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Abstract. A function f : V(G) — {—1,1} defined on the vertices of agraph G isasigned
dominating function (SDF) if the sum of its function values over any closed neighborhood
isat least one. A SDF f :V(G) — {—1,1} is caled a globa signed dominating function
(GSDF) if f isalso a SDF of the complement G of G. The global signed domination number
Yos(G) of G is defined as 155(G) = min{X,cv (g f(V) | f isaGSDF of G}. In this paper we
study this parameter and pose some open problems.
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1. Introduction

In the whole paper, G is asimple graph with vertex set V(G) and edge set E(G) (briefly V
and E). For every vertex v € V, the open neighborhood N(v) istheset {u€V |uve E} and
its closed neighborhoodis the set N[v] = N(v) U{v}. The open neighborhood of aset SC V
is the set N(S) = UyesN(v), and the closed neighborhood of Sisthe set N[§ = N(S)US.
The minimum and maximum degrees of G are respectively denoted by § and A. For a vertex
vinarootedtree T, let D(v) denote the set of descendants of v and D[v] = D(v) U{v}. The
maximal subtree at v is the subtree of T induced by D[v|, and is denoted by T,. We use [12]
for terminology and notation which are not defined here.

For areal-valued function f : V — R theweight of f isw(f) = X,y f(v), andfor SCV
we define f(S) = Yyesf(v), so o(f) = f(V). For avertex vinV, we denote f(N[v]) by
flv]. Let f:V — {—1,1} be a function which assigns to each vertex of G an element
of the set {—1,1}. The function f is said to be a signed dominating function (SDF) of
G (see[4]) if f]v] > 1for every v e V. The signed domination number of G, denoted by
15(G), isthe minimum weight of asigned dominating function on G. In the definition of the
signed dominating function if we replace {—1,1} with {0,1}, then the function is said to
be a dominating function. The domination number of G, denoted by y(G), is the minimum

Communicated by Sanming Zhou.
Received: February 21, 2011; Revised: July 24, 2011.



364 H. Karami, R. Khoeilar, S. M. Sheikholeslami and A. Khodkar

weight of a dominating function on G. The domination and signed domination numbers
have been studied by several authors (see for example[1-3,5-9,11, 13, 14]).

A signed dominating function f : V(G) — {—1,1} iscaled aglobal signed dominating
function (GSDF) if f is also a SDF of its complement G. This definition is parallel to the
definition of a global dominating function of a graph defined in [10]. The global signed
domination number of G, denoted by y4s(G), is the minimum weight of a GSDF on G. A
¥s(G)-functionisa SDF of G with w(f) = ys(G). For a(global) signed dominating function
f of GwedefineP={veV | f(v)=1}andM = {veV | f(v) = —1}. Since every GSDF
of G isaSDF on both G and G, we have

(1.1) Yos(G) > max{15(G), %(G)}.

Our purposein this paper isto initiate the study of the global signed domination numbers
in graphs. We first present two classes of graphs with equal signed domination humber
and global signed domination number, then we give bounds on global signed domination
numbers. We make use of the following results.

Theorem 1.1. [4] For every graph G of order n, y5(G) = nif and only if every non-isolated
vertex is either a leaf or adjacent to a leaf.

Theorem 1.2. [4] For every graph G of order n > 3with A < 3, 75(G) > n/3.
Theorem 1.3. [4] For everytree T of order n> 2, %(T) > (n+4)/3.
Theorem 1.4. [4] Forn> 2, ys(Ph) =n—2[(n—2)/3].

Theorem 1.5. [4] For n> 3, y5(Cy) =n—2|n/3|.

Theorem 1.6. [5] Every connected cubic graph of order n different fromthe Petersen graph
has signed domination number at most 3n/4.

Theorem 1.7. [14] Let K, be a complete bipartite graph with b < a. Then

a+1l ifb=1
b if2<b<3andaiseven
b+1 if2<b<3andaisodd
%Kab) =1 4 itph> aanda bareboth even
6 if b> 4 and a, b are both odd
5 if b > 4and a, b have different parity.

We conclude this section with a proposition on ygs(G).
Proposition 1.1. For every graph G of order n > 2, y45(G) = n(mod 2).
Proof. Let f beayys(G)-function. Obviously, n = |P|+ [M| and y4s(G) = |P| — |M|. There-
fore, n— y4s(G) = 2|M| and the result follows. |
2. Some classes of graphswith y4s(G) = ¥%(G)

In this section we present two classes of graphs with equal signed domination number and
global signed domination number. Recall that, for every pair u,v of distinct verticesinV,
the distance dist(u, v) is the minimum length of a (u-v)-path.

Theorem 2.1. For every graph G of order n > 8 with A < 3, y45(G) = 15(G).
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Proof. Let f be a ys(G)-functionand v e V. We provethat f isalso aSDF of G. If visa
leaf of G and uv € E(G), then f(u) = f(v) = 1 and we have f(Ngz[v]) > 2 by Theorem 1.2.
Assumev isnot alesf. First let deg(v) = 2. Since f isa ys(G)-function, we have f[v] > 1,
which implies that

F(NgV)) = (V) — F(NaV]\ {v}) = n/3—2

Sincen > 8and f(Ng[v]) isan integer we obtain f(Ng[V]) > 1.

Finally, let deg(v) = 3and N(v) = {v1,v2,v3}. Since f[v] > 1, wemust have f[v] = 2 or
f[v] = 4. If n> 10, then as above f (Ng[v]) = f(v) + f(V\Ng[V]) > 1.

Let n= 8. Since each vertex in M must be adjacent to at least two verticesin P and every
two distinct verticesin M have no common neighborsin P (because A < 3), f assigns —1
to at most two vertices of G. Therefore ys(G) > 4 and the result follows as before.

Now let n= 9. First let f[v] = 4. Then f(v) = 1 and v has no neighbor in M. Asin case
n=8,itiseasy to seethat f assigns —1 to at most two vertices of G. Therefore y5(G) > 5
and the result follows as before. Suppose now that f[v] = 2. If f(v) = 1, then we have
f(Ng[V]) = f(v)+ f(V\Ng[V]) > 2 by Theorem 1.2. Let f(v) = —1. Thenv; (i=1,2,3)
has no neighborsin M. Therefore f assign —1 to at most one vertex in V \ Ng[v] and so
f(V\Ng[V]) > 3. Hence, f(Ng[V]) = f(v)+ f(V\Ng[V]) > 2. Thus, inall cases f(Ng[V]) >
1 and f isasigned dominating function on G. Therefore f is a global signed dominating
function on G, and hence ys(G) > ¥4s(G). Now the result follows by (1.1). |

%(G) =2and y4s(G) = 4 %(G) = 3and ygs(G) =5

Figure 1. The assumption n > 8 in Theorem 2.1 is necessary

Figure 1 and the fact that ys(Ks) = 1, ygs(K3) = 3, %5(Ka) = 2 and yys(Ks) = 4 show that
the assumptionn > 8in Theorem 2.1 is necessary. An immediate consequence of Theorems
1.5and 2.1 now follows.

Corollary 2.1.
n if n=3,4

Yos(Cn) = n— 2n !f n=>5,6
—2|= >7.
n—2 L}J if n>7
Theorem 2.2. For everytree T of order n> 3, y4s(T) = 1(T).

Proof. If T isastar, then by Theorem 1.7, y5(G) = n and the theoremis true. SupposeT is
not astar and f isa ys(T)-function. We show that f isaglobal signed dominating function
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onT. LetveV(T). If visaleaf and uv € E(T), then obviously f(u) = f(v) =1. By
Theorem 1.3 we have

Yy f(x —1>———1=—">1

XENE[V]
Supposethat visnot aleaf. Let T berooted at v and let z be avertex with dist(v,z) = 2. We
claim that
(2.2) Y f(x)>1

xeV (Tz)
Assumethat P, = {xeV(T,) | f(x) =1} andM, = {xe V(T) | f(X) = —1}. If My = 0, then
we are done. Suppose that M, # 0. For each x € M, we set
Bx={ye Tx| f assings1 toadl verticesin (x,y)-pathin T except x}.

Obviously, |By| > 2. Therefore|PZ| > YxeM, |Bx| = 2|Mg| > 2. Thus

Y f(X) =[Py — Mg > 2|Mg| — [M| = [Mg| > 1,

XeV(Ty)

which provesour claim.
Letz,...,z betheverticesof T such that dist(v,z)) =2fori € {1,2,...,r}. Then

(2.2) > f(x +2 > f

XENF V] i=1xeV( Tq)

If vis asupport vertex, then obviously f(v) = 1 and by (2.1) and (2.2), Txen-py f(X) =
AssumevV isnot asupport vertex. Thenr > 2and by (2.1) and (2.2), we have Yyen-y f(X)
1. This completes the proof.

-V P

3. Boundson the global signed domination numbers

In this section, we give some bounds on the global signed domination numbers of general
graphs. Our first theorem shows that the global signed domination number of a graphis a
positive integer.

Theorem 3.1. Let G beagraph of order n > 3. Then
3.1 7es(G) = max{3, %(G), 15(G) }.
Furthermore, this bound is sharp.

Proof. By (1.1) we have ygs(G) > max{ys(G), 15(G)}. Thus, it sufficesto prove ygs(G) > 3.
Let f be aygs(G)-function. If M = 0, then the result follows. Let M # 0. Assume x € M.
Then

32 [N (X) NP| = [Ne(x) "M+ 2
and

(3.3 INg(X) "P| > [Ng(x) "M |+ 2.
By (3.2) and (3.3) we have

ING (%) N P|+ [Ng(x) NP > [Na(x) "M[ + [Ng(x) "1M| + 4.
It followsthat |P| > [M|+3and so y4s(G) = |P| — [M| > 3.
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To prove the sharpness, let k > 3 and let G be the graph with vertex set V (G) = {u;, Vi |
1<i<klU{z,z,z3} andedgeset E(G) = {ujUj1,UVi, Ui+1Vi | 1 <i <k}, whereug,1 =
ui. Define f :V(G) — {—1,1} by f(vi) = —1for 1 <i <kand f(x) =1 otherwise. It
is easy to see that f is a GSDF of G with o(f) = 3. Thus y4s(G) = 3 and the proof is
complete. |

Now we prove that the difference ygs(G) — max{%s(G), v5(G)} can be arbitrarily large.

Theorem 3.2. For every positive integer k, there exists a graph G that both of G and G are
connected and

Yos(G) — max{5(G), %(G)} > 2k+ 1.

Proof. Let G be the graph with vertex set V(G) = {uj,v; | 0 <i < 4k— 1} and edge set
E(G) ={vivj |0<i# ] <4k—1}U{uVi,uVit1,...,UVizx_1 | 0 <i < 4k—1}, where
the sum is taken modulo 4k. Obviously, G ~ G and s0 y5(G) = %(G). Define f : V(G) —
{=1,1} by f(vi) =1ifi e {0,1,...,3k} and f(x) = —1 otherwise. It is easy to see that f
isa SDF of G which impliesthat y5(G) < w(f) = 2— 2k. Therefore max{ys(G), %s(G)} <
2—2k. By Theorem 3.1 we have ygs(G) — max{ys(G), %(G)} > 2k + 1 and the proof is
complete. 1

Theorem 3.3. Let G be a graph of order nwith 6(G) > 2. Then y4s(G) = nif and only if
%(G) =n.
Proof. Let y4s(G) = n. We claim that A(G) < 1. Let, to the contrary, A(G) > 2. Suppose
that x € V(G) is a vertex with degg(x) = A(G). Define f : V(G) — {—1,1} by f(x) = —1
and f(v) = 1 otherwise. Obviously, f is a GSDF on G and this contradicts the fact that
Y%s(G) = n. ThusA(G) < 1. Now the result follows by Theorem 1.1.
Conversely, if 15(G) = n, then by Theorem 3.1, y4s(G) = n and the proof is complete. 1
We conclude this section with some upper bounds on the global signed domination num-
ber of agraph.

Theorem 3.4. For every graph G of order n,
Ygs(G) < n—2min{ {@J , {@J }

Proof. Let, without loss of generality, 6 = [0(G)/2] = min{|0(G)/2],|8(G)/2]}. Sup-
pose that v1,...,Vy are distinct vertices of G. Define f : V(G) — {—1,1} by f(vj) = -1
fori=1,...,0 and f(X) = 1if x& {v1,...,Vg}. Itiseasy to seethat f isa GSDF of G and
o(f) =n—26. This completes the proof. 1

The diameter of G, diam(G), is defined by diam(G) = max{dist(u,v) | u,ve V(G)}. A
path of length diam(G) is called adiametral path.

Theorem 3.5. Let G be a Ks-free graph of order n > 3with 6(G) > 2. Then

diam(G) —1
7s(G) <n—2 {%J .
Proof. If diam(G) < 3, then obviously the theorem istrue. Let diam(G) > 4. Suppose that
Q =V1V2V3...Vgiam(g)+1 iSadiametra pathin G. Define f :V(G) — {—1,1} by f(vg) =1
for 1<i < |(dian(G)—1)/3] and f(x) = 1 otherwise. We prove that f isa GSDF of G.
If ue V(G), then obviously [Ng[u]N"M| < 1. Since §(G) > 2, it follows that f[u] > 1in



368 H. Karami, R. Khoeilar, S. M. Sheikholeslami and A. Khodkar
G and so f isa SDF on G. On the other hand, it is easy to see that, if u € V(G), then
INg[ul "M| < | (diam(G) — 1)/3] and since G is a Kz-free graph, it follows that |Ng[u] N
PNV(Q)| > [(diam(G) — 1)/3] + 2. Hence, f5[v] > 2and so f isa SDF on G. Therefore,
f isaGSDF of G. We have o(f) = n— 2| (diam(G) — 1)/3] and the result follows. 1
We note that the bound given in Theorem 3.5 is sharp for paths, complete graphs, stars
and subdivided stars.
The next theorem presents an upper bound for the global signed domination number of
a graph G, which contains cycles, in terms of the girth of G. Recall that the girth of G
(denoted g(G)) isthe length of asmallest cyclein G.

Theorem 3.6. Let G # Cg be a connected graph of order nwith §(G) > 2 and ys(G) # n.

Then
Yos(G) <n—2 {L:S)J .

Proof. It follows straightforwardly from y5(G) # n that G is not isomorphic to Cz or Cy.
Since ¥%(G) # n, we have ygs(G) < n by Theorem 3.3. By Proposition 1.1, y45(G) < n—2.
Hence, we may assume g(G) > 6 for otherwisetheresult follows. LetC = (vy,Va, ..., Vyg))
be a cycle with g(G) edges. (Note that every finite graph with §(G) > 2 contains a cycle.)
If G = C, then the result follows by Corollary 2.1. Suppose that G # C. It follows that
n> 7. Then each vertex in V(G) \ V(C) can be adjacent to at most one vertex inV(C). Let
g beays(C)-function. Define f : V(G) — {—1,1} by f(x) = g(x) if xe V(C) and f(x) =1
otherwise. It iseasy to seethat f isaGSDF of G with weight o(f) =n—2|g(G)/3]. Thus
Yes(G) <n—2[g(G)/3. I

We need the following Theorem to characterize the family of graphs with girth at least
five which achieve the bound in Theorem 3.6.

Theorem 3.7. Every connected graph G of order nwith §(G) = 2and A(G) = 3 hassigned
domination number at most 3n/4.

Proof. Let X = {ve V(G) | deg(v) = 2} = {v1,...,V}. Obviously, X # 0. Suppose that
G isacopy of Gand X' = {V e V(G') | deg(V') = 2} = {V},...,V}. Let H bethe graph
obtained from G and G’ by joining v; to v{ for 1 <i < k. Then H is acubic graph of order
2n different from the Petersen graph. By Theorem 1.6, ys(H) < 6n/4. Let f bea ys(H)-
function and let f|g and f|z betherestrictionsof f on G and G’, respectively. Obviously,
f|g and f|z are SDFson G and G, respectively. Without loss of generality we may assume
w(f|g) <w(f|g). Now we have

2w(fle) = w(fle) +w(fle) = %(H) <6n/4.
Thus y%5(G) < w(f|g) < 3n/4 and the proof is complete. |

Theorem 3.8. Let G be a connected graph of order n with 6(G) > 2 and g(G) = 5. Then
Ygs(G) =n—2ifand only if G ~ Cs.

Proof. If G ~ Cs, then the result follows by Corollary 2.1. Now let y4s(G) =n— 2. Let, to
the contrary, G # Cs. Assume that C = (v1,Vz,...,Vs) isacycleof G. First let A(G) < 3.
By Theorems 1.2 and 3.7,n—2<3n/4and so 6 < n < 8. Since §(G) > 2 and each vertex
inV(G)\V(C) is adjacent to at most one vertex in V(C), n# 6. Assume that n= 7 and
X,y € V(G) \V(C). Since each vertex in V(G) \ V(C) is adjacent to at most one vertex
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inV(C), xy € E(G). Since 6(G) > 2, we may assume xv1 € E(G). Since g(G) = 5 and
6(G) > 2, y must be adjacent to only one vertex in {vs,v4}. Without loss of generality
we may assume yvz € E(G). Then G ~ G; (see Figure 2). Define f : V(G) — {—1,1} by
fy)=f(vs) =—1and f(x) =1if xe V(G) \ {y,vs}. Obviously, f isaGSDF of G and so
Ygs(G) <w(f)=n—4,acontradiction. Finally, let n= 8. Supposethat x,y,ze V(G) \V(C).
Since each vertex inV(G) \ V(C) is adjacent to at most one vertex inV(C), we may assume
xy,yz € V(G). Thenxz ¢ E(G). Consider two cases.

Casel: N(y)nV(C) #0.

Let, without loss of generality, yv1 € E(G). Since 6(G) > 2, x and z must be adjacent
to only one vertex in {vs,v4}. Without loss of generality, we may assume xvs,zv4 € E(G).
Then G ~ G, (seeFigure2). Define f :V(G) — {—1,1} by f(z2) = f(vo)=—1and f(x) =1
if xeV(G)\ {zv2}. Then f isaGSDF of G and so y4s(G) < w(f) =n—4, acontradiction.

Case2: N(y)nV(C)=0.

Then deg(y) = 2. Since §(G) > 2, N(x) NV (C) # 0 and N(z) NV (C) # 0. Without loss
of generality, we may assume xv; € E(G). Then z must be adjacent to only one vertex in
{Vvs,Vva} or zisadjacent to somevertex in {vo,vs}. If 2v3 € E(G) or zv4 € E(G), then G~ G3
(see Figure 2). If zis adjacent to some vertex in {vy, vs }, then zis adjacent to at most one of
them because g(G) = 5and so G ~ G, or G ~ Gs (see Figure 2). It is now easy to see that
Ygs(G) < n— 4, acontradiction.

Now let A(G) > 4. Supposethat x € V(G) isavertex of degree A(G) and x1,%2 € N(X).
Sinceg(G) =5, N[x1]NN[xz] = {x}. Define f : V(G) — {—1,1} by f(x1) = f(x2) = —1and
f(v) =1ifveV(G)\ {x1,x2}. Obviously, f isaGSDF of G and so y4s(G) < w(f) =n—4,
a contradiction. 1

Vi Vi Vi

Vg V2 Vs V2 Vs V2

Vg V3 Vg V3 Vg V3
G1 G2 Gs
Vi V1

Vg V2 Vs V2

Vg V3 Vg V3
G4 GS

Figure 2. Connected graphs G of order n= 7,8 withg(G) =5and gs <n—4

Theorem 3.9. Let G be a connected graph of order n with 6(G) > 2 and g(G) > 7. Then
15s(G) =n—2|g(G)/3] ifand only if G ~ C,.

Proof. If G~ Cy, thentheresult followsby Corollary 2.1. Now let ygs(G) =n—2|9(G)/3].
Let, tothe contrary, G  Cy. Assumethat C = (v1v2... vyg)) isacycleof G. Since 6(G) > 2
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and g(G) > 7, there exists a vertex z € V(G) such that dist(z,V(C)) = 2. Without loss of
generality we may assume N(v1) NN(z) # 0. Let x € N(v1) NN(2). If g(G) = 7,8, then
define f :V(G) — {—1,1} by f(2) = f(v2) = f(Vy)-2) = —1and f(x) = 1 otherwise. If
9(G) > 9, thendefine f : V(G) — {—1,1} by f(2) = f(vai;2) = —1for0<i < |g(G)/3] —
1 and f(x) = 1 otherwise. Obviously, f is a GSDF of G and so yg4s(G) < w(f) =n—
2(19(G)/3| +1), acontradiction. This completes the proof. |

Theorem 3.10. Let G be a connected graph of order n > 17 with 6(G) > 2 and g(G) = 6.
Then 945(G) < n—6.

Proof. Let, to the contrary, y4s(G) > n— 4. Note that by Proposition 1.1, y4s5(G) # n—5.
By Theorems 3.3 and 3.6 we have y45(G) = n—4. Firstlet A(G) < 3. If §(G) = A(G) =3,
then it follows from Theorem 1.6 that n— 4 < (3n)/4 and so n < 16, a contradiction. If
6(G) = A(G) = 2, then G ~ Cy, and by Theorems 2.1 and 1.5, n—4 =n— 2| Z] and so
n=6,7or 8, acontradiction. If §(G) =2 and A(G) = 3, then it follows from Theorem 3.7
that n—4 < (3n)/4 and so n < 16, a contradiction.

Now let A(G) > 4 and let X € V(G) be a vertex of degree A(G). First assume that x
belongsto aminimal cyclein G, say C = (v, V1,...,Vr) wherex = vp. Supposethat x3,xz €
N(x)\V(C). Define f :V(G) — {—1,1} by f(x1) = f(x2) = f(vz) = —1and f(u) =1
forue V(G)\ {x1,%2,v2}. Obviously, f isaGSDF of G and s0 ygs(G) <w(f) =n—6,a
contradiction. So we may assume x does not belongto acyclein G. Let C = (vi,va,...,Vs)
be a cycle in G for which dist(x,V(C)) is minimum. If dist(x,V(C)) = 1, then without
loss of generality we may assume xv; € E(G). Supposethat x1,%2 € N(X) \ {v1}. Thenthe
function f : V(G) — {—1,1} defined by f(x1) = f(x2) = f(v2) = —1and f(u) =1forue
V(G)\ {x1,%,V2}, isaGSDF of G which leads to acontradiction. Now let dist(x,V(C)) >
2. Suppose that xz12,. ..z is a shortest (x,V(C))-path and x1,%2 € N(X) \ {z1}. Define
f:V(G)— {11} by f(x1) = f(x2) = f(zz) = —1and f(u) = 1forue V(G) \ {X1,%2, 22}
Obvioudly, f isaGSDF of G and so y4s(G) < w(f) =n—6, acontradiction. This completes
the proof. |

4. Theglobal signed domination number of complete bipartite graphs

As the parameter 145(G) is new, it is important to determine its values for some familiar
graphs. In this section we find the exact value of the global signed domination number for
complete bipartite graphs.

Theorem 4.1. Let K, be a complete bipartite graph with parts A, B such that |A| = a,
Bl =b,b<a Then

a+1l ifb=1

if a,b are both even
ifaisevenand b > 3isodd
ifb=3andaisodd

if b> 5and a, b areboth odd
ifb=2andaisodd

if b>4isevenand aisodd.

Yos(Kap) =

Ggwo s~ o b

Proof. If b= 1, then by Theorem 1.7, v5(G) = a+ 1 and the result follows by Theorem 3.1.
Letb>2andlet A= {X1,X,...,Xa} and B = {y1, Y, ...,Yp}. We consider four cases.
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Case1: aandb areboth even.

Define f :V(Kap) — {—1,1} by f(x) =1for1<i<a/2+1,f(y;)=1if1<j<b/2+1
and f(x) = —1 otherwise. Obviously, f isaGSDF of G and s0 ygs(Kap) < o(f) =4. Now
the result follows by Proposition 1.1 and Theorem 3.1.

Case?2: aisevenandb > 3isodd.

First note that by assumptionsa > 4. Define f : V(Kap) — {—1,1} by f(x) =1for1<i <
a/2+1, f(yj) =1for1<j < (b+3)/2and f(x) = —1 otherwise. It is easy to see that f
isa GSDF of G with o(f) =5. Now the result follows by Theorems 1.7 and 3.1.

Case3: aand b are both odd.

First let b= 3. By Theorems 1.7 and 3.1, ygs(Kap) > 1%5(Kap) = 4. Define f 1 V(Kap) —
{=1,1} by f(xi) = —1for1<i < |a/2] and f(x) = 1, otherwise. Obviously, f isa GSDF
of G with o(f) = 4. It follows that ygs(Kap) = 4.

Now suppose that b > 5. By Theorems 1.7 and 3.1, ygs(Kap) > max{3,6,2} =
Ys(Kap). Define f 1 V(Kap) — {—1,1} by f(x) = f(y;) =1for1<i<(a+3)/2,1<
(b+3)/2and f(x) = —1, otherwise. It is easy to verify that f isa GSDF with o(f) =
Thisimplies that ygs(Kap) = 6.

Case4: aisoddandbiseven.

Firstletb=2. Define f : V(Kqp) — {—1,1} by f(x) = —1for1<i<|a/2|and f(x) =1
otherwise. Obviously, f isa GSDF of G with o(f) = 3. Therefore ygs(Kap) < 3. Now the
result follows by Theorems 1.7 and 3.1.

Letb > 4. Define f : V(Kap) — {—1,1} by f(xi) = f(y;) = —1for1<i < [a/2] -1,
1<j<(b—-2)/2and f(x) =1 otherwise. Clearly, f isa GSDF on G with o(f) = 5.
S0 Ygs(Kap) < 5. By Theorems 1.7 and 3.1, ygs(Kap) > max{3,5,3} = 5, hence the result
follows. This completesthe proof. 1

6 —
i<

5. Some open problems

Itis clear that for a graph G of order n, ygs(G) — |%5(G)| < n— 1. A natural problemisthe
following.

Problem 1. Find a*“good” lower bound for y4s(G) — | %5(G)|.

Define g(n) = max{ygs(G) — max{ys(G), %s(G)} | G isagraph of order n}.
We know from the construction illustrated in the proof of Theorem 3.2, g(n) > n/4+1
holds when n= 0 (mod 4).

Problem 2. Find “good” lower and upper bounds for g(n).
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