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Abstract. Let R be an associative ring with identity, G an totally ordered group, ¢ a map
from G into the group of automorphisms of R, and ¢ a map from G x G to the group of
invertible elements of R. The weak annihilator property of the Malcev-Neumann ring R
((G)) is investigated in this paper. Let nil(R) denote the set of all nilpotent elements of R,
and for a nonempty subset X of a ring R, let Ng(X) = {a € R| Xa C nil(R)} denote the
weak annihilator of X in R. Under the conditions that R is an NI ring with nil(R) nilpotent
and o is compatible, we show that: (1) If the weak annihilator of each nonempty subset
of R which is not contained in nil(R) is generated as a right ideal by a nilpotent element,
then the weak annihilator of each nonempty subset of R * ((G)) which is not contained in
nil(R = ((G))) is generated as a right ideal by a nilpotent element. (2) If the weak annihilator
of each nonnilpotent element of R is generated as a right ideal by a nilpotent element, then
the weak annihilator of each nonnilpotent element of R = ((G))) is generated as a right ideal
by anilpotent element. As a generalization of left APP-rings, we next introduce the notion of
weak APP-rings and give a necessary and sufficient condition under which the ring R* ((G))
over a weak APP-ring R is weak APP.
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1. Introduction

Throughout this paper R denotes an associative ring with identity, and nil(R) denotes the
set of all nilpotent elements of R. For a nonempty subset X of R, Ig(X) ={a € R | aX =0}
and rg(X) = {a € R | Xa = 0} stand for the left and right annihilator of X in R, respectively.
Recall that a ring R is reduced if it has no nonzero nilpotent elements, and a ring R is
semicommutative if for all a, b € R, ab = 0 implies aRb = 0. Due to Marks [6], a ring R is
called NI if nil(R) forms an ideal. Clearly, reduced rings and semicommutative rings are NI
rings. An ideal I of R is said to be nilpotent if 7¥ = 0 for some natural number .

Let R be a ring, G a totally ordered group, and suppose that ¢ is a map from G into
the group of automorphisms of R, x — Oy, ¢ is a map from G x G to U(R), the group of
invertible elements of R. Then we can form a Malcev-Neumann ring R % ((G)): an element
of R+ ((G) is a infinite series f = Y ¢ rxx With ry € R such that the set supp(f) ={x € G|
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ry # 0}, called the support of f, is a well ordered subset of G, and the ring structure is given
by componentwise addition and by a multiplication defined as follows:

(Z axx> (Z byy> =) < )y axcx(by)t(x,y)> 2
x€G yeG 2€G \{x,y|xy=z}

In order to insure associativity, it is necessary to impose two additional conditions on ¢ and
t, namely that for all x, y, z € G,

() 1(xy,2)0c(t(x,y)) = t(x,y2)t(y,2), (i) 0y0; = 0:8(y,2),
where 8(y,z) denotes the automorphism of R induced by the unit 7(y,z) (see [10, Lemma
1.1]). It is now routine to check that R+ ((G)) is a ring which we call the Malcev-Neumann
ring.

Let U be a subset of R. We denote by U * ((G)) the subset of R ((G)) consisting of
those elements whose coefficients lie in U, that is, U x ((G)) = {f = Y egaxx € R+ ((G)) |
ay € U,x € supp(f)}.

The Malcev-Neumann construction appeared for the first time in the latter part of 1940’s
(the Laurent series ring, a particular case of Malcev-Neumann rings, was used before by
Hilbert). Using them, Malcev and Neumann independently showed (in 1948 and 1949 resp.)
that the group ring of an ordered group over a division ring can be embedded in a division
ring. Since then, the construction has appeared in many papers, mainly in the study of
various properties of division rings and related topics. For instance, Makar-Limanov in [7]
used a particular skew Laurent series division ring to prove that the skew field of fractions
of the first Weyl-algebra contains a free noncommutative subalgebra. The study of Malcev-
Neumann group rings over arbitrary rings was initiated in [5] by Lorenz while investigating
properties of group algebras of nilpotent groups. Other results on Malcev-Neumann rings
can be found in Musson and Stafford [8] and Sonin [11] and Zhao et al. [14]. In this paper,
we investigate the relationship between the weak annihilator Ng(X) of a nonempty subset
X of R and the weak annihilator Ng,((g))(V) of a nonempty subset V of Rx ((G)). Also as a
generalization of left APP-rings, we introduce the notion of weak APP-rings, and study the
conditions under which the ring R * ((G)) is a weak APP-ring.

2. Weak annihilator property

As a generalization of annihilators, L. Ouyang and G. F. Birkenmeier in [9] introduced the
concept of weak annihilators. For a nonempty subset X of a ring R, we define Ng(X) ={a €
R | Xa C nil(R)}, which is called the weak annihilator of X in R. If X is a finite set, say
X ={ri,r2, - ,ru}, weuse Ng(ri,ra,- - ,r) in place of Ng({ry,r2,--- ,r»}). Obviously, for
any nonempty subset X of aring R, Ng(X) ={a € R| Xa Cnil(R)} = {b € R| bX Cnil(R)},
rr(X) C Nr(X) and Ig(X) C Nr(X).

For example, Let Z be the ring of integers and 7>(7Z) the 2 x 2 upper triangular matrix
ring over Z. We consider the subset X = {(39)}. Then rryz)(X) = Ipy(z)(X) = 0, but
NpyzyX) ={(3%),Im € Z} . Thus rzyz)(X) C Npy(z)(X) and Iy (z)(X) C Npy(z) (X).

If R is reduced, then rg(X) = Ng(X) = Ig(X) for any nonempty subset X of R. It is easy
to see that for any nonempty subset X C R, Ng(X) is an ideal of R in case nil(R) is an ideal.
For more details and results of weak annihilators, see [9]. In this section, we mainly discuss
the weak annihilator property of the ring R x ((G)).

The next Lemma appears in [9].
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Lemma 2.1. Let X, Y be subsets of R. Then we have the following results:
(1) X CY implies Ng(X) 2 Ng(Y).
(2) X C Nr(Nr(X)).
(3) Nr(X) = Ng(Nr(Nr(X))).

Lemma 2.2. Let R be an NI ring. Then we have the following results:
(1) ab € nil(R) implies RaRbR C nil(R) for any a, b € R.
(2) Let p € R and let p - R denote the principal right ideal of R generated by p. Then
Nr(p) =Nr(p-R).
(3) Let X be a subset of R and let I be the ideal of R generated by the subset X. Then
Ng(X) = Ng(I).

Proof. (1) Since nil(R) of an NI ring is an ideal, we obtain ab € nil(R) = abR C nil(R) =
bRa C nil(R) = bRaR C nil(R) = aRbR C nil(R) = RaRbR C nil(R).

(2) Since p € p-R, Nr(p-R) C Ng(p) is clear. Now we show that Ng(p) C Nr(p-R). If
x € Ng(p), then px € nil(R). By (1), we have pRx C nil(R), and so x € Ng(p-R). Hence
Nr(p) € Nr(p-R). Therefore Ng(p) = Nr(p-R).

(3) It suffices to show that Ng(X) C Ng(I). Let r € Ng(X). Then xr € nil(R) for all x € X,
and so by (1), we obtain sxtr € nil(R) for any s € R and t € R. Hence for any Y7 | sixit; € 1,
we have Y| sixit;r € nil(R), and so r € Ng(I). Thus Ng(X) C Ng([) is proved. 1

Definition 2.1. Let 6 be a map from G into the group of automorphisms of R, x — 0y. We
say that G is compatible if for each a,b € R and x € G, ab =0 < ac,(b) = 0.

Lemma 2.3. Let 6 be a map from G into the group of automorphisms of R, x — oy. If ©
is compatible, then for each a, b € R, and each x € G, we have the following results:

(1) ab € nil(R) & acy(b) € nil(R).

(2) ab € nil(R) < oy(a)b € nil(R).

Proof. (1) (=) Suppose ab € nil(R). There exists some positive integer k such that (ab) =
0. Since o is compatible, we have 0 = (ab)* = abab - - -ab = abab - - -ac,(b) = 0 = abab - - -
abacy(bacy (b)) = abab - - - abacy(b)oy(acy (b)) = 0= abab- - -abacy(b)acy(b) =0=---
= aoy(b) € nil(R).

(«<=) Assume that acy(b) € nil(R). There exists some positive integer k such that (acy
(b))k = 0. In the following computations, we use freely the condition that ¢ is compatible.
(acy(b))* = ac(b)acy(b) - --ac(b) = 0= acy(b)ac,(b) - --ac.(b)ab = 0= ac,(b)acy(b)
---aoy(b)oyx(ab) = 0 = acy(b)acy(b)---acy(b)acy(bab) = 0 = acy(b)acy(b)---acy(b)
abab =0=>--- = ab € nil(R).

(2) ab € nil(R) < ba € nil(R) < boy(a) € nil(R) < 6y(a)b € nil(R). I
Proposition 2.1. Let R be an NI ring with nil(R) nilpotent, and let ¢ be compatible, and
f=Yicgaxx € Rx((G)). Then f € nil(R* ((G))) if and only if a, € nil(R) for every
x € supp(f).

Proof. (=) Suppose that f =Y, cgaxx € nil(R* ((G))). Then there exists some positive
integer k such that

k
2.1 k= (Zaxx> =0.

xeG
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We will use transfinite induction on the ordered group (G, <) to show that a, € nil(R) for
every x € supp(f). Let xo be the minimal element of supp(f) on the < order. If vy, vo, ...,
vk € supp(f) are such that vivy--- vy = x’é, then xo <v; forall 1 <i<k. If xy < v; for some
1 <i<k, then x’5 < VIV V= xl(‘), a contradiction. Thus xy = v; for 1 <i < k. Hence from
Equation (2.1), it follows that

Gxy Ox (axo)t(xo,xo)dxg (axo)t(x%axo) T 0}’6*1 (axo)t(xg_l 7x0) =0.

Since o is compatible and #(x,y) is invertible for all x, y € G, and nil(R) of an NI ring is an
ideal, we have

Ax Oxg (axo)t(x07x0)cx (axo)t( ) e 'Gng' (axo)t(xgil 7)C0) =0
= Qx, Ox (axo)t(X(),X())Gx (axo)t( ) e 'Gx’(;*l (axo) =0
= Qx, Ox (axo)t(xmxo)cx% (axo)t( ) T Gngz (axo)t(x16727x0)axo =0

= Ay, x, Ox, (ax, )1 (X0, X0 02

O,

)oal( (ax))
= gy Oy (1 )1 (X0, %0) 0,2 (axo)t(xg,m) x(;2(%) € nil(R)
)02 (ax)) (ax))

= Gxylx) Oxy (axo) (x0, X0 ,X())axO € nil(R)

= G Ay xg Oxg (aXU)t(XOvXO)Gx% (axO)t(x(z),xo) o Gx’(‘fs (axo)t(x,673,xo) € nil(R)
= .- = ay, €nil(R).
Now suppose that w € supp(f) is such that for any x € supp(f) with x < w, a, € nil(R).
We will show that a,, € nil(R) for w € supp(f). For convenience, we write
{(ur,up, - u) | wqup -+ uy = wh u; e supp(f),i=1,2,...,k}

as

{w,w, -« W)U {(up,upn, - yu) | i =2,3,...,n},
and for each

(bli],l/tiz,"‘ 7uik) S {(ui17ui27"' 7uik) | i:273a"'7n}5
there exists some 1 <[ < k such that u;; # w. Now we show that for each

(ui1>ui2;"' 7uik) S {(ui17ui27"' 7uik) | i:273a"'7n}5

there exists some 1 < p < k such that u;, <w. If u; <w, then we are done. So assume that

wy >w. If forall 1 < j <k, j#1, u; >w, then w® < uup -+ uy = wk, a contradiction.

Thus for each

(uilauiZ; tee 7uik) S {(uilvuﬂv' o 7”[/{) | i= 273a e 7”};
there exists some 1 < p < k such that u;, < w. Then by induction hypothesis, we obtain
ay,;, € Nil(R), and so by Lemma 2.3, 1 - ay,, € nil(R) implies 1 0x(ay,,) = Ox(ay,,) € nil(R)
for every x € G. Hence

Auyy Oy (Gugy ) (Wit 412) -+ Ou ) ) (u )t (Uin i - i1y i) € mil (R)
for all 2 <i < n, because nil(R) of an NI ring is an ideal. Now from Equation (2.1), we have

@y Gy (@ )t (W, W) -+ 0 it (@ )E (W1 w)
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n
Auyy Ouyy (uiy )t (Uit s ui2) -+ G(“il“l?"'ui(k—l))(a“ik)[(uiluiz e Mi(k*1>’u"k> € nil(R).
i=2

Then
Gy (@)t (W, w) -+ G, i1 (@ )t (WK1 w) € il (R)
= a0y (ay)t(w,w) -+~ 0,41 (ay) € nil(R)
= a0 (ay )t (W, w) - G, 2 ()t (W2, w)a,, € nil(R)
= Ay, O (@ )t (W, ) - G, 2 (@)t (W2, w) € nil(R)
= - =a, €nil(R).
Therefore by transfinite induction, a, € nil(R) for any x € supp(f).
(<) Assume that a, € nil(R) for every x € supp(f). By Lemma 2.3, we have o;(ax) €

nil(R) for each z € G. Since nil(R) is nilpotent, there exists some positive integer k such
that (nil(R))* = 0. Now we show that

k
k= (Z axx> = Zbyyzo.
xeG yeG

For every y € supp(f*), we write
{(ur,up, -+ yug) |uyup -+ ug = y,u; € supp(f),i=1,2,...,k}
as
{(uil,uiz,--- ,u,-k) | i= 1,2,...,1’!}.
Then from f* = (¥,cc axx)* = ¥,ecbyy, it follows that

-

b}' = Au;; Oujy (auiz)t(uil ) Mi2) e G(u;lu,-z-"u[(k,])) (augk)t(uiluﬂ ©Ui(k—1)s Mik)'

i=1

Since foreach 1 <i<n,
Auyy Ouyy (Guy )1 (Uit ui2) -+ Oujyuip (1) (au )t (wiruiz -+ “i(k—l)vuik) € (nﬂ(R))k =0,

we have by = 0. Hence f* =0, and so f € nil(R* ((G))). Then we finish our proof of
Proposition 2.1. 1

Remark 2.1. In the proof of the implication (=) in Proposition 2.1, the condition that
nil(R) is nilpotent is not used. Hence if R is an NI ring, and & is compatible, then nil(R

((G))) S nil(R) = ((G)).
By Proposition 2.1 we have the following result.

Corollary 2.1. Let R be an NI ring with nil(R) nilpotent, and let ¢ be compatible. Then
(1) R+((G)) is an NI ring.
(2) nil(R+((G))) =nil(R) * ((G)).

Proposition 2.2. Let R be an NI ring with nil(R) nilpotent, and let ¢ be compatible. If the
weak annihilator of each nonempty subset of R which is not contained in nil(R) is generated
as a right ideal by a nilpotent element, then the weak annihilator of each nonempty subset of
R ((G)) which is not contained in nil(R * ((G))) is generated as a right ideal by a nilpotent
element.
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Proof. Let V be a nonempty subset of R« ((G)) with V € nil(R* ((G))). We show that
NR*((G>)(V) is generated as a right ideal by a nilpotent element. For any f =) csa.x €
R+ ((G)), let Cy denote the set {a, | x € supp(f)}, and for any subset U C Rx ((G)), let Cy
denote the set ;e Cy. Since V Z nil(R  ((G))), by Corollary 2.1, we have Cy & nil(R).
So there exists an element ¢ € nil(R) such that Ng(Cy) = ¢+ R. Now we show that

Nes(o) (V) = ¢- (R+((G)))-

Let f =Y cgaxx €V and g =Y 5 byy € R+ ((G)). Then

fcg= (Z axx> c- (Z byy> =) ( ) axGx(c)t(x,I)Gx(by)t(x,y)> z.

xeG yeG 2€G \{x,ylxy=z}
Since ¢ € nil(R) and & is compatible, for any x € supp(f) and y € supp(g), we have
c € nil(R) = o,(c) € nil(R) = a,0x(c)t(x,1)0,(by)t(x,y) € nil(R)

= Z a,ox(c)t(x,1)o,(by)t(x,y) € nil(R).
{xyly=z}

Thus by Proposition 2.1, we obtain f-c- g € nil(R * ((G))). Hence Ng,(c)) (V) 2 ¢ (R*
((G)))-

Conversely, let g = Y.,c byy € Ngy((G)) (V). Then fg € nil(R* ((G))) for any f =Y ¢
ayx € V. Let fg = (Yregaxx) (Lyecbyy) = LieqAzz. Then by Proposition 2.1, we have
A, € nil(R). Note that

(2.2) A, = Z a0y (by)t(x,y).
{xyly=z}

We will use transfinite induction on the ordered group (G, <) to show that a,b, € nil(R) for
every x € supp(f) and y € supp(g).

Let xp and yo be the minimal elements of supp(f) and supp(g) in the order <, respec-
tively. If x € supp(f) and y € supp(g) are such that xy = xqyo, then xp < x, and yo < y.
If xp < x, then xgyo < xyg < xy = x0yo, a contradiction. Thus xo = x. Similarly, y = yg.
Then from Equation (2.2), we obtain Ayy, = ax,0x,(by,)t(x0,y0) € nil(R). Thus we have
axoo-xo(b)’o)t(xovyo) € nil(R) = Qxy Ox, (byo)t(xo’yo)(t(x07y0))_1 = Qx,Ox, (b.\'o) € nﬂ(R) =
ay,by, € nil(R).

Now suppose that w € G is such that for any x € supp(f) and y € supp(g) with xy < w,
axb, € nil(R). We will show that a;b, € nil(R) for any x € supp(f) and y € supp(g) with
xy = w. For convenience, we write {(x,y) | xy = w,x € supp(f),y € supp(g)} as {(xi,y:) |
i=1,2,...,n,x €supp(f),y; €supp(g)} with x; <xp < --- < x, (Note that if x; = x,, then
from x1y| = X2y, it follows that y; = y,, and thus (x;,y;) = (x2,y2)). Now from Equation
(2.2), we have

(23) AW - Z aXGX(by)t(x7y) = Z ax,-Gx,' (by,-)t(xi,)’i)7
{xybey=w} i=1

and A, € nil(R). For any 1 <i <n—1, x;y, < X,yn = w, and thus, by induction hypoth-
esis, we have ay,by, € nil(R). Then by Lemma 2.2, a0y, (by, )t (xi,yi)by, € nil(R). Hence
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multiplying Equation (2.3) on the right by by, , we obtain

n—1

aXn Gxn (b,Vn )t(xnayn)b)’n = Awb}'n - axi Gxi (b)’i)t<xi’yi)b)’n .
i=1

Then ay, Oy, (by, )t (Xn,yn)by, € nil(R) because nil(R) of an N/ ring is an ideal. Now
@y, O, (by, )t (Xn,yn)by, € nil(R) = by, ay, Oy, (by, )t (xn,yn) € nil(R)
s byt Gy by, ) (onr ) (1 (5, 3)) ™1 = by, G (by) € il(R)
= by, ay,by, €nil(R) = ay,b,, €nil(R).
From Lemma 2.3, it follows that
ay,by, € nil(R) = ay, Oy, (by,) € nil(R) = ay, Ox, (by, )1 (xn,y,) € nil(R).
Now Equation (2.3) becomes

n—1
(2.4) Y aq0.(by,)t(xi,yi) = A — ax, O, (by, )t (Xn, yn) € nil(R).
i=1
Multiplying by, , on Equation (2.4) from the right-hand side, we obtain a,, b, , €
nil(R) by the same way as above. Continuing this process, we can prove that a,,b,, € nil(R)
fori=1,2,...,n. Thus a.b, € nil(R) for all x € supp(f) and y € supp(g) with xy = w.
Therefore, by transfinite induction, a,by, € nil(R) for any x € supp(f) and y € supp(g).
Thus for any y € supp(g), by € Nr(Cv) = c-R. So for any y € supp(g), there exists r, € R
such that by = cry. Hence g = c-h where h = Y,,cgryy € R*((G)), and 50 Ng,((c)) (V) C
¢+ (R*((G))). Therefore Ng,((g))(V) = c- (R*((G))) where c is a nilpotent element. 1
Corollary 2.2. Let R be an NI ring with nil(R) nilpotent, and let ¢ be compatible. If the
weak annihilator of each ideal of R which is not contained in nil(R) is generated as a right

ideal by a nilpotent element, then the weak annihilator of each ideal of R* ((G)) which is
not contained in nil (R x ((G))) is generated as a right ideal by a nilpotent element.

Proof. This is immediate from Lemma 2.2 and Proposition 2.2. 1

Proposition 2.3. Let R be an NI ring with nil(R) nilpotent, and let 6 be compatible. If
the weak annihilator of each nonnilpotent element of R is generated as a right ideal by a
nilpotent element, then the weak annihilator of each nonnilpotent element of R * ((G)) is
generated as a right ideal by a nilpotent element.

Proof. Let f =Y ,ccaxx be a nonnilpotent element of R ((G)). Then by Proposition 2.1,
there exists some u € supp(f) such that a,, ¢ nil(R). Hence we can find ¢ € nil(R) such that
Ng(a,) = c-R. Now we show that

Nr«((6)) (f) = ¢+ (R*((G)))-
For any g = Y c;byy € R+ ((G)), we have

fcg= <Z axx> c- (Z byy> =) ( ) axcx(c)t(x,1)Gx(by)t(x,y)> z.

xeG yeG 2€G \{x,ylxy=z}
Since ¢ € nil(R) and o is compatible, it is easy to see that

Z ax0x(c)t(x, 1)oc(by)t(x,y) € nil(R)
{xyley=z}
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for any z € supp(fcg). Then by Proposition 2.1, we obtain fcg € nil(R x ((G))), and so
¢ R+ ((G)) C Nry((c)) (f)-

Conversely, let g = Y, byy € Nr«((G))(f)- Then fg € nil(Rx ((G))). By analogy with
the proof of Proposition 2.2, we obtain a.b, € nil(R) for any x € supp(f) and any y €
supp(g). Hence b, € Ng(a,) for any y € supp(g). Thus for any y € supp(g), there exists
ry € Rsuch that by = c-ry. Then g = ch where h =Y 5 ryy € R ((G)), and s0 N, () (f) €
¢+ (R ((G))). Therefore, Ng,((g))(f) = ¢ (R*((G))).

Corollary 2.3. Let R be an NI ring with nil(R) nilpotent, and let ¢ be compatible. If
the weak annihilator of each principal right ideal of R which is not contained in nil(R) is
generated as a right ideal by a nilpotent element, then the weak annihilator of each principal
right ideal of R x ((G)) which is not contained in nil(R x ((G))) is generated as a right ideal
by a nilpotent element.

Proof. This is immediate from Lemma 2.2 and Proposition 2.3. 1

Example 2.1. Let F be a field and let S denote the F-space on basis
{1,¢,¢%,...,c"},

where ¢! = 0. Then nil(S) = {ajc+axc?+---+ayc" | a; € F} is an ideal of S. For any m =
bo+bic+---+b,c" €8S, if by =0, then m € nil(S). If by # 0, thenm =by+bic+ -+ b,c"
is invertible. For any nonempty subset V ¢ nil(S), now we show that Ng(V) is generated as
a right ideal by a nilpotent element. Let Q = {bg | bo+bic+---+ by € V}. If Q = {0},
then V C nil(S). This is contrary to the fact that V ¢ nil(S). Thus we have Q # {0}. In this
case, we have Ng(V) = nil(S) = ¢- S, where ¢ € nil(S). Hence S is a ring such that for each
nonempty subset V Z nil(S), Ng(V) is generated as a right ideal by a nilpotent element.
Let R be a field. Then the residue ring R[x]/(x"*!) is an R-space on basis

{1,%,3%,...,3"},

where ¥ ! = 0. Hence R[x]/(x"*!) is a ring such that for each nonempty subset V ¢
nil (R[x]/(x**1)), Ngpy /1) (V) is generated as a right ideal by a nilpotent element.
Let R be a field and let

a  a a,
0 a R

Ro=q| 0L 0 T | aier
0 0 aj

be the subring of n X n upper triangular matrix ring. Then R, 2 R[x]/(x"). Thus R, is also
a ring that for each nonempty subset V ¢ nil(R,), Ng, (V) is generated as a right ideal by a
nilpotent element.

Example 2.2. If p is a prime, the ring Z,» of integers modulo p" is a commutative local
ring and the Jacobson radical J of Z» is J = nil(Z,») = Z,» - [p]. Hence it is easy to see that
for any nonempty subset V & nil(Z,»), Nan (V) is generated as a right ideal by a nilpotent
element.
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3. Weak APP-rings

Anideal I of R is said to be right s-unital if a € al for each a € I. If I and J are right s-unital
ideals, then so is /N J. It follows from [12, Theorem 1] that [ is right s-unital if and only
if for any finitely many elements ay, as, ..., a, € I, there exists an element x € [ such that
aj=aix,i=1,2,...,n. Aring R is called a left APP-ring if the left annihilator [g(Ra) is right
s-unital as an ideal of R for any element a € R, right APP-rings may be defined analogously.
A ring is biregular if every principal ideal is generated by some idempotent in the center of
the ring, and a ring is quasi-Baer if the left annihilator of every left ideal is generated by
an idempotent. Thus the class of left APP-rings includes all biregular rings and all quasi-
Baer rings. It was shown in [4, Theorem 2] that if R is a ring satisfying descending chain
condition on right annihilators, then the skew power series ring R[[x; &]] is left APP if and
only if for any sequence (bo,b1,---) of elements of R, the ideal /r(¥7_ Yo oRak(b))) is
right s-unital, where « is an automorphism of R. It was also proved in [13, Theorem 3] that
if (§,<) is a strictly totally ordered monoid, ® : S — Aut(R) a monoid homomorphism
and R a ring satisfying descending chain condition on right annihilators, then the skew
generalized power series ring [R5, @]] is left APP if and only if for any S-indexed subset
A of R, the ideal Ig(Y,ca Yses R®s(a)) is right s-unital. For more details and properties of
left APP-rings, see [2, 3, 4, 13].

As a generalization of left APP-rings, in this section, we introduce the notion of weak
APP-rings and investigate its properties. We first briefly develop the definition of weak APP-
rings. Also we provide several basic results. Next, we investigate the weak APP-property
of Malcev-Neumann rings.

Definition 3.1. Let R be an NI ring. An ideal I of R is said to be weak s-unital if, for each
a € 1, there exists an element x € I such that ax —a € nil(R).

Obviously, for all a, x € R, ax—a = a(x—1) € nil(R) & (x — 1)a = xa — a € nil(R).
So all right s-unital ideals and all left s-unital ideals are weak s-unital. But the following
example shows that the converse is not true in general.

Example 3.1. Let R be a domain and let

Rzz{(g 2>|a,beR}

be the subring of 2 x 2 upper triangular matrix ring. Consider the ideal

0 1
I:R2<0 0)R2

generated by (8 (1)) . Then [ is neither right s-unital nor left s-unital. But it is easy to see that
I is weak s-unital.

Proposition 3.1. Ler R be an NI ring. Then the following conditions are equivalent:

(1) Iis weak s-unital.
(2) For any finitely many elements ay, ay, ..., a, € I, there exists an element x € I such
that aix —a; € nil(R), i =1,2,...,n.

Proof. (1)=(2) We prove it by induction on n with the case n = 1 clear. Now suppose
that n > 2. From the condition that / is weak s-unital and the induction hypothesis, it
follows that there exist e;, e, € I such that a;e; —a; € nil(R) for all 1 <i<n-—1, and
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ayey — a, € nil(R). In the following computations, we use freely the condition that R is an
NIring. Foreach 1 <i<n-—1, aje; —a; = a;(e; — 1) € nil(R) = (e; — 1)a; € nil(R) =
(e1 — Daj(e2 — 1)(e; — 1) € nil(R) = a;(ex — 1) (e — 1)(e1 — 1) = ai(eze? —2eze; + 2 —
e% +2e¢; — 1) €nil(R) = ai(ege% —2ere| +ey — e% +2e1) —a; € nil(R), and aye; —a, =
an(ex — 1) € nil(R) = ay(ea — 1)(e1 — 1)(e1 — 1) € nil(R) = ay(ere? —2eze; +e2 — €3 +
2e1) —ay € nil(R). Setx = eze% —2ere; +er — e% + 2¢;. Then we obtain a;x — a; € nil(R)
foralll <i<n.

(2) = (1) Itis straightforward. 1

Proposition 3.2. Let R be an NI ring and I, J are weak s-unital ideals. Then INJ and I +J
are weak s-unital.

Proof. Leta € INJ. Then there exist x € I and y € J such that ax — a € nil(R) and ay —
a € nil(R). So we can find o, B € nil(R) such that ax = a+ o and ay = a+ . Thus
axy = (a+ o)y = ay+ay =a+ f + ay. Hence axy —a € nil(R) with xy € IJ C1NJ.
Therefore 1N J is weak s-unital.

Now we see that  +J is weak s-unital. Let a; +ay € [ +J with a; € I and a; € J. Then
there exist e; € I and e, € J such that aje; —a; € nil(R) and aze; — a; € nil(R). By analogy
with the proof of Proposition 3.1, we can find x = eze% —2epe1+ex — e% +2e1 € I+J such
that a;x — a; € nil(R), i = 1,2. Thus we have (a; +a)x — (a; +az) € nil(R). This implies
that I +J is weak s-unital. 1

Definition 3.2. An NI ring R is called a weak APP-ring if the weak annihilator Ng(a) is
weak s-unital as an ideal of R for any element a € R.

Example 3.2. Here are some examples of weak APP-rings.

(1) Obviously, all domains and division rings are weak APP-rings. If a ring R is reduced,
then for any a € R, Ng(a) = rg(aR) = Ig(Ra). So reduced left (resp. right) APP-rings are
weak APP-rings. Since reduced PP-rings and reduced p.q.-Baer rings are left (resp. right)
APP-rings (see [3]), they are also weak APP-rings. Hence the class of weak APP-rings
includes reduced left (resp. right) APP-rings. In particular, the class of weak APP-rings
includes reduced PP-rings and reduced p.q.-Baer rings.

(2) Let R be an NI ring and let T, (R) be the n x n upper triangular matrix ring over
R. Now we show that R is a weak APP-ring if and only if 7,(R) is a weak APP-ring.
Clearly, T,,(R) is an NI ring. Suppose that R is a weak APP-ring. Let A = (a;;) € T,(R) and
B = (bij) € Nr,(r)(A). Then BA € nil(T,(R)) and so bja;; € nil(R) for all 1 <i <n. Thus
bi; € Ng(a;;) for all 1 <i<n. Because R is a weak APP-ring, there exists c;; € Ng(a;;) such
that bj;c;; — b;; € nil(R) for each 1 <i < n. Now it is easy to see that

cp O - 0
s 02 D | menimm)
0 0 - ¢
and
cnn1 O 0

0 0 - Cm
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Conversely, assume that T;,(R) is a weak APP-ring. Let a, b € R such that b € Ng(a). Set

cl1 o - 0 cl1 0o - 0
a=| 0 e O [0 e e 0
0 0 - cm 0 0 - Cm

Then B € Nz, (g)(A). Since T,(R) is a weak APP-ring, there exists C = (c;;) € N, (g)(A)
such that BC — B € nil(7,(R)). Now it is easy to see that bc1; — b € nil(R) and ¢1; € Ng(a).
Thus R is a weak APP-ring. So if R is a domain, the T;,(R) is a weak APP-ring.

(3) If an NI ring R satisfies the condition that for each element p & nil(R), Ng(p) is gen-
erated as a right ideal by a nilpotent element, then we can show that R is a weak APP-ring.
So the rings in Example 2.1 and Example 2.2 are all weak APP-rings, and by Proposition
2.2 and Proposition 2.3, we can construct more examples of weak APP-rings.

Proposition 3.3. Let 6 be compatible and nil(R) nilpotent, and let R be an NI ring satis-
fying the descending chain condition on weak annihilators. Then the following conditions
are equivalent:

(1) Ris aweak APP-ring.

(2) R+((G)) is a weak APP-ring.
Proof. (1) = (2) Suppose that f = Y,cga.x, g = Yyegbyy € R* ((G)) are such that f €
Nr«((G))(8)- Then fg € nil(R* ((G))). By analogy with the proof of Proposition 2.2, we
obtain a.by € nil(R) for any x € supp(f) and any y € supp(g). Hence a, € Ng(b,) and
by € Ng(ay) for any x € supp(f) and any y € supp(g). Foraset Y C R, Y| < oo means the
cardinal number of Y is finite. Let

Q= {Ng(Y) | Y € {ax | x € supp(f)},|Y] < oo}

The Q is a nonempty set of weak annihilators. Since R satisfying descending chain condition
on weak annihilators, Q has a minimal element, say Ng(¥)). Assume that

Yo ={ax,,ax,, - ,ax,}.

Similarly, let
W= {Nr(X) [ X C {by |y €supp(e)}, [X]| <o}

Then W has a minimal element, say Ng(Xp). Also assume that

Xo = {b.w sbyys-e ’b)’m}'
Since ay,, ay,, ..., ax, € Nr(Xo) = L Nr(by,), by Proposition 3.1 and Proposition 3.2,
there exists ¢ € Ng(Xo) = (L Nr(by,) such that for all 1 <i <n, ay,c —a,, € nil(R). Then
¢—1 € Ng(Yo). If supp(f) = {x1,x2, -+ ,x, }, Then for any x € supp(f), axc — ay € nil(R).
Now assume that x € supp(f) — {x1,x2,- - ,x, }. Then by the minimality of Ng(¥p), we have
Nr(ax,,ax,,- - sax,) = Ng(ay, ,ax,, - ,ax,,ax). Thus

(¢—1) € Np(ay,,ax,, - ,ax,,ax),

and so ayc — ay € nil(R). This implies that ayc —ay = ay(c — 1) € nil(R) for any x € supp(f
Since o is compatible, for any x € supp(f), we have a,(c — 1) € nil(R) = a,0y(c— 1)
nil(R) = a,0x(c — 1)t(x,1) € nil(R). Thus by Proposition 2.1, we obtain

fe—f=f-(c—1)= (Z axx> (c—1)= Zaxcx(c— D)t(x,1)x € nil (R* ((G))).

xeG xeG

).
€
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Now we show that ¢ € Ng,((c))(g)- If supp(g) = {y1,¥2, "+ ,¥m}, Then for any y € supp(g),
byc € nil(R). Now assume that y € supp(g) — {y1,¥2,-** ,¥m}. Then by the minimality of
Ngr(Xo), we have Ng(by,,by,, - ,by,) = Nr(by,,by,, - ,by, ,by). Thus ¢ € Ng(by, ,by,,---,
by,,,by), and so byc € nil(R). Hence for any y € supp(g), byc € nil(R), and so b0y (c)t(y, 1) €
nil(R) for any y € supp(g). By Proposition 2.1, we obtain gc = (¥, byy)c = Lyeq byoy(c)
t(y,1)y € nil(R* ((G))). Hence ¢ € Ng,((c))(g)- Therefore R* ((G)) is a weak APP-ring.
(2) = (1) Let a, b € R be such that a € Nr(b). Then a € Ng,((g))(b). Since R ((G)) is
a weak APP-ring, there exists f = ¥.\cq axx € Ng.((g))(b) such that af —a € nil(R* ((G))).
By Proposition 2.1, we obtain aa; — a € nil(R) where 1 denotes the identity of G. Since
f € Ng«(())(b), by Proposition 2.1, we have ba; € nil(R), and so a; € Ng(b). Therefore R
is a weak APP-ring. 1

Let a be an endomorphism of a ring R. According to Hashemi and Moussavi [1], the
ring R is said to be a-compatible if for each a, b € R, ab =0 < aa(b) = 0.

Corollary 3.1. Let oo € Aut(R) and nil(R) nilpotent, and let R be an a-compatible NI
ring satisfying the descending chain condition on weak annihilators. Then the following
conditions are equivalent:

(1) Ris aweak APP-ring.
() R[[x,x" !, «]] is a weak APP-ring.

Proof. Take G =Z and t(x,y) = 1 for any x, y € Z. For any x € Z, let 6, = o*. Now the
result follows from Proposition 3.3. 1

Acknowledgement. The authors are grateful to the referee for his or her suggestions in
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