \mathscr{H} .

Proof. By using Theorem 1.2 we have $\Lambda_i f = \sum_{k \in K_i} \langle f, \psi_{i,k} \rangle e_{i,k}$ and $\Gamma_i f = \sum_{k \in K_i} \langle f, \phi_{i,k} \rangle e_{i,k}$. Since

$$\begin{split} \sum_{i \in J} \|(\Lambda_i \oplus \Gamma_i)(f)\|^2 &= \sum_{i \in J} \|\Lambda_i(f)\|^2 + \sum_{i \in J} \|\Gamma_i(f)\|^2 \\ &= \sum_{i \in J} \sum_{k \in K_i} |\langle f, \psi_{i,k} \rangle|^2 + \sum_{i \in J} \sum_{k \in K_i} |\langle f, \phi_{i,k} \rangle|^2 \\ &= \sum_{i \in J} \sum_{k \in K_i} (|\langle f, \psi_{i,k} \rangle|^2 + |\langle f, \phi_{i,k} \rangle|^2), \end{split}$$

we conclude $\{\psi_{i,k} : i \in J, k \in K_i\} \cup \{\phi_{i,k} : i \in J, k \in K_i\}$ is a frame (resp. Bessel sequence, tight frame) for \mathcal{H} if and only if $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i \oplus \mathcal{H}_i) : i \in J\}$ is a g-frame (resp. g-Bessel sequence, tight g-frame) for \mathcal{H} .

Since $\{e_{i,k} : k \in K_i\}$ is an orthonormal basis for \mathscr{H}_i , every $f_i, g_i \in \mathscr{H}_i$ have expansions of the form $g_i = \sum_{k \in K_i} c_{i,k} e_{i,k}$ and $f_i = \sum_{k \in K_i} c'_{i,k} e_{i,k}$, where $\{c_{i,k}, c'_{i,k} : k \in K_i\} \in l^2(K_i)$. It follows that

$$\left\|\sum_{i\in I}\Theta_i^{\star}(g_i,f_i)\right\|^2 = \left\|\sum_{i\in I}\Lambda_i^{\star}g_i + \Gamma_i^{\star}f_i\right\|^2 = \left\|\sum_{i\in I}\sum_{k\in K_i}c_{i,k}\psi_{i,k} + c_{i,k}^{\prime}\phi_{i,k}\right\|^2,$$

hence $\{\psi_{i,k} : i \in J, k \in K_i\} \cup \{\phi_{i,k} : i \in J, k \in K_i\}$ is a Riesz basis if and only if $\{\Theta_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i \oplus \mathscr{H}_i) : i \in J\}$ is a g-Riesz basis.

On the other hand if $g_{i,p}, g_{i,p'} \in \mathscr{H}_i$ and $g_{j,q}, g_{j,q'} \in \mathscr{H}_j$ we have $\Lambda_i^* g_{i,p} = \sum_{k \in K_i} \langle g_{i,p}, e_{i,k} \rangle \psi_{i,k}$ and $\Gamma_i^* g_{i,p'} = \sum_{k \in K_i} \langle g_{i,p'}, e_{i,k} \rangle \phi_{i,k}$,

$$\begin{split} &\langle \langle \Theta_{i}^{\star}(g_{i,p},g_{i,p'}), \Theta_{j}^{\star}(g_{j,q},g_{j,q'}) \rangle \rangle \\ &= \langle \Lambda_{i}^{\star}g_{i,p} + \Gamma_{i}^{\star}g_{i,p'}, \Lambda_{j}^{\star}g_{j,q} + \Gamma_{j}^{\star}g_{j,q'} \rangle \\ &= \langle \Lambda_{i}^{\star}g_{i,p}, \Lambda_{j}^{\star}g_{j,q} \rangle + \langle \Gamma_{i}^{\star}g_{i,p'}, \Gamma_{j}^{\star}g_{j,q'} \rangle + \langle \Lambda_{i}^{\star}g_{i,p}, \Gamma_{j}^{\star}g_{j,q'} \rangle + \langle \Gamma_{i}^{\star}g_{i,p'}, \Lambda_{j}^{\star}g_{j,q} \rangle \\ &= \sum_{k \in K_{i}} \sum_{l \in K_{j}} \langle g_{i,p}, e_{i,k} \rangle \langle e_{j,l}, g_{j,q} \rangle \langle \Psi_{i,k}, \Psi_{j,l} \rangle + \sum_{k \in K_{i}} \sum_{l \in K_{j}} \langle g_{i,p'}, e_{i,k} \rangle \langle e_{j,l}, g_{j,q'} \rangle \langle \Phi_{i,k}, \Phi_{j,l} \rangle \\ &+ \sum_{k \in K_{i}} \sum_{l \in K_{j}} \langle g_{i,p}, e_{i,k} \rangle \langle e_{j,l}, g_{j,q'} \rangle \langle \Psi_{i,k}, \Phi_{j,l} \rangle + \sum_{k \in K_{i}} \sum_{l \in K_{j}} \langle g_{i,p'}, e_{i,k} \rangle \langle e_{j,l}, g_{j,q} \rangle \langle \Phi_{i,k}, \Psi_{j,l} \rangle. \end{split}$$

Then if $\{\psi_{i,k} : i \in J, k \in K_i\} \cup \{\phi_{i,k} : i \in J, k \in K_i\}$ is an orthonormal basis we conclude $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i \oplus \mathcal{H}_i) : i \in J\}$ is a g-orthonormal basis.

If $\{\Theta_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i \oplus \mathscr{H}_i) : i \in J\}$ is a g-orthonormal basis, since $\langle \psi_{i,k}, \psi_{j,l} \rangle = \langle \Lambda_i^* e_{i,k}, \Lambda_j^* e_{j,l} \rangle$ and $\langle \psi_{i,k}, \phi_{j,l} \rangle = \langle \Lambda_i^* e_{i,k}, \Gamma_j^* e_{j,l} \rangle$ and

$$egin{aligned} &\langle\langle \Theta^{\star}_{i}(g_{i,k},g_{i,k'}),\Theta^{\star}_{j}(g_{j,l},g_{j,l'})
angle
angle &=\langle\Lambda^{\star}_{i}g_{i,k}+\Gamma^{\star}_{i}g_{i,k'},\Lambda^{\star}_{j}g_{j,l}+\Gamma^{\star}_{j}g_{j,l'}
angle\ &=\langle\Lambda^{\star}_{i}g_{i,k},\Lambda^{\star}_{j}g_{j,l}
angle+\langle\Gamma^{\star}_{i}g_{i,k},\Gamma^{\star}_{j}g_{j,l'}
angle\ &+\langle\Lambda^{\star}_{i}g_{i,k'},\Gamma^{\star}_{i}g_{i,l}\rangle+\langle\Gamma^{\star}_{i}g_{i,k},\Lambda^{\star}_{j}g_{j,l'}
angle, \end{aligned}$$

if let $g_{i,k} = g_{j,l} = 0$ and $g_{i,k'} = e_{i,k'}$, $g_{j,l'} = e_{j,l'}$ we have

$$\langle \Theta_i^\star(g_{i,k},g_{i,k'}), \Theta_j^\star(g_{j,l},g_{j,l'})
angle = \langle \phi_{i,k}, \phi_{j,l}
angle = \delta_{i,j} \delta_{k,l},$$

and if let $g_{i,k'} = g_{j,l'} = 0$ and $g_{i,k} = e_{i,k}$, $g_{j,l} = e_{j,l}$ we have

$$\langle \Theta_i^{\star}(g_{i,k},g_{i,k'}),\Theta_j^{\star}(g_{j,l},g_{j,l'})\rangle = \langle \psi_{i,k},\psi_{j,l}\rangle = \delta_{i,j}\delta_{k,l},$$

also if let $g_{i,k'} = e_{i,k'}$, $g_{j,l'} = 0$ and $g_{i,k} = e_{i,k}$, $g_{j,l} = e_{j,l}$ we have

$$\delta_{i,j}\langle e_{i,k}e_{j,l}\rangle = \langle \Theta_i^{\star}(g_{i,k},g_{i,k'}), \Theta_j^{\star}(g_{j,l},g_{j,l'})\rangle = \langle \psi_{i,k},\psi_{j,l}\rangle + \langle \psi_{i,k},\phi_{j,l}\rangle.$$

Then $\{\psi_{i,k} : i \in J, k \in K_i\} \cup \{\phi_{i,k} : i \in J, k \in K_i\}$ is an orthonormal basis for \mathcal{H} . The following is an immediate consequence.

The following is an inimediate consequence.

Corollary 2.2. Let $\{\Lambda_i\}_{i\in J}$ and $\{\Gamma_i\}_{i\in J}$ be sequences in $\mathcal{L}(\mathcal{H}, \mathcal{H}_i)$ and $\Theta_i f = (\Lambda_i f, \Gamma_i f)$. Then $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\} \cup \{\Gamma_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a g-frame (resp. g-Bessel sequence, tight g-frame, g-Riesz basis, g-orthonormal basis) for \mathcal{H} if and only if $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i \oplus \mathcal{H}_i) : i \in J\}$ is a g-frame (resp. g-Bessel sequence, tight g-frame, g-Riesz basis, g-orthonormal basis) for \mathcal{H} .

Putting Definition 1.2 and Corollary 2.2 together, we get

Proposition 2.3. Let $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i \oplus \mathcal{H}_i) : i \in J\}$, $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ and $\{\Gamma_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ be g-frames where $\Theta_i(f) = (\Lambda_i f, \Gamma_i f)$. Then the synthesis operator for $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i \oplus \mathcal{H}_i) : i \in J\}$ is the operator

$$T:\bigoplus_{i\in J}(\mathscr{H}_i\oplus\mathscr{H}_i)\longrightarrow\mathscr{H},$$

defined by

$$T(\{(f_i,g_i)\}_{i\in J}) = \sum_{i\in J} (\Lambda_i^* f_i + \Gamma_i^* g_i)$$

The analysis operator for $\{\Theta_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i \oplus \mathscr{H}_i) : i \in J\}$ is the operator

$$T^{\star}:\mathscr{H}\longrightarrow \bigoplus_{i\in J}(\mathscr{H}_i\oplus\mathscr{H}_i),$$

defined by

$$T^{\star}f = \{(\Lambda_i f, \Gamma_i f)\}_{i \in J}.$$

Also the g-frame operator for $\{\Theta_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i \oplus \mathscr{H}_i) : i \in J\}$ is the operator

 $S_{\Theta}:\mathscr{H}\to\mathscr{H}$

defined by

$$S_{\Theta}f = \sum_{i \in J} \Lambda_i^* \Lambda_i f + \sum_{i \in J} \Gamma_i^* \Gamma_i f = S_{\Lambda}f + S_{\Gamma}f.$$

Proposition 2.4. Let $\{\Lambda_i\}_{i\in J}$ and $\{\Gamma_i\}_{i\in J}$ be sequences in $\mathcal{L}(\mathcal{H}, \mathcal{H}_i)$ and $\mathcal{L}(\mathcal{K}, \mathcal{H}'_i)$ respectively. Then $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ and $\{\Gamma_i \in \mathcal{L}(\mathcal{K}, \mathcal{H}'_i) : i \in J\}$ are g-frames (resp. g-Bessel sequences, tight g-frames, g-Riesz bases, g-orthonormal bases) for \mathcal{H} and \mathcal{K} if and only if $\{\Lambda_i \oplus \Gamma_i \in \mathcal{L}(\mathcal{H} \oplus \mathcal{K}, \mathcal{H}_i \oplus \mathcal{H}'_i) : i \in J\}$ is a g-frame (resp. g-Bessel sequence, tight g-frame, g-Riesz basis, g-orthonormal basis) for $\mathcal{H} \oplus \mathcal{K}$.

Proof. Since

$$\sum_{i \in J} \|(\Lambda_i \oplus \Gamma_i)(f, g)\|^2 = \sum_{i \in J} \|\Lambda_i(f)\|^2 + \sum_{i \in J} \|\Gamma_i(g)\|^2,$$

then $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ and $\{\Gamma_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}'_i) : i \in J\}$ are g-frames (resp. g-Bessel sequences, tight g-frames) for \mathcal{H} and \mathcal{K} if and only if $\{\Lambda_i \oplus \Gamma_i \in \mathcal{L}(\mathcal{H} \oplus \mathcal{H}, \mathcal{H}_i \oplus \mathcal{H}'_i) : i \in J\}$ is a g-frame (resp. g-Bessel sequence, tight g-frame) for $\mathcal{H} \oplus \mathcal{K}$. For any finite subset $I \subseteq J$, $f_i \in \mathcal{H}'_i$, $g_i \in \mathcal{H}_i$ we have

$$\begin{split} \left\|\sum_{i\in I} (\Lambda_i \oplus \Gamma_i)^{\star}(g_i, f_i)\right\|^2 &= \left\|\sum_{i\in I} (\Lambda_i^{\star}g_i, \Gamma_i^{\star}f_i)\right\|^2 = \left\| (\sum_{i\in I} \Lambda_i^{\star}g_i, \sum_{i\in I} \Gamma_i^{\star}f_i)\right\|^2 \\ &= \left\|\sum_{i\in I} \Lambda_i^{\star}g_i\right\|^2 + \left\|\sum_{i\in I} \Gamma_i^{\star}f_i\right\|^2, \end{split}$$

and so $\{\Lambda_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ and $\{\Gamma_i \in \mathscr{L}(\mathscr{K}, \mathscr{H}'_i) : i \in J\}$ are g-Riesz bases for \mathscr{H} and \mathscr{K} if and only if $\{\Lambda_i \oplus \Gamma_i \in \mathscr{L}(\mathscr{H} \oplus \mathscr{K}, \mathscr{H}_i \oplus \mathscr{H}'_i) : i \in J\}$ is a g-Riesz basis for $\mathscr{H} \oplus \mathscr{K}$.

On the other hand if $g_{i,l} \in \mathcal{H}_i$, $g_{i,k} \in \mathcal{H}'_i$ and $g_{j,l'} \in \mathcal{H}_j$, $g_{j,k'} \in \mathcal{H}'_i$ we have

$$\begin{aligned} \langle (\Lambda_i \oplus \Gamma_i)^{\star}(g_{i,l}, g_{i,k}), (\Lambda_j \oplus \Gamma_j)^{\star}(g_{j,l'}, g_{j,k'}) \rangle &= \langle (\Lambda_i^{\star}g_{i,l}, \Gamma_i^{\star}g_{i,k}), (\Lambda_j^{\star}g_{j,l'}, \Gamma_j^{\star}g_{j,k'}) \rangle \\ &= \langle \Lambda_i^{\star}g_{i,l}, \Lambda_j^{\star}g_{j,l'} \rangle + \langle \Gamma_i^{\star}g_{i,k}, \Gamma_j^{\star}g_{j,k'} \rangle \end{aligned}$$

then $\{\Lambda_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ and $\{\Gamma_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}'_i) : i \in J\}$ are g-orthonormal bases for \mathscr{H} and \mathscr{H} if and only if $\{\Lambda_i \oplus \Gamma_i \in \mathscr{L}(\mathscr{H} \oplus \mathscr{H}, \mathscr{H}_i \oplus \mathscr{H}'_i) : i \in J\}$ is a g-orthonormal basis for $\mathscr{H} \oplus \mathscr{H}$.

Corollary 2.3. A set $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a normalized tight g-frame for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i\in J}$ if and only if there exists a Hilbert space \mathcal{M} and a normalized tight g-frame $\{\Gamma_i \in \mathcal{L}(\mathcal{M}, \mathcal{H}_i) : i \in J\}$ for \mathcal{M} such that $\{\Lambda_i \oplus \Gamma_i \in \mathcal{L}(\mathcal{H} \oplus \mathcal{M}, \mathcal{H}_i \oplus \mathcal{H}_i) : i \in J\}$ is a normalized tight g-frame for $\mathcal{H} \oplus \mathcal{M}$ with respect to $\{\mathcal{H}_i \oplus \mathcal{H}_i\}_{i\in J}$ and we have $\langle (\Lambda_i \oplus \Gamma_i)^* (f_i, f_i), (\Lambda_j \oplus \Gamma_j)^* (f_j, f_j) \rangle = \delta_{i,j} \langle f_i, f_j \rangle.$

Proof. If $\{\Lambda_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ is a normalized tight g-frame for \mathscr{H} , by using Proposition 2.1, there exists a Hilbert space $\mathscr{H} \supseteq \mathscr{H}$ and a g-orthonormal basis $\{\Theta_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ for \mathscr{H} such that $\Lambda_i = \Theta_i P$, where P is the orthogonal projection from \mathscr{H} onto \mathscr{H} . Let $\mathscr{M} = (I - P)\mathscr{H}$ and $\Gamma_i = \Theta_i(I - P)$. Then, by Proposition 2.4, $\{\Lambda_i \oplus \Gamma_i \in \mathscr{L}(\mathscr{H} \oplus \mathscr{M}, \mathscr{H}_i \oplus \mathscr{H}_i) : i \in J\}$ is a normalized tight g-frame for $\mathscr{H} \oplus \mathscr{M}$. Also we have

$$\begin{split} \langle (\Lambda_i \oplus \Gamma_i)^{\star} (f_i, f_i), (\Lambda_j \oplus \Gamma_j)^{\star} (f_j, f_j) \rangle &= \langle \Lambda_i^{\star} f_i, \Lambda_j^{\star} f_j \rangle + \langle \Gamma_i^{\star} f_i, \Gamma_j^{\star} f_j \rangle \\ &= \langle P \Theta_i^{\star} f_i, P \Theta_j^{\star} f_j \rangle + \langle (I - P) \Theta_i^{\star} f_i, (I - P) \Theta_j^{\star} f_j \rangle \\ &= \langle \Theta_i^{\star} f_i, \Theta_j^{\star} f_j \rangle = \delta_{i,j} \langle f_i, f_j \rangle. \end{split}$$

Proposition 2.5. Let $\{\Theta_i \in \mathcal{L}(\mathcal{H} \oplus \mathcal{K}, \mathcal{H}_i \oplus \mathcal{H}'_i) : i \in J\}$, $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ and $\{\Gamma_i \in \mathcal{L}(\mathcal{K}, \mathcal{H}'_i) : i \in J\}_{i \in J}$ be g-frames where $\Theta_i(f, g) = (\Lambda_i f, \Gamma_i g)$. Then the synthesis operator for $\{\Theta_i \in \mathcal{L}(\mathcal{H} \oplus \mathcal{K}, \mathcal{H}_i \oplus \mathcal{H}'_i) : i \in J\}$ is the operator

$$T:\bigoplus_{i\in J}(\mathscr{H}_i\oplus\mathscr{H}'_i)\longrightarrow\mathscr{H}\oplus\mathscr{K},$$

defined by

$$T(\{(f_i,g_i)\}_{i\in J}) = (\sum_{i\in J} \Lambda_i^* f_i, \sum_{i\in J} \Gamma_i^* g_i)$$

The analysis operator for $\{\Theta_i \in \mathscr{L}(\mathscr{H} \oplus \mathscr{K}, \mathscr{H}_i \oplus \mathscr{H}'_i) : i \in J\}$ is the operator

$$T^{\star}:\mathscr{H}\oplus\mathscr{K}\longrightarrow\bigoplus_{i\in J}(\mathscr{H}_{i}\oplus\mathscr{H}'_{i}),$$

defined by

$$T^{\star}(f,g) = \{(\Lambda_i f, \Gamma_i g)\}_{i \in J}.$$

Also the g-frame operator for $\{\Theta_i \in \mathscr{L}(\mathscr{H} \oplus \mathscr{K}, \mathscr{H}_i \oplus \mathscr{H}'_i) : i \in J\}$ is the operator
 $S_{\Theta} : \mathscr{H} \oplus \mathscr{K} \to \mathscr{H} \oplus \mathscr{K},$

defined by

$$S_{\Theta}(f,g) = (\sum_{i \in J} \Lambda_i^* \Lambda_i f, \sum_{i \in J} \Gamma_i^* \Gamma_i g) = (S_{\Lambda} f, S_{\Gamma} g).$$

Proposition 2.6. Let $\{\Lambda_i\}_{i\in J}$ and $\{\Gamma_i\}_{i\in J}$ be sequences in $\mathscr{L}(\mathscr{H}, \mathscr{H}_i)$ and $\mathscr{L}(\mathscr{H}, \mathscr{H}_i)$ respectively, and $\{(e'_{i,k}, e''_{i,k}) : k \in K_i\}$ be an orthonormal basis for $\mathscr{H}_i \oplus \mathscr{H}_i$, $i \in J$ where K_i is a subset of \mathbb{Z} and let $\psi_{i,k} = \Lambda_i^* e'_{i,k}$, $\phi_{i,k} = \Gamma_i^* e''_{i,k}$. Then $\{(\psi_{i,k}, \phi_{i,k}) : i \in J, k \in K_i\}$ is a frame (resp. Bessel sequence, tight frame, Riesz basis, orthonormal basis) for $\mathscr{H} \oplus \mathscr{H}$ if and only if $\{\Lambda_i \oplus \Gamma_i \in \mathscr{L}(\mathscr{H} \oplus \mathscr{H}, \mathscr{H}_i \oplus \mathscr{H}_i) : i \in J\}$ is a g-frame (resp. g-Bessel sequence, tight g-frame, g-Riesz basis, g-orthonormal basis) for $\mathscr{H} \oplus \mathscr{H}$.

Proof. Since $(\Lambda_i \oplus \Gamma_i)^* = \Lambda_i^* \oplus \Gamma_i^*$ and $\{(e'_{i,k}, e''_{i,k}) : k \in K_i\}$ is an orthonormal basis for $\mathscr{H}_i \oplus \mathscr{H}_i, i \in J$ we have $(\Lambda_i^* \oplus \Gamma_i^*)(e'_{i,k}, e''_{i,k}) = (\psi_{i,k}, \phi_{i,k})$, and hence $\{(\psi_{i,k}, \phi_{i,k}) : i \in J, k \in K_i\}$ is the sequence induced by $\{\Lambda_i \oplus \Gamma_i \in \mathscr{L}(\mathscr{H} \oplus \mathscr{H}, \mathscr{H}_i \oplus \mathscr{H}_i) : i \in J\}$ with respect to $\{(e'_{i,k}, e''_{i,k}) : i \in J, k \in K_i\}$. So, by Theorem 1.2, $\{(\psi_{i,k}, \phi_{i,k}) : i \in J, k \in K_i\}$ is a frame (resp.

Bessel sequence, tight frame, Riesz basis, orthonormal basis) for $\mathscr{H} \oplus \mathscr{K}$ if and only if $\{\Lambda_i \oplus \Gamma_i \in \mathscr{L}(\mathscr{H} \oplus \mathscr{K}, \mathscr{H}_i \oplus \mathscr{H}_i) : i \in J\}$ is a g-frame (resp. g-Bessel sequence, tight g-frame, g-Riesz basis, g-orthonormal basis) for $\mathscr{H} \oplus \mathscr{K}$.

Proposition 2.7.

- (i) If T is a co-isometry and $\{\Lambda_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ is a g-frame for \mathscr{H} , then $\{\Lambda_i T^{\star}\}_{i \in J}$ is a g-frame. Moreover, $\{\Lambda_i T^{\star}\}_{i \in J}$ is a normalized tight g-frame if $\{\Lambda_i\}_{i \in J}$ is.
- (ii) Suppose that {Λ_i ∈ L(ℋ, ℋ_i) : i ∈ J} and {Γ_i ∈ L(ℋ, ℋ_i) : i ∈ J} are normalized tight g-frames, and suppose that T is a bounded linear operator which satisfies Λ_iT^{*} = Γ_i for all i ∈ J. Then T is a co-isometry. If T is invertible, then it is unitary.

Proof. (i) Since T is a co-isometry, T^* is an isometry. Hence, for all $f \in \mathscr{H}$,

$$A||f||^{2} = A||T^{\star}f||^{2} \le \sum_{i \in J} ||\Lambda_{i}T^{\star}f||^{2} \le B||T^{\star}f||^{2} = B||f||^{2}.$$

(ii) If $\{\Lambda_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ and $\{\Gamma_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ are normalized tight gframes, the induced sequences $\{\psi_{i,k} : i \in J, k \in K_i\}$ and $\{\phi_{i,k} : i \in J, k \in K_i\}$ by $\{\Lambda_i\}_{i \in J}$ and $\{\Gamma_i\}_{i \in J}$ respectively, are normalized tight frames. Since $\Lambda_i T^* = \Gamma_i$ we conclude $T\psi_{i,k} = \phi_{i,k}$, and so by Proposition 1.9(ii) of [4], T is a co-isometry and if T is invertible, then it is unitary.

Proposition 2.8. Let $\{\Lambda_i\}_{i\in J}$ and $\{\Gamma_i\}_{i\in J}$ be sequences in $\mathscr{L}(\mathscr{H}, \mathscr{H}_i)$ and $\mathscr{L}(\mathscr{H}, \mathscr{H}_i)$ respectively, and $\{e_{i,k} : k \in K_i\}$ be an orthonormal basis for \mathscr{H}_i , $i \in J$ where K_i is a subset of \mathbb{Z} and let $\psi_{i,k} = \Lambda_i^* e_{i,k}$, $\phi_{i,k} = \Gamma_i^* e_{i,k}$ and $\Theta_i(f,g) = \Lambda_i f + \Gamma_i g$. Then $\{(\psi_{i,k}, \phi_{i,k}) : i \in J, k \in K_i\}$ is a frame (resp. Bessel sequence, tight frame, Riesz basis, orthonormal basis) for $\mathscr{H} \oplus \mathscr{K}$ if and only if $\{\Theta_i \in \mathscr{L}(\mathscr{H} \oplus \mathscr{K}, \mathscr{H}_i) : i \in J\}$ is a g-frame (resp. g-Bessel sequence, tight g-frame, g-Riesz basis, g-orthonormal basis) for $\mathscr{H} \oplus \mathscr{K}$ with respect to $\{\mathscr{H}_i\}_{i\in J}$.

Proof. Since $\Theta_i^{\star} e_{i,k} = (\psi_{i,k}, \phi_{i,k})$, by using Theorem 1.2, we have $\{(\psi_{i,k}, \phi_{i,k}) : i \in J, k \in K_i\}$ is a frame (resp. Bessel sequence, tight frame, Riesz basis, orthonormal basis) for $\mathscr{H} \oplus \mathscr{K}$ if and only if $\{\Theta_i \in \mathscr{L}(\mathscr{H} \oplus \mathscr{K}, \mathscr{H}_i) : i \in J\}$ is a g-frame (resp. g-Bessel sequence, tight g-frame, g-Riesz basis, g-orthonormal basis) for $\mathscr{H} \oplus \mathscr{K}$ with respect to $\{\mathscr{H}_i\}_{i \in J}$.

Proposition 2.9. Let $\{\Theta_i \in \mathcal{L}(\mathcal{H} \oplus \mathcal{K}, \mathcal{H}_i) : i \in J\}$, $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ and $\{\Gamma_i \in \mathcal{L}(\mathcal{K}, \mathcal{H}_i) : i \in J\}_{i \in J}$ be g-frames where $\Theta_i(f, g) = \Lambda_i f + \Gamma_i g$. Then the synthesis operator for $\{\Theta_i \in \mathcal{L}(\mathcal{H} \oplus \mathcal{K}, \mathcal{H}_i) : i \in J\}$ is the operator

$$T:\bigoplus_{i\in J}\mathscr{H}_i\longrightarrow \mathscr{H}\oplus\mathscr{K},$$

defined by

$$T(\{f_i\}_{i\in J}) = (\sum_{i\in J} \Lambda_i^{\star} f_i, \sum_{i\in J} \Gamma_i^{\star} f_i)$$

The analysis operator for $\{\Theta_i \in \mathscr{L}(\mathscr{H} \oplus \mathscr{K}, \mathscr{H}_i) : i \in J\}$ is the operator

$$T^{\star}:\mathscr{H}\oplus\mathscr{K}\longrightarrow\bigoplus_{i\in J}\mathscr{H}_i,$$

defined by

$$T^{\star}(f,g) = \{(\Lambda_i f + \Gamma_i g)\}_{i \in J}$$

A. Abdollahi and E. Rahimi

Also the g-frame operator for $\{\Theta_i \in \mathscr{L}(\mathscr{H} \oplus \mathscr{K}, \mathscr{H}_i) : i \in J\}$ is the operator

 $S_{\Theta}: \mathscr{H} \oplus \mathscr{K} \to \mathscr{H} \oplus \mathscr{K}$

defined by

$$S_{\Theta}(f,g) = (\sum_{i \in J} (\Lambda_i^* \Lambda_i f + \Lambda_i^* \Gamma_i g), \sum_{i \in J} (\Gamma_i^* \Lambda_i f + \Gamma_i^* \Gamma_i g)).$$

We say that the g-frame pairs $(\{\Lambda_i\}, \{\Gamma_i\})$ and $(\{\Upsilon_i\}, \{\Theta_i\})$ are similar if there are bounded invertible operators T_1 and T_2 such that $\Lambda_i = \Upsilon_i T_1$ and $\Gamma_i = \Theta_i T_2$ for all $i \in J$. A pair of g-frames $\{\Lambda_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ and $\{\Gamma_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}_{i \in J}$ is called disjoint if $\{\Theta_i \in \mathscr{L}(\mathscr{H} \oplus \mathscr{K}, \mathscr{H}_i) : i \in J\}$ where $\Theta_i(f, g) = \Lambda_i f + \Gamma_i g$ is a g-frame for $\mathscr{H} \oplus \mathscr{K}$. A pair of normalized tight g-frames $\{\Lambda_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ and $\{\Gamma_i \in \mathscr{L}(\mathscr{K}, \mathscr{H}_i) : i \in J\}_{i \in J}$ is called strongly disjoint if $\{\Theta_i \in \mathscr{L}(\mathscr{H} \oplus \mathscr{K}, \mathscr{H}_i) : i \in J\}$ is a normalized tight g-frame for $\mathscr{H} \oplus \mathscr{K}$, and a pair of general g-frames $\{\Lambda_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ and $\{\Gamma_i \in \mathscr{L}(\mathscr{K}, \mathscr{H}_i) :$ $i \in J\}$ is called strongly disjoint if it is similar to a strongly disjoint pair of normalized tight g-frames.

Corollary 2.4. A pair of g-frames $\{\Lambda_i \in \mathcal{L}(\mathcal{K}, \mathcal{H}_i) : i \in J\}$ and $\{\Gamma_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ $J_{i\in J}$ is disjoint (resp. strongly disjoint) if and only if $\{\Psi_{i,k} : i \in J, k \in K_i\}$ and $\{\phi_{i,k} : i \in J, k \in K_i\}$ is a pair of disjoint (resp. strongly disjoint) frames where $\Psi_{i,k} = \Lambda_i^* e_{i,k}$ and $\phi_{i,k} = \Gamma_i^* e_{i,k}$.

Corollary 2.5. If a pair of normalized tight frames $\{\Lambda_i \in \mathscr{L}(\mathscr{K}, \mathscr{H}_i) : i \in J\}$ and $\{\Gamma_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}_{i \in J}$ is strongly disjoint, then for all $f \in \mathscr{H}$ and $g \in \mathscr{K}$ we have

$$\sum_{i\in J} \Lambda_i^* \Gamma_i g = 0 , \sum_{i\in J} \Gamma_i^* \Lambda_i f = 0$$

Han and Larson in [4] have proved that $\{\varphi_i\}_{i\in J}$ is a normalized tight frame in a Hilbert space \mathscr{H} if and only if there is a Hilbert space \mathscr{H} and a normalized tight frame $\{\psi_i\}_{i\in J}$ in \mathscr{K} such that $\{(\varphi_i, \psi_i)\}_{i\in J}$ is an orthonormal basis for $\mathscr{H} \oplus \mathscr{K}$. We extend this this result for g-frames.

Proposition 2.10. A set $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a normalized tight g-frame for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i\in J}$ if and only if there exists a Hilbert space \mathcal{H} and a normalized tight g-frame $\{\Gamma_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ for \mathcal{H} such that $\{\Theta_i \in \mathcal{L}(\mathcal{H} \oplus \mathcal{H}, \mathcal{H}_i) : i \in J\}$, where $\Theta_i(f,g) = \Lambda_i f + \Gamma_i g$ is a g-orthonormal basis for $\mathcal{H} \oplus \mathcal{H}$ with respect to $\{\mathcal{H}_i\}_{i\in J}$.

Proof. If $\{\Lambda_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ is a normalized tight g-frame for \mathscr{H} then by using Theorem 1.2, we have $\Lambda_i f = \sum_{k \in K_i} \langle f, \psi_{i,k} \rangle e_{i,k}$ where $\{\psi_{i,k}\}$ is a normalized tight frame for \mathscr{H} and, by Corollary 1.3 of [4], there exists a Hilbert space \mathscr{H} and a normalized tight frame $\{\phi_{i,k} : i \in J, k \in K_i\}$ for \mathscr{H} such that $\{(\psi_{i,k}, \phi_{i,k}) : i \in J, k \in K_i\}$ is an orthonormal basis for $\mathscr{H} \oplus \mathscr{H}$. If $\Gamma_i f = \sum_{k \in K_i} \langle f, \phi_{i,k} \rangle e_{i,k}$, by Theorem 1.2, $\{\Gamma_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ is a normalized tight frame for \mathscr{H} with respect to $\{\mathscr{H}_i\}_{i \in J}$. So, by Proposition 2.8, $\{\Theta_i \in \mathscr{L}(\mathscr{H} \oplus \mathscr{H}, \mathscr{H}_i) : i \in J\}$ is a g-orthonormal basis for $\mathscr{H} \oplus \mathscr{H}$ with respect to $\{\mathscr{H}_i\}_{i \in J}$.

Proposition 2.11. The extension of a tight g-frame to a g-orthonormal basis described in the statement of Proposition 2.10 is unique up to unitary equivalence. That is if \mathcal{N} is another Hilbert space and $\{\Upsilon_i \in \mathscr{L}(\mathcal{N}, \mathscr{H}_i) : i \in J\}$ is a tight g-frame for \mathcal{N} such that $\{\Lambda_i \oplus \Upsilon_i \in \mathscr{L}(\mathscr{H} \oplus \mathcal{N}, \mathscr{H}_i) : i \in J\}$ is a g-orthonormal basis for $\mathscr{H} \oplus \mathcal{N}$ with respect to $\{\mathscr{H}_i\}_{i\in J}$, then there is a unitary transformation U mapping \mathscr{K} onto \mathcal{N} such that $\Gamma_i U^* = \Upsilon_i$ for all $i \in J$. In particular, dim $\mathscr{K} = \dim \mathcal{N}$.

Proof. If $\{\Upsilon_i \in \mathscr{L}(\mathscr{N}, \mathscr{H}_i) : i \in J\}$ is a normalized tight g-frame for \mathscr{N} then, by using Theorem 1.2, we have $\Upsilon_i f = \sum_{k \in K_i} \langle f, \varphi_{i,k} \rangle e_{i,k}$ where $\{\varphi_{i,k}\}$ is a normalized tight frame for \mathscr{N} and by Proposition 2.8 we know $\{(\psi_{i,k}, \varphi_{i,k}) : i \in J, k \in K_i\}$ is an orthonormal basis for $\mathscr{H} \oplus \mathscr{N}$ so by [4, Corollary 1.4] there is a unitary transformation U mapping \mathscr{K} onto \mathscr{N} such that $U\phi_{i,k} = \varphi_{i,k}$ and $dim\mathscr{K} = dim\mathscr{N}$. Therefore

$$\Gamma_i U^{\star} f = \sum_{k \in K_i} \langle U^{\star} f, \phi_{i,k} \rangle e_{i,k} = \sum_{k \in K_i} \langle f, U \phi_{i,k} \rangle e_{i,k} = \sum_{k \in K_i} \langle f, \varphi_{i,k} \rangle e_{i,k} = \Upsilon_i f.$$

Proposition 2.12. If a set $\{\Lambda_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ is a g-frame then there exists a Hilbert space \mathscr{K} and a normalized tight g-frame $\{\Gamma_i \in \mathscr{L}(\mathscr{K}, \mathscr{H}_i) : i \in J\}$ for \mathscr{K} such that $\{\Theta_i(f,g) \in \mathscr{L}(\mathscr{H} \oplus \mathscr{K}, \mathscr{H}_i) : i \in J\}$, where $\Theta_i(f,g) = \Lambda_i f + \Gamma_i g$ is a g-Riesz basis for $\mathscr{H} \oplus \mathscr{K}$ with respect to $\{\mathscr{H}_i\}_{i \in J}$.

Proof. If $\{\Lambda_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ is a g-frame for \mathscr{H} by using Theorem 1.2, we have $\Lambda_i f = \sum_{k \in K_i} \langle f, \psi_{i,k} \rangle e_{i,k}$, where $\{\psi_{i,k}\}$ is a frame for \mathscr{H} and by [4, Corollary 1.6] there exists a Hilbert space \mathscr{H} and a normalized tight frame $\{\phi_{i,k} : i \in J, k \in K_i\}$ for \mathscr{H} such that $\{(\psi_{i,k}, \phi_{i,k}) : i \in J, k \in K_i\}$ is a Riesz basis for $\mathscr{H} \oplus \mathscr{H}$. Now set $\Gamma_i f = \sum_{k \in K_i} \langle f, \phi_{i,k} \rangle e_{i,k}$. By Theorem 1.2, $\{\Gamma_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ is a normalized tight g-frame for \mathscr{H} with respect to $\{\mathscr{H}_i\}_{i \in J}$, and so by Proposition 2.8, we have $\{\Theta_i \in \mathscr{L}(\mathscr{H} \oplus \mathscr{H}, \mathscr{H}_i) : i \in J\}$ is a g-Riesz basis for $\mathscr{H} \oplus \mathscr{H}$ with respect to $\{\mathscr{H}_i\}_{i \in J}$.

Proposition 2.13. If $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ and $\{\Gamma_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ are normalized tight g-frames such that $\{\Theta_i \in \mathcal{L}(\mathcal{H} \oplus \mathcal{H}, \mathcal{H}_i) : i \in J\}$, where $\Theta_i(f,g) = \Lambda_i f + \Gamma_i g$, is a normalized tight g-frame for $\mathcal{H} \oplus \mathcal{H}$ with respect to $\{\mathcal{H}_i\}_{i\in J}$ and if $\{\Upsilon_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$, then $\{\Omega_i \in \mathcal{L}(\mathcal{H} \oplus \mathcal{H}, \mathcal{H}_i) : i \in J\}$, where $\Omega_i(f,g) = \Lambda_i f + \Upsilon_i g$, is also a normalized tight g-frame for $\mathcal{H} \oplus \mathcal{H}$, where $\Omega_i(f,g) = \Lambda_i f + \Upsilon_i g$, is also a normalized tight g-frame for $\mathcal{H} \oplus \mathcal{H}$ with respect to $\{\mathcal{H}_i\}_{i\in J}$.

Proof. We know that the induced sequences $\{\psi_{i,k} : i \in J, k \in K_i\}$, $\{\phi_{i,k} : i \in J, k \in K_i\}$ and $\{\varphi_{i,k} : i \in J, k \in K_i\}$ by $\{\Lambda_i\}_{i \in J}$, $\{\Gamma_i\}_{i \in J}$ and $\{\Upsilon_i\}_{i \in J}$ respectively, are normalized tight frames and $\{\phi_{i,k} : i \in J, k \in K_i\}$ unitarily equivalent to $\{\varphi_{i,k} : i \in J, k \in K_i\}$. Since $\{\Theta_i \in \mathcal{L}(\mathcal{H} \oplus \mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a normalized tight g-frame for $\mathcal{H} \oplus \mathcal{H}$ with respect to $\{\mathcal{H}_i\}_{i \in J}$ by Proposition 2.8, $\{(\psi_{i,k}, \phi_{i,k}) : i \in J, k \in K_i\}$ is normalized tight frame for $\mathcal{H} \oplus \mathcal{H}$ and so by Corollary 1.9 of [4] $\{(\psi_{i,k}, \varphi_{i,k}) : i \in J, k \in K_i\}$ is normalized tight frame for $\mathcal{H} \oplus \mathcal{H}$ and therefore $\{\Omega_i \in \mathcal{L}(\mathcal{H} \oplus \mathcal{H}, \mathcal{H}_i) : i \in J\}$ is also a normalized tight g-frame for $\mathcal{H} \oplus \mathcal{H}$ with respect to $\{\mathcal{H}_i\}_{i \in J}$.

Let $\{\Lambda_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ be a normalized tight g-frame for \mathscr{H} with respect to $\{\mathscr{H}_i\}_{i\in J}$. By Proposition 2.10 there exists a Hilbert space \mathscr{H} and a normalized tight g-frame $\{\Gamma_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ for \mathscr{H} such that $\{\Theta_i(f,g) \in \mathscr{L}(\mathscr{H} \oplus \mathscr{H}, \mathscr{H}_i) : i \in J\}$ where $\Theta_i(f,g) = \Lambda_i f + \Gamma_i g$ is a g-orthonormal basis for $\mathscr{H} \oplus \mathscr{H}$ with respect to $\{\mathscr{H}_i\}_{i\in J}$. We will call $\{\Gamma_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ a strong complementary g-frame to $\{\Lambda_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$, and we will call $(\{\Lambda_i\}, \{\Gamma_i\})$ a strong complementary pair. Proposition 2.11 says that the strong complement of a normalized tight g-frame is unique up to unitary equivalence. If $\{\Lambda_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ is a g-frame, we will define a strong complement to $\{\Lambda_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ be any g-frame $\{\Gamma_i \in \mathscr{L}(\mathscr{H}, \mathscr{H}_i) : i \in J\}$ such that the pair $(\{\Lambda_i\}, \{\Gamma_i\})$ is similar to a strong complementary pair of normalized tight g-frames.

Corollary 2.6. A pair of g-frames $\{\Lambda_i \in \mathcal{L}(\mathcal{K}, \mathcal{H}_i) : i \in J\}$ and $\{\Gamma_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}_{i \in J}$ is strong complementary pair of g-frames if and only if $\{\Psi_{i,k} : i \in J, k \in K_i\}$ and $\{\phi_{i,k} : i \in J, k \in K_i\}$ is complementary pair of frames.

Proposition 2.14. Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ be a g-frame for \mathcal{H} and $\{\Gamma_i \in \mathcal{L}(\mathcal{M}, \mathcal{H}_i) : i \in J\}$, $\{\Theta_i \in \mathcal{L}(\mathcal{N}, \mathcal{H}_i) : i \in J\}$ be strong complementary g-frame to $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ in Hilbert spaces \mathcal{M} and \mathcal{N} , respectively. Then there exists an invertible operator $T \in \mathcal{L}(\mathcal{M}, \mathcal{N})$ such that $\Theta_i = \Gamma_i T^*$.

Proof. By using Theorem 1.2, we have

$$\Lambda_i f = \sum_{k \in K_i} \langle f, \psi_{i,k} \rangle e_{i,k} \text{ and } \Gamma_i g = \sum_{k \in K_i} \langle g, \phi_{i,k} \rangle e_{i,k} \text{ and } \Theta_i h = \sum_{k \in K_i} \langle h, \varphi_{i,k} \rangle e_{i,k},$$

where $\{\psi_{i,k}\}$, $\{\phi_{i,k}\}$ and $\{\varphi_{i,k}\}$ are frames in \mathcal{H} , \mathcal{M} and \mathcal{N} , respectively. So by Corollary 2.6 and [4, Proposition 2.1], there exists an invertible operator $T \in \mathcal{L}(\mathcal{M}, \mathcal{N})$ such that $T\phi_{i,k} = \varphi_{i,k}$ and hence $\Theta_i = \Gamma_i T^*$.

Proposition 2.15. Suppose that $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ and $\{\Gamma_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ are strongly disjoint g-frames for the same Hilbert space \mathcal{H} . Then $\{\Lambda_i + \Gamma_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a g-frame for \mathcal{H} . In particular, if $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ and $\{\Gamma_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ are strongly disjoint proper normalized tight g-frames for \mathcal{H} , then $\{\Lambda_i + \Gamma_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a tight g-frame with g-frame bound 2.

Proof. Conclusion follows from Theorem 1.2, Corollary 2.4 and [4, Proposition 2.19].

Proposition 2.16. If $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ and $\{\Gamma_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ are disjoint *g*-frames for \mathcal{H} , then $\{\Lambda_i + \Gamma_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ is a *g*-frame for \mathcal{H} .

Proof. The assertion follows from Theorem 1.2, Corollary 2.4 and [4, Proposition 2.20].

Proposition 2.17. Suppose that $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ and $\{\Gamma_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in J\}$ are strongly disjoint normalized tight g-frames for \mathcal{H} and $A, B \in \mathcal{L}(\mathcal{H})$ are operators such that $AA^* + BB^* = I$. Then $\{\Lambda_i A^* + \Gamma_i B^*\}$ is a normalized tight g-frame for \mathcal{H} .

Proof. Conclusion follows from Theorem 1.2, Corollary 2.4 and [4, Proposition 2.21]. **Acknowledgement.** The authors would like to thank the referees for useful and helpful comments and suggestions.

References

- R. Balan, Density and redundancy of the noncoherent Weyl-Heisenberg superframes, in *The Functional and Harmonic Analysis of Wavelets and Frames (San Antonio, TX, 1999)*, 29–41, Contemp. Math., 247 Amer. Math. Soc., Providence, RI.
- [2] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, *Trans. Amer. Math. Soc.* 72 (1952), 341–366.
- [3] Q. Gu and D. Han, Super-wavelets and decomposable wavelet frames, J. Fourier Anal. Appl. 11 (2005), no. 6, 683–696.
- [4] D. Han and D. R. Larson, Frames, bases and group representations, Mem. Amer. Math. Soc. 147 (2000), no. 697, x+94 pp.
- [5] A. Najati, M. H. Faroughi and A. Rahimi, g-frames and stability of g-frames in Hilbert spaces, Methods Funct. Anal. Topology 14 (2008), no. 3, 271–286.
- [6] W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006), no. 1, 437-452.
- [7] L L. Zang, W. Sun and D. Chen, Excess of a class of g-frames, J. Math. Anal. Appl. 352 (2009), no. 2, 711–717.