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Abstract. Let R be an associative ring with identity, G an totally ordered group, σ a map
from G into the group of automorphisms of R, and t a map from G×G to the group of
invertible elements of R. The weak annihilator property of the Malcev-Neumann ring R ∗
((G)) is investigated in this paper. Let nil(R) denote the set of all nilpotent elements of R,
and for a nonempty subset X of a ring R, let NR(X) = {a ∈ R | Xa ⊆ nil(R)} denote the
weak annihilator of X in R. Under the conditions that R is an NI ring with nil(R) nilpotent
and σ is compatible, we show that: (1) If the weak annihilator of each nonempty subset
of R which is not contained in nil(R) is generated as a right ideal by a nilpotent element,
then the weak annihilator of each nonempty subset of R ∗ ((G)) which is not contained in
nil(R∗ ((G))) is generated as a right ideal by a nilpotent element. (2) If the weak annihilator
of each nonnilpotent element of R is generated as a right ideal by a nilpotent element, then
the weak annihilator of each nonnilpotent element of R∗ ((G))) is generated as a right ideal
by a nilpotent element. As a generalization of left APP-rings, we next introduce the notion of
weak APP-rings and give a necessary and sufficient condition under which the ring R∗((G))
over a weak APP-ring R is weak APP.
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1. Introduction

Throughout this paper R denotes an associative ring with identity, and nil(R) denotes the
set of all nilpotent elements of R. For a nonempty subset X of R, lR(X) = {a ∈ R | aX = 0}
and rR(X) = {a ∈ R | Xa = 0} stand for the left and right annihilator of X in R, respectively.
Recall that a ring R is reduced if it has no nonzero nilpotent elements, and a ring R is
semicommutative if for all a, b ∈ R, ab = 0 implies aRb = 0. Due to Marks [6], a ring R is
called NI if nil(R) forms an ideal. Clearly, reduced rings and semicommutative rings are NI
rings. An ideal I of R is said to be nilpotent if Ik = 0 for some natural number k.

Let R be a ring, G a totally ordered group, and suppose that σ is a map from G into
the group of automorphisms of R, x −→ σx, t is a map from G×G to U(R), the group of
invertible elements of R. Then we can form a Malcev-Neumann ring R∗ ((G)): an element
of R∗ ((G) is a infinite series f = ∑x∈G rxx with rx ∈ R such that the set supp( f ) = {x ∈ G |
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rx 6= 0}, called the support of f , is a well ordered subset of G, and the ring structure is given
by componentwise addition and by a multiplication defined as follows:(

∑
x∈G

axx

)(
∑
y∈G

byy

)
= ∑

z∈G

(
∑

{x,y|xy=z}
axσx(by)t(x,y)

)
z.

In order to insure associativity, it is necessary to impose two additional conditions on σ and
t, namely that for all x, y, z ∈ G,

(i) t(xy,z)σz(t(x,y)) = t(x,yz)t(y,z), (ii) σyσz = σyzδ (y,z),

where δ (y,z) denotes the automorphism of R induced by the unit t(y,z) (see [10, Lemma
1.1]). It is now routine to check that R∗ ((G)) is a ring which we call the Malcev-Neumann
ring.

Let U be a subset of R. We denote by U ∗ ((G)) the subset of R ∗ ((G)) consisting of
those elements whose coefficients lie in U , that is, U ∗ ((G)) = { f = ∑x∈G axx ∈ R∗ ((G)) |
ax ∈U,x ∈ supp( f )}.

The Malcev-Neumann construction appeared for the first time in the latter part of 1940’s
(the Laurent series ring, a particular case of Malcev-Neumann rings, was used before by
Hilbert). Using them, Malcev and Neumann independently showed (in 1948 and 1949 resp.)
that the group ring of an ordered group over a division ring can be embedded in a division
ring. Since then, the construction has appeared in many papers, mainly in the study of
various properties of division rings and related topics. For instance, Makar-Limanov in [7]
used a particular skew Laurent series division ring to prove that the skew field of fractions
of the first Weyl-algebra contains a free noncommutative subalgebra. The study of Malcev-
Neumann group rings over arbitrary rings was initiated in [5] by Lorenz while investigating
properties of group algebras of nilpotent groups. Other results on Malcev-Neumann rings
can be found in Musson and Stafford [8] and Sonin [11] and Zhao et al. [14]. In this paper,
we investigate the relationship between the weak annihilator NR(X) of a nonempty subset
X of R and the weak annihilator NR∗((G))(V ) of a nonempty subset V of R∗ ((G)). Also as a
generalization of left APP-rings, we introduce the notion of weak APP-rings, and study the
conditions under which the ring R∗ ((G)) is a weak APP-ring.

2. Weak annihilator property

As a generalization of annihilators, L. Ouyang and G. F. Birkenmeier in [9] introduced the
concept of weak annihilators. For a nonempty subset X of a ring R, we define NR(X) = {a∈
R | Xa ⊆ nil(R)}, which is called the weak annihilator of X in R. If X is a finite set, say
X = {r1,r2, · · · ,rn}, we use NR(r1,r2, · · · ,rn) in place of NR({r1,r2, · · · ,rn}). Obviously, for
any nonempty subset X of a ring R, NR(X) = {a∈ R | Xa⊆ nil(R)}= {b∈ R | bX ⊆ nil(R)},
rR(X)⊆ NR(X) and lR(X)⊆ NR(X).

For example, Let Z be the ring of integers and T2(Z) the 2× 2 upper triangular matrix
ring over Z. We consider the subset X =

{(
2 0
0 2

)}
. Then rT2(Z)(X) = lT2(Z)(X) = 0, but

NT2(Z)(X) =
{(

0 m
0 0

)
, |m ∈ Z

}
. Thus rT2(Z)(X) ( NT2(Z)(X) and lT2(Z)(X) ( NT2(Z)(X).

If R is reduced, then rR(X) = NR(X) = lR(X) for any nonempty subset X of R. It is easy
to see that for any nonempty subset X ⊆ R, NR(X) is an ideal of R in case nil(R) is an ideal.
For more details and results of weak annihilators, see [9]. In this section, we mainly discuss
the weak annihilator property of the ring R∗ ((G)).

The next Lemma appears in [9].
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Lemma 2.1. Let X , Y be subsets of R. Then we have the following results:
(1) X ⊆ Y implies NR(X)⊇ NR(Y ).
(2) X ⊆ NR(NR(X)).
(3) NR(X) = NR(NR(NR(X))).

Lemma 2.2. Let R be an NI ring. Then we have the following results:
(1) ab ∈ nil(R) implies RaRbR⊆ nil(R) for any a, b ∈ R.
(2) Let p ∈ R and let p ·R denote the principal right ideal of R generated by p. Then

NR(p) = NR(p ·R).
(3) Let X be a subset of R and let I be the ideal of R generated by the subset X. Then

NR(X) = NR(I).

Proof. (1) Since nil(R) of an NI ring is an ideal, we obtain ab ∈ nil(R)⇒ abR⊆ nil(R)⇒
bRa⊆ nil(R)⇒ bRaR⊆ nil(R)⇒ aRbR⊆ nil(R)⇒ RaRbR⊆ nil(R).

(2) Since p ∈ p ·R, NR(p ·R)⊆ NR(p) is clear. Now we show that NR(p)⊆ NR(p ·R). If
x ∈ NR(p), then px ∈ nil(R). By (1), we have pRx ⊆ nil(R), and so x ∈ NR(p ·R). Hence
NR(p)⊆ NR(p ·R). Therefore NR(p) = NR(p ·R).

(3) It suffices to show that NR(X)⊆NR(I). Let r ∈NR(X). Then xr ∈ nil(R) for all x∈ X ,
and so by (1), we obtain sxtr ∈ nil(R) for any s ∈ R and t ∈ R. Hence for any ∑

n
i=1 sixiti ∈ I,

we have ∑
n
i=1 sixitir ∈ nil(R), and so r ∈ NR(I). Thus NR(X)⊆ NR(I) is proved.

Definition 2.1. Let σ be a map from G into the group of automorphisms of R, x−→ σx. We
say that σ is compatible if for each a, b ∈ R and x ∈ G, ab = 0⇔ aσx(b) = 0.

Lemma 2.3. Let σ be a map from G into the group of automorphisms of R, x −→ σx. If σ

is compatible, then for each a, b ∈ R, and each x ∈ G, we have the following results:
(1) ab ∈ nil(R)⇔ aσx(b) ∈ nil(R).
(2) ab ∈ nil(R)⇔ σx(a)b ∈ nil(R).

Proof. (1) (⇒) Suppose ab ∈ nil(R). There exists some positive integer k such that (ab)k =
0. Since σ is compatible, we have 0 = (ab)k = abab · · ·ab⇒ abab · · ·aσx(b) = 0⇒ abab · · ·
abaσx(baσx(b)) = abab · · ·abaσx(b)σx(aσx(b)) = 0⇒ abab · · ·abaσx(b)aσx(b) = 0⇒ ···
⇒ aσx(b) ∈ nil(R).

(⇐) Assume that aσx(b) ∈ nil(R). There exists some positive integer k such that (aσx
(b))k = 0. In the following computations, we use freely the condition that σ is compatible.
(aσx(b))k = aσx(b)aσx(b) · · ·aσx(b)= 0⇒ aσx(b)aσx(b) · · ·aσx(b)ab = 0⇒ aσx(b)aσx(b)
· · ·aσx(b)σx(ab) = 0⇒ aσx(b)aσx(b) · · ·aσx(b)aσx(bab) = 0⇒ aσx(b)aσx(b) · · ·aσx(b)
abab = 0⇒ ··· ⇒ ab ∈ nil(R).

(2) ab ∈ nil(R)⇔ ba ∈ nil(R)⇔ bσx(a) ∈ nil(R)⇔ σx(a)b ∈ nil(R).

Proposition 2.1. Let R be an NI ring with nil(R) nilpotent, and let σ be compatible, and
f = ∑x∈G axx ∈ R ∗ ((G)). Then f ∈ nil(R ∗ ((G))) if and only if ax ∈ nil(R) for every
x ∈ supp( f ).

Proof. (⇒) Suppose that f = ∑x∈G axx ∈ nil(R ∗ ((G))). Then there exists some positive
integer k such that

(2.1) f k =

(
∑
x∈G

axx

)k

= 0.
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We will use transfinite induction on the ordered group (G,≤) to show that ax ∈ nil(R) for
every x ∈ supp( f ). Let x0 be the minimal element of supp( f ) on the ≤ order. If v1, v2, . . .,
vk ∈ supp( f ) are such that v1v2 · · ·vk = xk

0, then x0 ≤ vi for all 1≤ i≤ k. If x0 < vi for some
1≤ i≤ k, then xk

0 < v1v2 · · ·vk = xk
0, a contradiction. Thus x0 = vi for 1≤ i≤ k. Hence from

Equation (2.1), it follows that

ax0σx0(ax0)t(x0,x0)σx2
0
(ax0)t(x

2
0,x0) · · ·σxk−1

0
(ax0)t(x

k−1
0 ,x0) = 0.

Since σ is compatible and t(x,y) is invertible for all x, y ∈ G, and nil(R) of an NI ring is an
ideal, we have

ax0σx0(ax0)t(x0,x0)σx2
0
(ax0)t(x

2
0,x0) · · ·σxk−1

0
(ax0)t(x

k−1
0 ,x0) = 0

⇒ ax0σx0(ax0)t(x0,x0)σx2
0
(ax0)t(x

2
0,x0) · · ·σxk−1

0
(ax0) = 0

⇒ ax0σx0(ax0)t(x0,x0)σx2
0
(ax0)t(x

2
0,x0) · · ·σxk−2

0
(ax0)t(x

k−2
0 ,x0)ax0 = 0

⇒ ax0ax0σx0(ax0)t(x0,x0)σx2
0
(ax0)t(x

2
0,x0) · · ·σxk−2

0
(ax0)t(x

k−2
0 ,x0) ∈ nil(R)

⇒ ax0ax0σx0(ax0)t(x0,x0)σx2
0
(ax0)t(x

2
0,x0) · · ·σxk−2

0
(ax0) ∈ nil(R)

⇒ ax0ax0σx0(ax0)t(x0,x0)σx2
0
(ax0)t(x

2
0,x0) · · ·σxk−3

0
(ax0)t(x

k−3
0 ,x0)ax0 ∈ nil(R)

⇒ ax0ax0ax0σx0(ax0)t(x0,x0)σx2
0
(ax0)t(x

2
0,x0) · · ·σxk−3

0
(ax0)t(x

k−3
0 ,x0) ∈ nil(R)

⇒ ·· · ⇒ ax0 ∈ nil(R).

Now suppose that w ∈ supp( f ) is such that for any x ∈ supp( f ) with x < w, ax ∈ nil(R).
We will show that aw ∈ nil(R) for w ∈ supp( f ). For convenience, we write

{(u1,u2, · · · ,uk) | u1u2 · · ·uk = wk,ui ∈ supp( f ), i = 1,2, . . . ,k}

as
{(w,w, · · · ,w)}∪{(ui1,ui2, · · · ,uik) | i = 2,3, . . . ,n},

and for each
(ui1,ui2, · · · ,uik) ∈ {(ui1,ui2, · · · ,uik) | i = 2,3, . . . ,n},

there exists some 1≤ l ≤ k such that uil 6= w. Now we show that for each

(ui1,ui2, · · · ,uik) ∈ {(ui1,ui2, · · · ,uik) | i = 2,3, . . . ,n},

there exists some 1≤ p≤ k such that uip < w. If uil < w, then we are done. So assume that
uil > w. If for all 1 ≤ j ≤ k, j 6= l, ui j ≥ w, then wk < ui1ui2 · · ·uik = wk, a contradiction.
Thus for each

(ui1,ui2, · · · ,uik) ∈ {(ui1,ui2, · · · ,uik) | i = 2,3, . . . ,n},

there exists some 1 ≤ p ≤ k such that uip < w. Then by induction hypothesis, we obtain
auip ∈ nil(R), and so by Lemma 2.3, 1 ·auip ∈ nil(R) implies 1 ·σx(auip) = σx(auip) ∈ nil(R)
for every x ∈ G. Hence

aui1σui1(aui2)t(ui1,ui2) · · ·σ(ui1ui2···ui(k−1))(auik)t(ui1ui2 · · ·ui(k−1),uik) ∈ nil(R)

for all 2≤ i≤ n, because nil(R) of an NI ring is an ideal. Now from Equation (2.1), we have

awσw(aw)t(w,w) · · ·σwk−1(aw)t(wk−1,w)
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=−
n

∑
i=2

aui1σui1(aui2)t(ui1,ui2) · · ·σ(ui1ui2···ui(k−1))(auik)t(ui1ui2 · · ·ui(k−1),uik) ∈ nil(R).

Then

awσw(aw)t(w,w) · · ·σwk−1(aw)t(wk−1,w) ∈ nil(R)

⇒ awσw(aw)t(w,w) · · ·σwk−1(aw) ∈ nil(R)

⇒ awσw(aw)t(w,w) · · ·σwk−2(aw)t(wk−2,w)aw ∈ nil(R)

⇒ awawσw(aw)t(w,w) · · ·σwk−2(aw)t(wk−2,w) ∈ nil(R)

⇒ ·· · ⇒ aw ∈ nil(R).

Therefore by transfinite induction, ax ∈ nil(R) for any x ∈ supp( f ).
(⇐) Assume that ax ∈ nil(R) for every x ∈ supp( f ). By Lemma 2.3, we have σz(ax) ∈

nil(R) for each z ∈ G. Since nil(R) is nilpotent, there exists some positive integer k such
that (nil(R))k = 0. Now we show that

f k =

(
∑
x∈G

axx

)k

= ∑
y∈G

byy = 0.

For every y ∈ supp( f k), we write

{(u1,u2, · · · ,uk) | u1u2 · · ·uk = y,ui ∈ supp( f ), i = 1,2, . . . ,k}
as

{(ui1,ui2, · · · ,uik) | i = 1,2, . . . ,n}.
Then from f k = (∑x∈G axx)k = ∑y∈G byy, it follows that

by =
n

∑
i=1

aui1σui1(aui2)t(ui1,ui2) · · ·σ(ui1ui2···ui(k−1))(auik)t(ui1ui2 · · ·ui(k−1),uik).

Since for each 1≤ i≤ n,

aui1σui1(aui2)t(ui1,ui2) · · ·σui1ui2···ui(k−1)(auik)t(ui1ui2 · · ·ui(k−1),uik) ∈ (nil(R))k = 0,

we have by = 0. Hence f k = 0, and so f ∈ nil(R ∗ ((G))). Then we finish our proof of
Proposition 2.1.

Remark 2.1. In the proof of the implication (⇒) in Proposition 2.1, the condition that
nil(R) is nilpotent is not used. Hence if R is an NI ring, and σ is compatible, then nil(R ∗
((G)))⊆ nil(R)∗ ((G)).

By Proposition 2.1 we have the following result.

Corollary 2.1. Let R be an NI ring with nil(R) nilpotent, and let σ be compatible. Then
(1) R∗ ((G)) is an NI ring.
(2) nil(R∗ ((G))) = nil(R)∗ ((G)).

Proposition 2.2. Let R be an NI ring with nil(R) nilpotent, and let σ be compatible. If the
weak annihilator of each nonempty subset of R which is not contained in nil(R) is generated
as a right ideal by a nilpotent element, then the weak annihilator of each nonempty subset of
R∗((G)) which is not contained in nil(R∗((G))) is generated as a right ideal by a nilpotent
element.
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Proof. Let V be a nonempty subset of R ∗ ((G)) with V 6⊆ nil(R ∗ ((G))). We show that
NR∗((G))(V ) is generated as a right ideal by a nilpotent element. For any f = ∑x∈G axx ∈
R∗ ((G)), let C f denote the set {ax | x ∈ supp( f )}, and for any subset U ⊆ R∗ ((G)), let CU
denote the set

⋃
f∈U C f . Since V 6⊆ nil(R ∗ ((G))), by Corollary 2.1, we have CV 6⊆ nil(R).

So there exists an element c ∈ nil(R) such that NR(CV ) = c ·R. Now we show that

NR∗((G))(V ) = c · (R∗ ((G))).

Let f = ∑x∈G axx ∈V and g = ∑y∈G byy ∈ R∗ ((G)). Then

f · c ·g =

(
∑
x∈G

axx

)
· c ·

(
∑
y∈G

byy

)
= ∑

z∈G

(
∑

{x,y|xy=z}
axσx(c)t(x,1)σx(by)t(x,y)

)
z.

Since c ∈ nil(R) and σ is compatible, for any x ∈ supp( f ) and y ∈ supp(g), we have

c ∈ nil(R)⇒ σx(c) ∈ nil(R)⇒ axσx(c)t(x,1)σx(by)t(x,y) ∈ nil(R)

⇒ ∑
{x,y|xy=z}

axσx(c)t(x,1)σx(by)t(x,y) ∈ nil(R).

Thus by Proposition 2.1, we obtain f · c · g ∈ nil(R ∗ ((G))). Hence NR∗((G))(V ) ⊇ c · (R ∗
((G))).

Conversely, let g = ∑y∈G byy ∈ NR∗((G))(V ). Then f g ∈ nil(R∗ ((G))) for any f = ∑x∈G

axx ∈ V . Let f g = (∑x∈G axx)
(
∑y∈G byy

)
= ∑z∈G ∆zz. Then by Proposition 2.1, we have

∆z ∈ nil(R). Note that

(2.2) ∆z = ∑
{x,y|xy=z}

axσx(by)t(x,y).

We will use transfinite induction on the ordered group (G,≤) to show that axby ∈ nil(R) for
every x ∈ supp( f ) and y ∈ supp(g).

Let x0 and y0 be the minimal elements of supp( f ) and supp(g) in the order ≤, respec-
tively. If x ∈ supp( f ) and y ∈ supp(g) are such that xy = x0y0, then x0 ≤ x, and y0 ≤ y.
If x0 < x, then x0y0 < xy0 ≤ xy = x0y0, a contradiction. Thus x0 = x. Similarly, y = y0.
Then from Equation (2.2), we obtain ∆x0y0 = ax0σx0(by0)t(x0,y0) ∈ nil(R). Thus we have
ax0σx0(by0)t(x0,y0) ∈ nil(R)⇒ ax0σx0(by0)t(x0,y0)(t(x0,y0))−1 = ax0σx0(by0) ∈ nil(R)⇒
ax0by0 ∈ nil(R).

Now suppose that w ∈ G is such that for any x ∈ supp( f ) and y ∈ supp(g) with xy < w,
axby ∈ nil(R). We will show that axby ∈ nil(R) for any x ∈ supp( f ) and y ∈ supp(g) with
xy = w. For convenience, we write {(x,y) | xy = w,x ∈ supp( f ),y ∈ supp(g)} as {(xi,yi) |
i = 1,2, . . . ,n,xi ∈ supp( f ),yi ∈ supp(g)} with x1 < x2 < · · ·< xn (Note that if x1 = x2, then
from x1y1 = x2y2, it follows that y1 = y2, and thus (x1,y1) = (x2,y2)). Now from Equation
(2.2), we have

(2.3) ∆w = ∑
{x,y|xy=w}

axσx(by)t(x,y) =
n

∑
i=1

axiσxi(byi)t(xi,yi),

and ∆w ∈ nil(R). For any 1 ≤ i ≤ n− 1, xiyn < xnyn = w, and thus, by induction hypoth-
esis, we have axibyn ∈ nil(R). Then by Lemma 2.2, axiσxi(byi)t(xi,yi)byn ∈ nil(R). Hence
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multiplying Equation (2.3) on the right by byn , we obtain

axn σxn(byn)t(xn,yn)byn = ∆wbyn −
n−1

∑
i=1

axiσxi(byi)t(xi,yi)byn .

Then axnσxn(byn)t(xn,yn)byn ∈ nil(R) because nil(R) of an NI ring is an ideal. Now

axnσxn(byn)t(xn,yn)byn ∈ nil(R)⇒ bynaxnσxn(byn)t(xn,yn) ∈ nil(R)

⇒ bynaxnσxn(byn)t(xn,yn)(t(xn,yn))−1 = bynaxnσxn(byn) ∈ nil(R)

⇒ bynaxnbyn ∈ nil(R)⇒ axnbyn ∈ nil(R).

From Lemma 2.3, it follows that

axnbyn ∈ nil(R)⇒ axnσxn(byn) ∈ nil(R)⇒ axn σxn(byn)t(xn,yn) ∈ nil(R).

Now Equation (2.3) becomes

(2.4)
n−1

∑
i=1

axiσxi(byi)t(xi,yi) = ∆w−axnσxn(byn)t(xn,yn) ∈ nil(R).

Multiplying byn−1 on Equation (2.4) from the right-hand side, we obtain axn−1byn−1 ∈
nil(R) by the same way as above. Continuing this process, we can prove that axibyi ∈ nil(R)
for i = 1,2, . . . ,n. Thus axby ∈ nil(R) for all x ∈ supp( f ) and y ∈ supp(g) with xy = w.

Therefore, by transfinite induction, axby ∈ nil(R) for any x ∈ supp( f ) and y ∈ supp(g).
Thus for any y ∈ supp(g), by ∈ NR(CV ) = c ·R. So for any y ∈ supp(g), there exists ry ∈ R
such that by = cry. Hence g = c · h where h = ∑y∈G ryy ∈ R ∗ ((G)), and so NR∗((G))(V ) ⊆
c · (R∗ ((G))). Therefore NR∗((G))(V ) = c · (R∗ ((G))) where c is a nilpotent element.

Corollary 2.2. Let R be an NI ring with nil(R) nilpotent, and let σ be compatible. If the
weak annihilator of each ideal of R which is not contained in nil(R) is generated as a right
ideal by a nilpotent element, then the weak annihilator of each ideal of R ∗ ((G)) which is
not contained in nil(R∗ ((G))) is generated as a right ideal by a nilpotent element.

Proof. This is immediate from Lemma 2.2 and Proposition 2.2.

Proposition 2.3. Let R be an NI ring with nil(R) nilpotent, and let σ be compatible. If
the weak annihilator of each nonnilpotent element of R is generated as a right ideal by a
nilpotent element, then the weak annihilator of each nonnilpotent element of R ∗ ((G)) is
generated as a right ideal by a nilpotent element.

Proof. Let f = ∑x∈G axx be a nonnilpotent element of R∗ ((G)). Then by Proposition 2.1,
there exists some u ∈ supp( f ) such that au 6∈ nil(R). Hence we can find c ∈ nil(R) such that
NR(au) = c ·R. Now we show that

NR∗((G))( f ) = c · (R∗ ((G))).

For any g = ∑y∈G byy ∈ R∗ ((G)), we have

f · c ·g =

(
∑
x∈G

axx

)
· c ·

(
∑
y∈G

byy

)
= ∑

z∈G

(
∑

{x,y|xy=z}
axσx(c)t(x,1)σx(by)t(x,y)

)
z.

Since c ∈ nil(R) and σ is compatible, it is easy to see that

∑
{x,y|xy=z}

axσx(c)t(x,1)σx(by)t(x,y) ∈ nil(R)
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for any z ∈ supp( f cg). Then by Proposition 2.1, we obtain f cg ∈ nil(R ∗ ((G))), and so
c ·R∗ ((G))⊆ NR∗((G))( f ).

Conversely, let g = ∑y∈G byy ∈ NR∗((G))( f ). Then f g ∈ nil(R ∗ ((G))). By analogy with
the proof of Proposition 2.2, we obtain axby ∈ nil(R) for any x ∈ supp( f ) and any y ∈
supp(g). Hence by ∈ NR(au) for any y ∈ supp(g). Thus for any y ∈ supp(g), there exists
ry ∈R such that by = c ·ry. Then g = ch where h = ∑y∈G ryy∈R∗((G)), and so NR∗((G))( f )⊆
c · (R∗ ((G))). Therefore, NR∗((G))( f ) = c · (R∗ ((G))).

Corollary 2.3. Let R be an NI ring with nil(R) nilpotent, and let σ be compatible. If
the weak annihilator of each principal right ideal of R which is not contained in nil(R) is
generated as a right ideal by a nilpotent element, then the weak annihilator of each principal
right ideal of R∗ ((G)) which is not contained in nil(R∗ ((G))) is generated as a right ideal
by a nilpotent element.

Proof. This is immediate from Lemma 2.2 and Proposition 2.3.

Example 2.1. Let F be a field and let S denote the F-space on basis

{1,c,c2, . . . ,cn},

where cn+1 = 0. Then nil(S) = {a1c+a2c2 + · · ·+ancn | ai ∈F} is an ideal of S. For any m =
b0 +b1c+ · · ·+bncn ∈ S, if b0 = 0, then m∈ nil(S). If b0 6= 0, then m = b0 +b1c+ · · ·+bncn

is invertible. For any nonempty subset V 6⊆ nil(S), now we show that NS(V ) is generated as
a right ideal by a nilpotent element. Let Ω = {b0 | b0 +b1c + · · ·+bncn ∈V}. If Ω = {0},
then V ⊆ nil(S). This is contrary to the fact that V 6⊆ nil(S). Thus we have Ω 6= {0}. In this
case, we have NS(V ) = nil(S) = c ·S, where c ∈ nil(S). Hence S is a ring such that for each
nonempty subset V 6⊆ nil(S), NS(V ) is generated as a right ideal by a nilpotent element.

Let R be a field. Then the residue ring R[x]/(xn+1) is an R-space on basis

{1,x,x2, . . . ,xn},

where xn+1 = 0. Hence R[x]/(xn+1) is a ring such that for each nonempty subset V 6⊆
nil(R[x]/(xn+1)), NR[x]/(xn+1)(V ) is generated as a right ideal by a nilpotent element.

Let R be a field and let

Rn =




a1 a2 · · · an
0 a1 · · · an−1
· · · · · · · · · · · ·
0 0 · · · a1

 | ai ∈ R


be the subring of n×n upper triangular matrix ring. Then Rn ∼= R[x]/(xn). Thus Rn is also
a ring that for each nonempty subset V 6⊆ nil(Rn), NRn(V ) is generated as a right ideal by a
nilpotent element.

Example 2.2. If p is a prime, the ring Zpn of integers modulo pn is a commutative local
ring and the Jacobson radical J of Zpn is J = nil(Zpn) = Zpn · [p]. Hence it is easy to see that
for any nonempty subset V 6⊆ nil(Zpn), NZpn (V ) is generated as a right ideal by a nilpotent
element.
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3. Weak APP-rings

An ideal I of R is said to be right s-unital if a∈ aI for each a∈ I. If I and J are right s-unital
ideals, then so is I ∩ J. It follows from [12, Theorem 1] that I is right s-unital if and only
if for any finitely many elements a1, a2, . . ., an ∈ I, there exists an element x ∈ I such that
ai = aix, i = 1,2, . . . ,n. A ring R is called a left APP-ring if the left annihilator lR(Ra) is right
s-unital as an ideal of R for any element a∈ R, right APP-rings may be defined analogously.
A ring is biregular if every principal ideal is generated by some idempotent in the center of
the ring, and a ring is quasi-Baer if the left annihilator of every left ideal is generated by
an idempotent. Thus the class of left APP-rings includes all biregular rings and all quasi-
Baer rings. It was shown in [4, Theorem 2] that if R is a ring satisfying descending chain
condition on right annihilators, then the skew power series ring R[[x;α]] is left APP if and
only if for any sequence (b0,b1, · · ·) of elements of R, the ideal lR(∑∞

j=0 ∑
∞
k=0 Rαk(b j)) is

right s-unital, where α is an automorphism of R. It was also proved in [13, Theorem 3] that
if (S,≤) is a strictly totally ordered monoid, ω : S −→ Aut(R) a monoid homomorphism
and R a ring satisfying descending chain condition on right annihilators, then the skew
generalized power series ring [[RS,≤,ω]] is left APP if and only if for any S-indexed subset
A of R, the ideal lR(∑a∈A ∑s∈S Rωs(a)) is right s-unital. For more details and properties of
left APP-rings, see [2, 3, 4, 13].

As a generalization of left APP-rings, in this section, we introduce the notion of weak
APP-rings and investigate its properties. We first briefly develop the definition of weak APP-
rings. Also we provide several basic results. Next, we investigate the weak APP-property
of Malcev-Neumann rings.

Definition 3.1. Let R be an NI ring. An ideal I of R is said to be weak s-unital if, for each
a ∈ I, there exists an element x ∈ I such that ax−a ∈ nil(R).

Obviously, for all a, x ∈ R, ax− a = a(x− 1) ∈ nil(R)⇔ (x− 1)a = xa− a ∈ nil(R).
So all right s-unital ideals and all left s-unital ideals are weak s-unital. But the following
example shows that the converse is not true in general.

Example 3.1. Let R be a domain and let

R2 =
{(

a b
0 a

)
| a, b ∈ R

}
be the subring of 2×2 upper triangular matrix ring. Consider the ideal

I = R2

(
0 1
0 0

)
R2

generated by
(

0 1
0 0

)
. Then I is neither right s-unital nor left s-unital. But it is easy to see that

I is weak s-unital.

Proposition 3.1. Let R be an NI ring. Then the following conditions are equivalent:
(1) I is weak s-unital.
(2) For any finitely many elements a1, a2, . . . , an ∈ I, there exists an element x ∈ I such

that aix−ai ∈ nil(R), i = 1,2, . . . ,n.

Proof. (1) =⇒ (2) We prove it by induction on n with the case n = 1 clear. Now suppose
that n ≥ 2. From the condition that I is weak s-unital and the induction hypothesis, it
follows that there exist e1, e2 ∈ I such that aie1− ai ∈ nil(R) for all 1 ≤ i ≤ n− 1, and
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ane2−an ∈ nil(R). In the following computations, we use freely the condition that R is an
NI ring. For each 1 ≤ i ≤ n− 1, aie1− ai = ai(e1− 1) ∈ nil(R)⇒ (e1− 1)ai ∈ nil(R)⇒
(e1− 1)ai(e2− 1)(e1− 1) ∈ nil(R)⇒ ai(e2− 1)(e1− 1)(e1− 1) = ai(e2e2

1− 2e2e1 + e2−
e2

1 + 2e1− 1) ∈ nil(R)⇒ ai(e2e2
1− 2e2e1 + e2− e2

1 + 2e1)− ai ∈ nil(R), and ane2− an =
an(e2− 1) ∈ nil(R)⇒ an(e2− 1)(e1− 1)(e1− 1) ∈ nil(R)⇒ an(e2e2

1− 2e2e1 + e2− e2
1 +

2e1)−an ∈ nil(R). Set x = e2e2
1−2e2e1 + e2− e2

1 + 2e1. Then we obtain aix−ai ∈ nil(R)
for all 1≤ i≤ n.

(2)⇒ (1) It is straightforward.

Proposition 3.2. Let R be an NI ring and I, J are weak s-unital ideals. Then I∩J and I +J
are weak s-unital.

Proof. Let a ∈ I ∩ J. Then there exist x ∈ I and y ∈ J such that ax− a ∈ nil(R) and ay−
a ∈ nil(R). So we can find α, β ∈ nil(R) such that ax = a + α and ay = a + β . Thus
axy = (a + α)y = ay + αy = a + β + αy. Hence axy− a ∈ nil(R) with xy ∈ IJ ⊆ I ∩ J.
Therefore I∩ J is weak s-unital.

Now we see that I + J is weak s-unital. Let a1 +a2 ∈ I + J with a1 ∈ I and a2 ∈ J. Then
there exist e1 ∈ I and e2 ∈ J such that a1e1−a1 ∈ nil(R) and a2e2−a2 ∈ nil(R). By analogy
with the proof of Proposition 3.1, we can find x = e2e2

1−2e2e1 + e2− e2
1 +2e1 ∈ I + J such

that aix−ai ∈ nil(R), i = 1,2. Thus we have (a1 + a2)x− (a1 + a2) ∈ nil(R). This implies
that I + J is weak s-unital.

Definition 3.2. An NI ring R is called a weak APP-ring if the weak annihilator NR(a) is
weak s-unital as an ideal of R for any element a ∈ R.

Example 3.2. Here are some examples of weak APP-rings.
(1) Obviously, all domains and division rings are weak APP-rings. If a ring R is reduced,

then for any a ∈ R, NR(a) = rR(aR) = lR(Ra). So reduced left (resp. right) APP-rings are
weak APP-rings. Since reduced PP-rings and reduced p.q.-Baer rings are left (resp. right)
APP-rings (see [3]), they are also weak APP-rings. Hence the class of weak APP-rings
includes reduced left (resp. right) APP-rings. In particular, the class of weak APP-rings
includes reduced PP-rings and reduced p.q.-Baer rings.

(2) Let R be an NI ring and let Tn(R) be the n× n upper triangular matrix ring over
R. Now we show that R is a weak APP-ring if and only if Tn(R) is a weak APP-ring.
Clearly, Tn(R) is an NI ring. Suppose that R is a weak APP-ring. Let A = (ai j) ∈ Tn(R) and
B = (bi j) ∈ NTn(R)(A). Then BA ∈ nil(Tn(R)) and so biiaii ∈ nil(R) for all 1 ≤ i ≤ n. Thus
bii ∈ NR(aii) for all 1≤ i≤ n. Because R is a weak APP-ring, there exists cii ∈ NR(aii) such
that biicii−bii ∈ nil(R) for each 1≤ i≤ n. Now it is easy to see that

B


c11 0 · · · 0
0 c22 · · · 0
· · · · · · · · · · · ·
0 0 · · · cnn

−B ∈ nil(Tn(R))

and 
c11 0 · · · 0
0 c22 · · · 0
· · · · · · · · · · · ·
0 0 · · · cnn

 ∈ NTn(R)(A).
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Conversely, assume that Tn(R) is a weak APP-ring. Let a, b ∈ R such that b ∈ NR(a). Set

A =


c11 0 · · · 0
0 c22 · · · 0
· · · · · · · · · · · ·
0 0 · · · cnn

 B =


c11 0 · · · 0
0 c22 · · · 0
· · · · · · · · · · · ·
0 0 · · · cnn


Then B ∈ NTn(R)(A). Since Tn(R) is a weak APP-ring, there exists C = (ci j) ∈ NTn(R)(A)
such that BC−B ∈ nil(Tn(R)). Now it is easy to see that bc11−b ∈ nil(R) and c11 ∈ NR(a).
Thus R is a weak APP-ring. So if R is a domain, the Tn(R) is a weak APP-ring.

(3) If an NI ring R satisfies the condition that for each element p 6∈ nil(R), NR(p) is gen-
erated as a right ideal by a nilpotent element, then we can show that R is a weak APP-ring.
So the rings in Example 2.1 and Example 2.2 are all weak APP-rings, and by Proposition
2.2 and Proposition 2.3, we can construct more examples of weak APP-rings.

Proposition 3.3. Let σ be compatible and nil(R) nilpotent, and let R be an NI ring satis-
fying the descending chain condition on weak annihilators. Then the following conditions
are equivalent:

(1) R is a weak APP-ring.
(2) R∗ ((G)) is a weak APP-ring.

Proof. (1)⇒ (2) Suppose that f = ∑x∈G axx, g = ∑y∈G byy ∈ R ∗ ((G)) are such that f ∈
NR∗((G))(g). Then f g ∈ nil(R ∗ ((G))). By analogy with the proof of Proposition 2.2, we
obtain axby ∈ nil(R) for any x ∈ supp( f ) and any y ∈ supp(g). Hence ax ∈ NR(by) and
by ∈ NR(ax) for any x ∈ supp( f ) and any y ∈ supp(g). For a set Y ⊆ R, |Y | < ∞ means the
cardinal number of Y is finite. Let

Ω = {NR(Y ) | Y ⊆ {ax | x ∈ supp( f )}, |Y |< ∞}.
The Ω is a nonempty set of weak annihilators. Since R satisfying descending chain condition
on weak annihilators, Ω has a minimal element, say NR(Y0). Assume that

Y0 = {ax1 ,ax2 , · · · ,axn}.
Similarly, let

Ψ = {NR(X) | X ⊆ {by | y ∈ supp(g)}, |X |< ∞}.
Then Ψ has a minimal element, say NR(X0). Also assume that

X0 = {by1 ,by2 , · · · ,bym}.
Since ax1 , ax2 , . . . , axn ∈ NR(X0) =

⋂m
i=1 NR(byi), by Proposition 3.1 and Proposition 3.2,

there exists c ∈ NR(X0) =
⋂m

i=1 NR(byi) such that for all 1≤ i≤ n, axic−axi ∈ nil(R). Then
c−1 ∈ NR(Y0). If supp( f ) = {x1,x2, · · · ,xn}, Then for any x ∈ supp( f ), axc−ax ∈ nil(R).
Now assume that x∈ supp( f )−{x1,x2, · · · ,xn}. Then by the minimality of NR(Y0), we have
NR(ax1 ,ax2 , · · · ,axn) = NR(ax1 ,ax2 , · · · ,axn ,ax). Thus

(c−1) ∈ NR(ax1 ,ax2 , · · · ,axn ,ax),

and so axc−ax ∈ nil(R). This implies that axc−ax = ax(c−1)∈ nil(R) for any x∈ supp( f ).
Since σ is compatible, for any x ∈ supp( f ), we have ax(c− 1) ∈ nil(R)⇒ axσx(c− 1) ∈
nil(R)⇒ axσx(c−1)t(x,1) ∈ nil(R). Thus by Proposition 2.1, we obtain

f c− f = f · (c−1) =

(
∑
x∈G

axx

)
(c−1) = ∑

x∈G
axσx(c−1)t(x,1)x ∈ nil(R∗ ((G))).
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Now we show that c ∈ NR∗((G))(g). If supp(g) = {y1,y2, · · · ,ym}, Then for any y ∈ supp(g),
byc ∈ nil(R). Now assume that y ∈ supp(g)−{y1,y2, · · · ,ym}. Then by the minimality of
NR(X0), we have NR(by1 ,by2 , · · · ,bym) = NR(by1 ,by2 , · · · ,bym ,by). Thus c ∈ NR(by1 ,by2 , · · · ,
bym ,by), and so byc∈ nil(R). Hence for any y∈ supp(g), byc∈ nil(R), and so byσy(c)t(y,1)∈
nil(R) for any y ∈ supp(g). By Proposition 2.1, we obtain gc = (∑y∈G byy)c = ∑y∈G byσy(c)
t(y,1)y ∈ nil(R∗ ((G))). Hence c ∈ NR∗((G))(g). Therefore R∗ ((G)) is a weak APP-ring.

(2)⇒ (1) Let a, b ∈ R be such that a ∈ NR(b). Then a ∈ NR∗((G))(b). Since R∗ ((G)) is
a weak APP-ring, there exists f = ∑x∈G axx ∈ NR∗((G))(b) such that a f −a ∈ nil(R∗ ((G))).
By Proposition 2.1, we obtain aa1− a ∈ nil(R) where 1 denotes the identity of G. Since
f ∈ NR∗((G))(b), by Proposition 2.1, we have ba1 ∈ nil(R), and so a1 ∈ NR(b). Therefore R
is a weak APP-ring.

Let α be an endomorphism of a ring R. According to Hashemi and Moussavi [1], the
ring R is said to be α-compatible if for each a, b ∈ R, ab = 0⇔ aα(b) = 0.

Corollary 3.1. Let α ∈ Aut(R) and nil(R) nilpotent, and let R be an α-compatible NI
ring satisfying the descending chain condition on weak annihilators. Then the following
conditions are equivalent:

(1) R is a weak APP-ring.
(2) R[[x,x−1,α]] is a weak APP-ring.

Proof. Take G = Z and t(x,y) = 1 for any x, y ∈ Z. For any x ∈ Z, let σx = αx. Now the
result follows from Proposition 3.3.

Acknowledgement. The authors are grateful to the referee for his or her suggestions in
revising the paper.
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