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Abstract. In the present paper Shannon’s entropy for concomitants of generalized order
statistics in FGM family is obtained. Application of this result is given for order statis-
tics, record values, k-record values, and progressive type II censored order statistics. Also,
we show that the Kullback-Leibler distance among the concomitants of generalized order
statistics is distribution- free.
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1. Introduction

The concept of generalized order statistics was introduced by Kamps [6] as a unified ap-
proach to a variety of models of ordered random variables. The random variables X(1,n,m,k),
X(2,n,m,k), · · · ,X(n,n,m,k) are called generalized order statistics based on the absolutely
continuous distribution function F with density function f , if their joint density function is
given by

f1,2 , ..,n (x1,x2, . . . ,xn) = k

(
n−1

∏
j=1

γ j

)(
n−1

∏
i=1

(1−F(xi))m f (xi)

)
(1−F(xn)) f (xn),

on the cone F−1(0) < x1 ≤ ·· · ≤ xn < F−1(1) of Rn, with parameters n ∈ N, k > 0, m ∈ R
such that γr = k+(n−r)(m+1) > 0 for all 1≤ r≤ n. Let (Xi,Yi), i = 1,2, · · · ,n be a random
sample of size n from a continuous bivariate distribution. If the pairs are ordered by their
X values, then the Y values associated with the rth-order statistic X(r) of X will be denoted
by Y[r],1≤ r ≤ n, and be called the concomitant of the rth-order statistic. The concomitants
are of interest in selection and prediction problems. An excellent review on concomitants of
order statistics is given by David and Nagaraja [3]. The FGM family discussed in Johnson
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and Kotz [5] provides a flexible family that can be used in such contexts, which is specified
by the distribution function(df)

FX ,Y (x,y) = FX (x)FY (y)[1+α(1−FX (x))(1−FY (y))],(1.1)

where −1≤ α ≤ 1, and fX (x), fY (y), and FX (x) , FY (y) are marginal pdf and cdf of X and
Y , respectively. Concomitants can also be defined in the case of generalized order statistics
(see Kamps [6], Bairamov and Eryilmaz [1]). For the FGM family with df given by (1.1),
the density function of the concomitant of rth- generalized order statistic Y[r,n,m,k],1≤ r ≤ n,
is given by Beg and Ahsanullah [2], as follows:

g[r,n,m,k](y) = fY (y) [1+C∗(r,n,m,k)α(2FY (y)−1)] ,(1.2)

where

C∗(r,n,m,k) = 1−
2

r
∏
j=1

γ j

(γ1 +1)(γ2 +1) . . .(γr +1)
.

The Shannon entropy for a continuous random variable X with probability density function
fX (x) is defined as

(1.3) H(X) =−
∫ +∞

−∞

fX (x) log fX (x)dx =−
∫ 1

0
log fX (F−1

X (u))du.

The rest of this paper is organized as follows. In Section 2, we derive an analytical expres-
sion of entropy for concomitants of generalized order statistics in FGM family. Application
of this result is given for order statistics, record values, k-record values, and progressive
type II censored order statistics. In Section 3, we show that the Kullback-Leibler distance
between Y[r,n,m,k] and Y[s,n,m,k] in this family is distribution-free and is only a function of the
sample size n, the indices r,s,m, and the association parameter α .

2. Entropy for concomitants of generalized order statistics

Theorem 2.1. If Y[r,n,m,k] is the concomitant of rth-generalized order statistics from (1.1),
then the Shannon entropy of Y[r,n,m,k] for 1≤ r ≤ n, α 6= 0 is given by

H(Y[r,n,m,k]) = W (r,α,n,m,k)+H(Y )(1−αC∗(r,n,m,k))−2αC∗(r,n,m,k)φ f (u),(2.1)

where

W (r,α,n,m,k) =
1

4αC∗(r,n,m,k)
{
(1−C∗(r,n,m,k)α)2 log(1−C∗(r,n,m,k)α)

−(1+C∗(r,n,m,k)α)2 log(1+C∗(r,n,m,k)α)
}

+
1
2
,(2.2)

and φ f (u) =
∫ 1

0 u log fY (F−1
Y (u))du.

Proof. By (1.2) and (1.3), we have

H(Y[r,n,m,k]) =−Eg[r,n,m,k](y)[log fY (y)]−Eg[r,n,m,k](y) [log(1+C∗(r,n,m,k)α(2FY (y)−1))]

= H(Y )(1−C∗(r,n,m,k)α)−2αC∗(r,n,m,k)
∫ 1

0
u log fY (F−1

Y (u))du
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−Eg[r,n,m,k](y) [log(1+C∗(r,n,m,k)α(2FY (y)−1))] .(2.3)

Now, we need to find Eg[r,n,m,k](y) [log(1+C∗(r,n,m,k)α(2FY (y)−1))]. First, we derive an
expression for Eg[r,n,m,k](y) [(1+C∗(r,n,m,k)α(2FY (y)−1))t ] . So, we have:

u(t) = Eg[r,n,m,k](y)
[
(1+C∗(r,n,m,k)α(2FY (y)−1))t]

=
∫ +∞

−∞

fY (y) [1+C∗(r,n,m,k)α(2FY (y)−1)]t+1 dy
(2.4)

By change of variable [(1+C∗(r,n,m,k)α(2FY (y)−1))] = z, we obtain

u(t) =
1

2αC∗(r,n,m,k)

[
(1+C∗(r,n,m,k)α)t+2− (1−C∗(r,n,m,k)α)t+2

t +2

]
.(2.5)

−∂u(t)
∂ t

|t=0 =−Eg[r,n,m,k](y) [log(1+C∗(r,n,m,k)α(2FY (y)−1))] = W (r,α,n,m,k)

=
1

4αC∗(r,n,m,k)
{
(1−C∗(r,n,m,k)α)2 log(1−C∗(r,n,m,k)α)

− (1+C∗(r,n,m,k)α)2 log(1+C∗(r,n,m,k)α)
}

+
1
2
.

(2.6)

By substituting (2.6) in (2.3) the result follows.

As an application of the representation (2.1) consider the following special cases.
Case 1: If we put m = 0 and k = 1, then Shannon’s entropy for the concomitant of rth-order
statistic is given by

H(Y[r]) = Iα,n(r)+H(Y )
(

1+(
n−2r +1

n+1
)α
)

+2α

(
n−2r +1

n+1

)
φ f (u),(2.7)

where Iα,n(r) = W (r,α,n,0,1). Note that some of the interesting results for H(Y[r]) were
presented by Tahmasebi and Behboodian [7].

We consider the concomitants of order statistics whenever (X1,Y1),(X2,Y2), · · · ,(Xn,Yn)
are independent but otherwise arbitrarily distributed. Now, let us consider the FGM family
with df

FXi,Yi(x,y) = FXi(x)FYi(y)[1+αi(1−FXi(x))(1−FYi(y)],−1≤ αi ≤ 1,(2.8)

where FXi(x) = FX (x) and FYi(y) = FY (y). Then in the particular cases, the pdf’s of Y[1] and
Y[n] are given by Eryilmaz [4] as follows:

f[1](y) = fY (y)

[
1+

n−1
(n+1)n

n

∑
j=1

α j(1−2FY (y))

]
,(2.9)

f[n](y) = fY (y)

[
1− n−1

(n+1)n

n

∑
j=1

α j(1−2FY (y))

]
.(2.10)

Now, in the following theorem Shannon’s entropy for concomitants of extremes of order
statistics is represented.
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Theorem 2.2. :Let (Xi,Yi), i = 1,2,3, · · · ,n be independent random vectors from (2.8). If
Y[1] and Y[n] are concomitants of extremes of order statistics , then

H(Y[1]) = Zα j(n)+H(Y )

(
1+

n−1
(n+1)n

n

∑
j=1

α j

)
+2

n−1
(n+1)n

n

∑
j=1

α jφ f (u),(2.11)

H(Y[n]) = Zα j(n)+H(Y )

(
1− n−1

(n+1)n

n

∑
j=1

α j

)
−2

n−1
(n+1)n

n

∑
j=1

α jφ f (u),(2.12)

where

Zα j(n) =
n(n+1)

4
n
∑
j=1

α j(n−1)


(

1−
(

n−1
n(n+1)

) n

∑
j=1

α j

)2

log

(
1−
(

n−1
n(n+1)

) n

∑
j=1

α j

)

−

(
1+
(

n−1
n(n+1)

) n

∑
j=1

α j

)2

log

(
1+
(

n−1
n(n+1)

) n

∑
j=1

α j

)+
1
2
,(2.13)

and φ f (u) is defined in Theorem 2.1.

Proof. The proof is similar to the proof of the Theorem 2.1.

Case 2: If we put m = −1 and k = 1, then Shannon’s entropy for the concomitant of rth-
record value is as follows:

H(R[r]) = Cα(r)+H(Y )(1+α(21−r−1))+2α(21−r−1)φ f (u),(2.14)

where Cα(r) = W (r,α,n,−1,1). Also, in this case for k > 1, we get the similarly result for
k records.

Remark 2.1. From Eq. (2.7) if r = n = 2b−1, then H(Y[2b−1]) = H(R[b]).

Now, let X R̃
1:n≤X R̃

2:n≤ . . .≤X R̃
n:n be the progressive type II censored order statistics which

can be viewed as a special case of generalized order statistics, then we denote Y R̃
[r:n] as the

rth progressive type II censored concomitant, 1≤ r ≤ n, based on an absolutely continuous
distribution F . The pdf of Y R̃

[r:n] is given by Bairamov and Eryilmaz [1] as follows:

f Y R̃
[r:n](y) = cr−1

r

∑
i=1

ai,r

γi
fY[1:γi ]

(y),(2.15)

where cr−1 =
r

∏
j=1

γ j and ai,r =
r

∏
j=1

( 1
γ j
− γi), j 6= i, 1 ≤ i ≤ r ≤ n, n ≥ 2, and fY[1:γi ]

(y) is

the pdf of the first concomitant of ordinary order statistics from a sample of size γi. In the
following example, we present a analytical expression of entropy for Y R̃

[r:n] in FGM family
with uniform marginals.

Example 2.1. Let (X ,Y ) be a random variable from (1.2) with joint distribution function

FX ,Y (x,y) = xy{1+α(1− x)(1− y)} , 0≤ x,y≤ 1, −1≤ α ≤ 1.
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Then, by using (2.15) the density function of Y R̃
[r:n] is

f Y R̃
[r:n](y) = cr−1

r

∑
i=1

ai,r

γi

[
1+α(1−2y)

(
γi−1
γi +1

)]
Now, by using (2.1), we get

H(Y R̃
[r:n]) =− logcr−1 + cr−1Vγi,ai,r(α),(2.16)

where

Vγi,ai,r(α) =
1

8α
r
∑

i=1

ai,r
γi

( γi−1
γi+1 )


(

r

∑
i=1

ai,r

γi

(
1−α

(
γi−1
γi +1

)))2

×

[
2log

(
r

∑
i=1

ai,r

γi

(
1−α

(
γi−1
γi +1

)))
−1

]

−

(
r

∑
i=1

ai,r

γi

(
1+α

(
γi−1
γi +1

)))2

×[
2log

(
r

∑
i=1

ai,r

γi

(
1+α

(
γi−1
γi +1

)))
−1

]}
.

(2.17)

we can easily show that H(Y R̃
[r:n]) has the following properties:

(i) H(Y R̃
[r:n]) =− logcr−1 + cr−1Vγi,ai,r(−α) < 0.

(ii) H(Y R̃
[r:n]) is increasing (decreasing) in α for −1≤ α < 0 (0 < α ≤ 1).

3. Kullback-Leibler distance

The Kullback-Leibler distance for two continuous random variables Z1 and Z2 with pdf’s f1
and f2 , respectively, is given by

K(Z1,Z2) =
∫ +∞

−∞

f1(z) log(
f1(z)
f2(z)

)dz = E1(log
f1(z)
f2(z)

),(3.1)

where E1 denotes the expectation with respect to f1. K(Z1,Z2) ≥ 0, where equality holds
if and only if f1(z) = f2(z) almost everywhere. In the following theorem, we show that the
Kullback-Leibler distance between concomitants of rth and sth generalized order statistics
in FGM family is distribution-free and is only a function of the sample size n, the indices
r,s,m, and the association parameter α .

Theorem 3.1. Let Y[r,n,m,k] and Y[s,n,m,k] be the concomitants of rth- and sth- generalized
order statistics in FGM family. Then the Kullback-Leibler distance between Y[r,n,m,k] and
Y[s,n,m,k] is

K(Y[r],Yk]) =−W (r,α,n,m,k)+U(r,s,α,n,m,k)+
C∗(r,n,m,k)
C∗(s,n,m,k)

W (s,α,n,m,k)),(3.2)

where

U(r,s,α,n,m,k) =
C∗(s,n,m,k)−C∗(r,n,m,k)

2α(C∗(s,n,m,k))2 ×
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(1−C∗(s,n,m,k)α)2 log(1−C∗(s,n,m,k)α)

− (1+C∗(s,n,m,k)α)2 log(1+C∗(s,n,m,k)α)
}

+2− 2C∗(r,n,m,k))
C∗(s,n,m,k)

,

and W (r,α,n,m,k) is defined by (2.2).

Proof. By using (2.1), we have

H(Y[r,n,m,k]) = W (r,α,n,m,k)−Eg[r,n,m,k](y)[log fY (y)],(3.3)

From (3.1) and (3.3), we get

K(Y[r,n,m,k],Y[s,n,m,k]) =−W (r,α,n,m,k)−Eg[r,n,m,k] [log(1+C∗(s,n,m,k)α(2FY (y)−1))].
(3.4)

We see that to determine an expression for the Kullback-Leibler distance between Y[r,n,m,k]
and Y[s,n,m,k], we need to find Eg[r,n,m,k] [log(1+C∗(s,n,m,k)α(2FY (y)−1))] . Derivation of
this expectation is based on the following strategy: first we write

G(t) = Eg[r,n,m,k]

[
(1+C∗(s,n,m,k)α(2FY (y)−1))t]

=
∫ +∞

−∞

fY (y)(1+C∗(r,n,m,k)α(2FY (y)−1))(1+C∗(s,n,m,k)α(2FY (y)−1))tdy

=
C∗(s,n,m,k)−C∗(r,n,m,k)

2α(C∗(s,n,m,k))2

[
(1+C∗(s,n,m,k)α)t+1− (1−C∗(s,n,m,k)α)t+1

t +1

]
+

C∗(r,n,m,k)
2α(C∗(s,n,m,k))2

[
(1+C∗(s,n,m,k)α)t+2− (1−C∗(s,n,m,k)α)t+2

t +2

]
.

So, we have

−G′(0) =−Eg[r,n,m,k] [log(1+C∗(s,n,m,k)α(2FY (y)−1))]

=
C∗(s,n,m,k)−C∗(r,n,m,k)

2α(C∗(s,n,m,k))2 ×{
(1−C∗(s,n,m,k)α)2[log(1−C∗(s,n,m,k)α)−1]

− (1+C∗(s,n,m,k)α)2[log(1+C∗(s,n,m,k)α)−1]
}

+
C∗(r,n,m,k)

8α(C∗(s,n,m,k))2

×
{
(1−C∗(s,n,m,k)α)2[2log(1−C∗(s,n,m,k)α)−1]

− (1+C∗(s,n,m,k)α)2[2log(1+C∗(s,n,m,k)α)−1]
}

= U(r,s,α,n,m,k)+
C∗(r,n,m,k)
C∗(s,n,m,k)

W (s,α,n,m,k)).

(3.5)

If we substitute (3.5) in (3.4) the result follows.
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