
BULLETIN of the
MALAYSIAN MATHEMATICAL

SCIENCES SOCIETY

http://math.usm.my/bulletin

Bull. Malays. Math. Sci. Soc. (2) 36(2) (2013), 373–383

Extremal Unicyclic and Bicyclic Graphs with Respect to Harary Index

1KEXIANG XU AND 2KINKAR CH. DAS
1College of Science, Nanjing University of Aeronautics Astronautics, Nanjing, P. R. China

2Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea
1xukexiang0922@yahoo.cn, 2kinkardas2003@googlemail.com

Abstract. The Harary index is defined as the sum of reciprocals of distances between all
pairs of vertices of a connected graph. In this paper, we determined the extremal (maximal
and minimal) unicyclic and bicyclic graphs with respect to Harary index.

2010 Mathematics Subject Classification: 05C90

Keywords and phrases: Unicyclic graph, bicyclic graph, Harary index, diameter.

1. Introduction

The Harary index of a graph G, denoted by H(G), has been introduced independently by
Plavšić et al. [25] and by Ivanciuc et al. [20] in 1993. It has been named in honor of
Professor Frank Harary on the occasion of his 70th birthday. The Harary index is defined as
follows:

H = H(G) = ∑
vi,v j∈V (G)

1
dG(vi,v j)

,

where the summation goes over all pairs of vertices of G and dG(vi,v j) denotes the distance
of the two vertices vi and v j in the graph G (i.e., the number of edges in a shortest path
connecting vi and v j). Mathematical properties and applications of H are reported in [4, 10,
11, 22, 32].

Another distance-based topological indices of a graph G is the Wiener index W (G). As
an oldest topological index, the Wiener index of a graph G, first introduced by Wiener [27]
in 1947, was defined as

W (G) = ∑
vi,v j∈V (G)

dG(vi,v j)

with the summation going over all pairs of vertices of G. Mathematical properties and
applications of Wiener index is extensively reported in the literature [2, 6–9, 11–17, 21, 23,
24, 26, 33, 34].
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Let γ(G,k) be the number of vertex pairs of the graph G that are at distance k. Then

(1.1) H(G) = ∑
k≥1

1
k

γ(G,k).

Note that, in any disconnected graph G, the distance is infinite of any two vertices from
two distinct components. Therefore its reciprocal can be viewed as 0. Thus we can define
validly the Harary index of disconnected graph G as follows:

H(G) =
k

∑
i=1

H(Gi) ,

where G1,G2, . . . ,Gk are all the components of G.

All graphs considered in this paper are finite, simple and connected. Let G be a graph
with vertex set V (G) = {v1,v2, . . . ,vn} and edge set E(G). For a vertex vi ∈V (G), the degree
of vi, denoted by dG(vi) (or written as d(vi) for short) is the number of vertices in G adjacent
to vi. In particular, ∆ = ∆(G) is called the maximum degree of vertices of G. A vertex vi of
degree 1 is called pendent vertex. An edge e = viv j incident with the pendent vertex vi is a
pendent edge. For a subset W of V (G), let G−W be the subgraph of G obtained by deleting
the vertices of W and the edges incident with them. Similarly, for a subset E ′ of E(G), we
denote by G−E ′ the subgraph of G obtained by deleting the edges of E ′. If W = {vi} and
E ′ = {v jvk}, the subgraphs G−W and G−E ′ will be written as G− vi and G− v jvk for
short, respectively. For any two nonadjacent vertices vi and v j in graph G, we use G+ viv j
to denote the graph obtained from adding a new edge viv j to graph G. A connected graph
G is called unicyclic graph if |E(G)| = |V (G)|. Similarly a connected graph G is bicyclic
graph when |E(G)| = |V (G)|+ 1. In the following we denote by Pn, Cn and Sn the path
graph, the cycle graph and the star graph with n vertices, respectively. For other undefined
notations and terminology from graph theory, the readers are referred to [1].

Let U (n) and B(n) be the set of connected unicyclic graphs of order n and the set of
connected n-vertex bicyclic graphs, respectively. A graph with maximum degree at most
4 is called molecular graph, which models the skeleton of an molecule in chemistry [26].
Gutman [16] first determined the extremal (minimal and maximal) trees with respect to
Harary index (which are path and star, respectively). For more mathematical properties or
chemical applications of Harary index, the readers can refer to [4,5,10,11,16,18,19,30–33].
In particular, one of the present authors, Zhou and Trinajstić [4], Zhou, Cai, Trinajstić [32]
gave some nice bounds on Harary index. Moreover, Theorem 2.1 of [18] has also been
reported in [16]. In this paper we determined the extremal graphs in U (n) and B(n),
respectively, at which the maximal and minimal Harary index are attained.

2. Some lemmas

In this section we list or prove some lemmas as basic but necessary preliminaries, which
will be used in the subsequent proofs.

First, for a connected graph G with vi ∈V (G), we define QG(vi) = ∑
v j∈V (G)

dG(vi,v j)
dG(vi,v j)+1 . For

convenience, sometimes we write QG(vi) as QV (G)(vi). Note that the function f (x) = x
x+1

is strictly increasing for x≥ 1.
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Lemma 2.1. [28] Let G be a graph of order n and vi be a pendent vertex of G with
viv j ∈ E(G). Then we have H(G) = H(G− vi)+n−1−QG−vi(v j).

Proof. By the definitions of Harary index and QG(u), we have

H(G) = ∑
vs,vt∈V (G−vi)

1
dG(vs,vt)

+ ∑
x∈V (G−vi)

1
dG(x,vi)

=H(G− vi)+ ∑
x∈V (G−vi)

1
dG(x,v j)+1

=H(G− vi)+ ∑
x∈V (G−vi)

(1− dG(x,v j)
dG(x,v j)+1

)

=H(G− vi)+n−1−QG−vi(v j),

completing the proof of this lemma.

Lemma 2.2. [30] Let G be a graph with vi, v j as its two nonadjacent vertices and e∈E(G).
Then

(1) H(G+ viv j) > H(G);
(2) H(G− e) < H(G).

From Lemma 2.1 and Lemma 2.2 (2), the following corollary is obvious.

Corollary 2.1. Let G be a graph of order n and viv j ∈ E(G). Then

H(G)≥ H(G− vi)+n−1−QG−vi(v j)

with equality holding if and only if vi is a pendent vertex of G.

Let Tn(n1,n2, · · · ,nm) (see in Fig. 1(a)) be a starlike tree of order n obtained from the

star Sm+1 by replacing its m edges by m paths Pn1 ,Pn2 , · · · ,Pnm with
m
∑

i=1
ni = n− 1. For

convenience, if the number of nk in Tn(n1,n2, · · · ,nm) is lk > 1, we write it as nlk
k in the

following. For example, T11(2,2,3,3) will be written as T11(22,32) for short. A broom of
order n with k leaves is just written as Bn,k = Tn(1k−1,(n− k)1) (see Fig. 1(b)). A leaf
adjacent to the unique vertex of maximum degree k in Bn,k is called unit leaf. Obviously,
Bn,k has k−1 unit leaves. Suppose B′n,k ⊇ Bn,k , where B′n,k is a graph of order n obtained by
adding some edges (if exists) between unit leaves in Bn,k. If vi is the pendent vertex of B′n,k
with the distance n− k from that vertex of maximum degree k, then

QB′n,k
(vi) =

n(n− k +1)
n− k +2

−
n−k+1

∑
t=1

1
t +1

.

Lemma 2.3. Let G be a connected graph of order n with diameter d ≤ k (k < n). For any
vertex v ∈V (G),

(2.1) QG(v)≤ nk
k +1

−
k

∑
t=1

1
t +1

with equality holding in (2.1) if and only if G is isomorphic to B′n,n−k+1 and v is the unique
vertex of B′n,n−k+1 with the distance k−1 from that vertex of maximum degree n− k +1.
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· · ·

· · ·

...

n1︷︸︸︷

nm︷︸︸︷
v0

v1

vm

(a) Tn(n1,n2, · · · ,nm)

· · ·
· · ·

k−1︷︸︸︷
n−k︷︸︸︷

(b) Bn,k

Fig. 1 The graphs Tn(n1,n2, · · · ,nm) and Bn,k

Proof. Suppose that Pd+1 : v1v2 . . .vdvd+1 is a path, where the vertices vi and vi+1 are
adjacent for i = 1,2, . . . ,d in G.

Then we have

QG(v) = ∑
v j∈V (G)

dG(v,v j)
dG(v,v j)+1

= n−1− ∑
v j∈V (G)

1
dG(v,v j)+1

≤n−1−
d

∑
j=1

1
j +1

− n−d−1
d +1

as dG(v,v j)≤ d.(2.2)

If k = d, then from (2.2), we get the required result (2.1). Otherwise, k > d. In this case
we have to prove that

n−1−
d

∑
j=1

1
j +1

− n−d−1
d +1

< n−1−
k

∑
j=1

1
j +1

− n− k−1
k +1

,

that is,
k

∑
j=1

1
j +1

+
n− k−1

k +1
<

d

∑
j=1

1
j +1

+
n−d−1

d +1
,

that is,
k

∑
j=1

1
j +1

−
d

∑
j=1

1
j +1

=
k

∑
j=d+1

1
j +1

<
n(k−d)

(k +1)(d +1)
,

that is,
k

∑
j=d+1

1
j +1

≤ k−d
d +2

<
n(k−d)

(k +1)(d +1)
,

which, evidently, is always obeyed as d < k < n. First part of the proof is over.
Suppose that the equality holds in (2.1). Then the equality holds in (2.2) and we must

have d = k. From equality in (2.2), we get

v = v1, dG(v,v j) = d for j = d +2, d +3, . . . ,n.

Since d = k, obviously, G is isomorphic to a graph obtained from Bn,n−k+1 by adding some
edges (if exists) between unit leaves in it. Thus G ∼= B′n,n−k+1 and vi is the pendent vertex
of B′n,n−k+1 with the distance k−1 from that vertex of maximum degree n− k +1.
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Conversely, one can see easily that the equality holds in (2.1) for B′n,n−k and vi is the
pendent vertex of B′n,n−k+1 with the distance k− 1 from that vertex of maximum degree
n− k +1.

Let K′
4 be a graph obtained by deleting an edge from K4. Using B(0)

n we denote the graph
obtained by identifying a pendent vertex of Pn−3 with a vertex in K′

4 of degree 2. Denote by
B(0,s)

n a graph of order n which is obtained by attaching paths Pn−s−4 and Ps at each of two
2-degree vertices of K′

4, 0≤ s≤
⌈

n−4
2

⌉
. In particular, B(0)

n = B(0,0)
n . One can see easily that

(2.3) Q
B(0,s)

n
(v j) < · · ·< Q

B(0,1)
n

(v j) < Q
B(0,0)

n
(vi) = Q

B(0)
n

(vi) with s =
⌈n−4

2

⌉
,

where vi is the only pendent vertex in B(0)
n and v j is one pendent vertex farthest from K′

4 in
B(0,s)

n .

Lemma 2.4. Let G be a connected bicyclic graph of order n with diameter n− 2. Then
G∼= B(0,s)

n with 0≤ s≤
⌈

n−4
2

⌉
.

Proof. Since the diameter of bicyclic graph G is n−2, we have an induced path Pn−1 in G.
Suppose that Pn−1 : v1v2 . . .vn−2vn−1 is a path, where the vertices vi and vi+1 are adjacent
for i = 1,2, . . . ,n− 2 in G. Considering that G is bicyclic, we claim that the remaining
vertex vn must be adjacent to three vertices of v1,v2, . . . ,vn−2,vn−1. Notice that the diameter
of G is n−2, again, the three vertices adjacent to vn must be consecutive. Thus we find that
G∼= B(0,s)

n with 0≤ s≤
⌈

n−4
2

⌉
, which completes the proof of this lemma.

Lemma 2.5. Let G be a connected bicyclic graph of order n. For any vertex vi ∈V (G),

(2.4) QG(vi)≤ n2−3n+1
n−2

−
n−2

∑
t=1

1
t +1

with equality holding in (2.4) if and only if G is isomorphic to B(0)
n and vi is the unique

pendent vertex of B(0)
n .

Proof. Since there is only one connected graph of order n with diameter d = n− 1, which
is just path Pn, any bicyclic graph G of order n has diameter d ≤ n− 2. Now we consider
two cases (i) d ≤ n−3, (ii) d = n−2.
Case (i) : d ≤ n−3. By Lemma 2.3, we have

(2.5) QG(vi)≤ n(n−3)
n−2

−
n−3

∑
t=1

1
t +1

with equality holding in (2.5) if and only if G is isomorphic to B′n,4 and vi is the unique
vertex of B′n,4 with the distance n−4 from that vertex of maximum degree 4.
Case (ii) : d = n−2. Since G is bicyclic graph, we have

G∼= B(0,s)
n , 0≤ s≤

⌈n−4
2

⌉
, by Lemma 2.4.

By (2.3), we have

QG(vi)≤ Q
B(0,0)

n
(vi) = Q

B(0)
n

(vi) =
n2−3n+1

n−2
−

n−2

∑
t=1

1
t +1

(2.6)
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with equality holding in (2.6) if and only if G is isomorphic to B(0)
n and vi is the unique

pendent vertex of B(0)
n .

Set

M =
(n2−3n+1

n−2
−

n−2

∑
t=1

1
t +1

)
−

(n(n−3)
n−2

−
n−3

∑
t=1

1
t +1

)
.

Then we have

M =
1

n−2
− 1

n−1
=

1
(n−1)(n−2)

> 0.

By the above arguments, the result (2.4) follows immediately. Moreover, the equality in
(2.4) holds if and only if G∼= B(0)

n and vi is the unique pendent vertex of B(0)
n .

3. Main results

In [31], Yu and Feng characterized the extremal graph with maximal Harary index among
all connected bicyclic graphs of order n and with two edge disjoint cycles. In [3], Chen first
gave a formula for the Harary index of any unicyclic graph, and then calculated the first three
greatest Harary indices of graphs in U (n) and with given girth (this result was obtained by
Yu and Feng [31] with a different method). By the above results, Chen [3] determined the
first three greatest Harary indices of graphs in U (n) and characterized these corresponding
extremal graphs. Moreover, Chen [3] conjectured that the extremal graph in U (n) with
minimal Harary index is probably a graph obtained by identifying a pendent vertex of Pn−2
with one vertex of C3. In this section we will determine completely the extremal (maximal
and minimal) unicyclic and bicyclic graphs with respect to Harary index, one of which
confirms this conjecture of Chen.

Before obtaining our main results, we first introduce some new graphs below. Denote
by Ck(1n−k) the graph obtained by attaching n− k pendent edges to one vertex of Ck. Let
Ck((n− k)1) be a graph obtained by identifying one pendent vertex of Pn−k+1 with one
vertex of Ck. We use C3,3 to denote the graph obtained by adding two nonadjacent edges to
a star S5. Let B(1)

n be the graph obtained by attaching n−4 pendent edges to one vertex in
K′

4 of degree 3 and also let B(2)
n be a graph obtained by attaching n−5 pendent edges to the

unique vertex in C3,3 of degree 4 (see Fig. 2).

· · · · · ·

B(1)
n B(2)

n

Fig. 2. The graphs B(1)
n and B(2)

n .

If n = 4, U (n) contains only two graphs C4 and C3(11). By a simple calculation, we
have H(C4) = H(C3(11)) = 5. So in the following we always assume that n ≥ 5 in U (n).



Extremal Unicyclic and Bicyclic Graphs with Respect to Harary Index 379

For n = 4, there exists only one graph K′
4 in B(n). So in the following we only need to

consider the set B(n) with n≥ 5.
In the following two theorems the extremal graphs in U (n) and B(n) with maximal

Harary index are completely determined, respectively. In particular, compared with that
of [3], we give a different but short proof in Theorem 3.1.

Theorem 3.1. [3] Let G ∈U (n). Then we have H(G)≤ n2+n
4 with equality holding if and

only if G∼= C3(1n−3) for n≥ 6 and G∼= Cn or G∼= C3(1n−3) for n = 5.

Proof. There are
(n

2

)
vertex pairs (at distance at least one) in any unicyclic graph G, the

number of vertex pairs at distance one is n, i.e., the number of edges in G. By (1.1), we have

H(G)≤n+
1
2
(
(

n
2

)
−n) =

n2 +n
4

.(3.1)

It is easy to see that equality in (3.1) holds if and only if G has diameter 2. Obviously,
unicyclic graph G has diameter 2 if and only if G ∼= C3(1n−3) for n ≥ 5 and there is one
more graph Cn for n = 5, which implies the result in this theorem.

When n = 5, there are only five graphs in B(n) which are shown in Fig. 3. We can easily
check that

H(B(1)
5 ) = H(B(2)

5 ) = H(B(3)
5 ) = H(B(4)

5 ) = 8 > 7+
1
2

+
1
3

= H(B(5)
5 ).(3.2)

B(1)
5 B(2)

5 B(3)
5 B(4)

5 B(5)
5

Fig. 3. All the graphs in B(5).

Theorem 3.2. For any graph G ∈B(n) with n≥ 6, we have H(G)≤ n2+n+2
4 with equality

holding if and only if G∼= B(1)
n or G∼= B(2)

n , and G is isomorphic to an exceptional graph B′6
when n = 6 obtained from B(4)

5 (see Fig. 3) by subdividing the edge connecting two vertices
of degree 3 in it.

Proof. Again, by a similar reasoning to that in Theorem 3.1, we conclude that, for any graph
G ∈B(n), H(G) ≤ n2+n+2

4 with the equality holding if and only if G has diameter d = 2.
To obtain our main result, now we will prove the following claim.
Claim 1. Any bicyclic graph G, except the graph B′6, with diameter 2 has the maximum
degree ∆ = n−1.
Proof of Claim 1. There is no bicyclic graph with maximum degree 2. Obviously, except
the graph B′6, any bicyclic G of order n ≥ 6 with maximum degree 3 has diameter more
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than 2. Thus, to the contrary, we have 4 ≤ ∆ ≤ n− 2. Any bicyclic graph G contains
T = T∆+2(1∆−1,21) as a subgraph because of the fact that ∆ ≤ n− 2. Now we assume
that V (T ) = {u,v1,v2, · · · ,v∆−1,w1,w2} where d(u) = ∆ with v1,v2, · · · ,v∆−1,w1 as all of
its neighbors and w2 is a neighbor of w1 different from u. Considering the definition of
bicyclic graph and ∆− 1 ≥ 3, we find that, in G, the distance from vertex w2 to one of
vertices v1,v2, · · · ,v∆−1 is 3, which is a contradiction to the fact that G has diameter 2. This
completes the proof of this claim.

Combining Claim 1 and the definition of bicyclic graph, we claim that, except the graph
B′6, G∼= B(1)

n or G∼= B(2)
n immediately, finishing the proof of this theorem.

Furthermore Theorems 3.1 and 3.2 can be viewed as particular cases of Proposition 2
in [32]. From Theorem 3.2, the following corollary can be easily obtained.

Corollary 3.1. [31] Let G ∈ B(n) with two edge disjoint cycles. Then H(G) ≤ n2+n+2
4

with equality holding if and only if G∼= B(2)
n .

We now turn to the minimal Harary index of graphs in U (n). To do it, we first list two
useful lemmas below.

Lemma 3.1. [25] H(Pn) = n
n−1
∑

i=1

1
i
−n+1.

Lemma 3.2. [30] Let G be a (connected) graph with a cut vertex u such that G1 and G2
are two connected subgraphs of G having u as the only common vertex and G1

⋃
G2 = G. Let

|V (Gi)|= ni for i = 1,2. Then H(G)= H(G1)+H(G2)+ ∑
x∈V (G1)\u,

∑
y∈V (G2)\u

1
dG1(x,u)+dG2(u,y)

.

Lemma 3.3. H(C3((n−3)1)) = n
n−3
∑

i=2

1
i

+
2

n−2
+4.

Proof. Applying Lemma 3.1 to the unique 3-degree vertex of C3((n−3)1), we have

H(C3((n−3)1)) =H(C3)+H(Pn−2)+2
n−3

∑
i=1

1
i+1

=3+(n−2)
n−3

∑
i=1

1
i
−n+3+2

n−2

∑
i=2

1
i

by Lemma 3.2

=n
n−3

∑
i=2

1
i

+
2

n−2
+4.

Theorem 3.3. Let G ∈U (n). Then we have

(3.3) H(G)≥ n
n−3

∑
i=2

1
i

+
2

n−2
+4

with equality holding if and only if G∼= C3((n−3)1).

Proof. We prove this result by induction on n. When n = 5, there are only five graphs in
They are C5, C4(11), C3(21), C3(12) and C3(1,1), and the last one is obtained by attaching



Extremal Unicyclic and Bicyclic Graphs with Respect to Harary Index 381

an edge at each of two vertices of C3. With a simple calculation, we have

H(C3(12)) = H(C5) > H(C3(1,1)) = H(C4(11)) > H(C3(21)) = 6+
1
2

+
2
3
.

Therefore the result holds for n = 5.
Now we assume that n ≥ 6. Note that any unicyclic graph of order n− 1 has diameter

d ≤ n−3. By Corollary 2.1, Lemmas 2.3, 3.3 and induction hypothesis, we have

H(G)≥ H(G− vi)+n−1−QG−vi(v j)

≥ (n−1)
n−4

∑
i=2

1
i

+
2

n−3
+4+n−1− (n−1)(n−3)

n−2
+

n−3

∑
i=1

1
i+1

= n
n−3

∑
i=2

1
i

+
2

n−2
+4.

Therefore the result (3.3) holds by induction. Both equalities hold if and only if vi is a
pendent vertex of G with v j as only one neighbor and G ∼= C3((n− 3)1), by Corollary 2.1
and Lemma 2.3. This completes the proof of this theorem.

Lemma 3.4. H(B(0)
n ) = n

n−4
∑

i=1

1
i
−n+

19
2
−

n−4

∑
i=1

(
3
i
− 2

i+1
− 1

i+2
).

Proof. Applying Lemma 3.1 to the 3-degree vertex of B(0)
n , at which a pendent path Pn−3 is

attached, from Lemma 3.2, we have

H(B(0)
n ) = H(K′

4)+H(Pn−3)+2
n−4

∑
i=1

1
i+1

+
n−4

∑
i=1

1
i+2

=
11
2

+(n−3)
n−4

∑
i=1

1
i
−n+4+2

n−3

∑
i=1

1
i+1

+
n−2

∑
i=1

1
i+2

= n
n−4

∑
i=1

1
i
−n+

19
2
−

n−4

∑
i=1

(
3
i
− 2

i+1
− 1

i+2
).

Theorem 3.4. For any graph G ∈B(n), we have

H(G)≥ n
n−4

∑
i=1

1
i
−n+

19
2
−

n−4

∑
i=1

(
3
i
− 2

i+1
− 1

i+2
)(3.4)

with equality holding if and only if G∼= B(0)
n .

Proof. We will prove this result by induction on n. Note that B(5)
5
∼= B(0)

5 as shown in Fig.
2. From (3.2), we claim that this result holds for n = 5.

Now we consider the case when n≥ 6. By Corollary 2.1, Lemmas 2.5, 3.4 and induction
hypothesis, we have

H(G)≥H(G− vi)+n−1−QG−vi(v j)

≥(n−1)
n−5

∑
i=1

1
i
− (n−1)+

19
2
−

n−5

∑
i=1

(
3
i
− 2

i+1
− 1

i+2
)
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+n−1− [
(n−1)(n−4)+1

n−3
−

n−3

∑
t=1

1
t +1

]

=n
n−4

∑
i=1

1
i
−n+

19
2
−

n−4

∑
i=1

(
3
i
− 2

i+1
− 1

i+2
).

Therefore the result (3.4) holds by induction. Both equalities hold if and only if vi is
a pendent vertex of G with v j as only one neighbor and G ∼= B(0)

n , by Corollary 2.1 and
Lemma 2.5. This completes the proof of this theorem.

4. Conclusion

By applying certain advanced proof techniques of graph theory, we obtain the extremal
(maximal and minimal) unicyclic and bicyclic graphs with respect to Harary index.

In U (n), the graph C3(1n−3) has the maximal Harary index with one more graph C4
when n = 4, and one more graph C5 when n = 5; and the extremal graph with minimal
Harary index is uniquely C3((n− 3)1). In B(n), the maximal Harary index is attained at
B(1)

n or B(2)
n , with an exceptional graph B′6 when n = 6, and the minimal Harary index is

uniquely attained at B(0)
n .
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[25] D. Plavšić, S. Nikolić, N. Trinajstić and Z. Mihalić, On the Harary index for the characterization of chemical

graphs, J. Math. Chem. 12 (1993), no. 1-4, 235–250.
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