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Abstract. A module My, is called pseudo FQ-injective (or PFQ-injective for short) if every
monomorphism from a finitely generated submodule of M to M extends to an endomorphism
of M. Some characterizations and properties of this class of modules are investigated. In
particular, finitely generated PFQ-injective modules are studied.
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1. Introduction and results

Throughout R is an associative ring with identity and all modules are unitary. Following [5],
a right R-module M is called pseudo-injective if every monomorphism from a submodule
of M to M extends to an endomorphism of M. And following [10], a right R-module M
is called finitely quasi-injective (or FQ-injective for short) if every homomorphism from a
finitely generated submodule of M to M extends to an endomorphism of M. In this paper,
we generalize the concepts of pseudo-injective modules and FQ-injective modules to PFQ-
injective modules and give some interesting results on these modules.

As usual, we denote the Jacobson radical of a ring R by J(R) and denote the right singular
ideal of R by Z(RR). Let M be a right R-module. Then we let S = End(Mpg), and we denote
the injective hull of M by E(M).

We start with the following definition.

Definition 1.1. Let R be a ring. A right R-module M is called pseudo FQ-injective (or
PFQ-injective for short) if every monomorphism from a finitely generated submodule of M
to M extends to an endomorphism of M. A ring R is called right pseudo F-injective (or right
PF-injective for short) if Rg is pseudo FQ-injective.

Example 1.1. Let M be one of the following two examples of pseudo-injective modules
which are not quasi-injective: either the Hallet’s example or the Teply’s example (see [5,
p- 364]). Since M has only five submodules 0, M , Nj, N> and Nj & N,, it is noetherian, so
M is PFQ-injective but not FQ-injective.
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Theorem 1.1. The following statements are equivalent for a module Mg with S = End(Mg):
(1) M is PFQ-injective.
(2) rg,(x) =1rr,(y),x,y€ M",n€Z*, implies that Sx = Sy.
B) IfxieM,i=1,2,---,nand f,g: Z?:l X;R — M are monic, then there exists s € S
such that f = sg.

Proof. (1)= (2).If rg,(x) =1g,(y),x,y € M",n € Z*, write x = (x1, X2, , Xn),y = (1,2, ** »
¥n), then the mapping f: 3 | x;R — M; 3%, x;r; > X1, yir; is a monomorphism. Since M
is PFQ-injective, there exists s € § such that s extends f, then y; = f(x;) = sx;,i = 1,2,--- ,n,
so y = sx, and thus Sy C S x. Similarly, Sx C Sy. Hence Sx = Sy.
(2) = (3). Since f, g are monic,
R, (f(x1), f(x2), -+, f(xn)) = TR, (8(x1),8(x2),- -, 8(xn)).
By (2), we have S(f(x1),f(x2),--,f(xn)) = S(g(x1),8(x2),"+*,8(xs)), which shows that
there exists s € § such that (f(x1), f(x2),--, f(x,)) = s(g(x1),8(x2),- -+ ,8(xn)), and hence
f=sg.
(3) = (1). Take g : 3.7, x;R — M to be the inclusion mapping in (3). 1
Corollary 1.1. The following statements are equivalent for a ring R:
(1) R is right PF-injective.
(2) rg, (@) =rg,(B),a,B € R",n € Z*, implies that Ra = RP.
B) Ifa;jeR,i=1,2,---,nand f,g: Zl’.‘:l a;R — R are monic, then there exists a € R
such that f = ag.

Let M and N be two right R-modules. Then we call M finitely N-injective (or F-N-
injective for short) if every homomorphism from a finitely generated submodule of N to
M extends to a homomorphism of N to M; and we call M pseudo finitely N-injective (or
PF-N-injective for short) if every monomorphism from a finitely generated submodule of N
to M extends to a homomorphism of N to M. Clearly, M is FQ-injective if and only if M is
F-M-injective, and M is PFQ-injective if and only if M is PF-M-injective.

Proposition 1.1. Let M, N be two right R-modules and N’ be a submodule of N. If M is
PF-N-injective (resp., F-N-injective) , then

(1) Every direct summand of M is PF-N-injective (resp., F-N-injective).

(2) M is PF-N’-injective (resp., F-N’-injective).
Proof.

(1). Let M = M & M. Then for every finitely generated submodule K of N and every
monomorphism (resp., homomorphism) f of K to My, since M is PF-N-injective
(resp., F-N-injective), f extends to a homomorphism of N to M. It follows that f
extends to a homomorphism of N to M; because M is a direct summand of M.

(2). It is obvious. 1

By Proposition 1.1, we have immediately the following corollary.

Corollary 1.2. Every direct summand of a PFQ-injective module is PFQ-injective.

Recall that a module M is called C, [8] if every submodule of M that is isomorphic to a
direct summand of M is itself a direct summand of M; a module M is called GC, [17] if,
every submodule of M that is isomorphic to M is itself a direct summand of M; a module
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M is called C3 [8] if, whenever N and K are direct summands of M with NN K = 0 then
N @K is also a direct summand of M. We call a module M FC, if every finitely generated
submodule of M that is isomorphic to a direct summand of M is itself a direct summand
of M; and we call a module M FCj3 if, whenever N and K are direct summands of M with
NNK =0 and K is finitely generated, then N @ K is also a direct summand of M.

Theorem 1.2. Every PFQ-injective module is FC, and FC3.

Proof. Let Mg be PFQ-injective with S = End(Mp). If K is a finitely generated submodule
of M and K = sM, where s> = s € S, then sM is PF-M-injective by proposition 1.1 and
hence K is also PF-M-injective, which implies that K is a direct summand of M because K
is finitely generated. This proves FC,. Now let N and K be direct summands of M with
NNK =0 and K finitely generated. Write N = eM and K = fM, where e, f are idempotents
in S, then eM® fM =eM®(1 —e)fM. Since (1 —e)fM = fM is finitely generated, (1 —
e)fM =hM for some h> =he S by FCy. Let g=e+h—he, then g> = gand eM & fM = gM,
as required. 1

Recall that a right R-module M is said to be weakly injective [4] if for every finitely
generated submodule Nr € E(M), we have N C Xg C E(M) for some Xg = M.

Corollary 1.3. Let My be a finitely generated module. Then M is injective if and only if it
is weakly injective and PFQ-injective.

Proof. We need only to prove the sufficiency. Let x € E(M), then there exists X C E(M)
such that M + xR € X = M. Since M is PFQ-injective, X is also PFQ-injective. By Theorem
1.2, X is FCy and hence M is a direct summand of X because M is a finitely generated
submodule of X. But M C**S E(M), so M ¢S X. Thus M = X, and then x € M. Therefore,
M = E(M) is injective. 1

Recall that a module My, is regular [16] if for every m € M, mR is projective and is a direct
summand of M, or equivalently, if every finitely generated submodule of M is projective and
is a direct summand of M.

Definition 1.2. A right R-module M is called pseudo regular if every finitely generated
submodule of M is a direct summand of M.

We note that pseudo regular modules are called strongly regular in [10]. Clearly, a ring
R is von Neumann regular if and only if Rg is pseudo regular if and only if every free right
R-module is pseudo regular if and only if every projective right R-module is pseudo regular.
The following Theorem 1.3 follows immediately from Theorem 1.2.

Theorem 1.3. A right R-module M is pseudo regular if and only if M is PFQ-injective and
every finitely generated submodule of M is isomorphic to a direct summand of M.

About pseudo regular modules, we have the following results, which we state without
proof.

Proposition 1.2. Let Mg be a pseudo regular module. Then:

(1) Each submodule of M is also pseudo regular.

(2) If N is a finitely generated submodule of M, then M/N is pseudo regular.

(3) Rad(M)=0.

(4) M is a finitely generated semisimple module if and only if M is finitely cogenerated
if and only if M is artinian if and only if M is noetherian.
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(5) Iflisanideal such that I C rr(M), then M is also pseudo regular as an R/I-module.

Theorem 1.4. Let My be a finitely generated PFQ-injective module. Then

(1) Mg is a C, module.

(2) J(S)=W(S), where W(S)={s €S | ker(s) S M}.
(3) If Mg has finite Goldie dimension then S is semilocal.
(4) If Mg is uniform, then S is local.

Proof.

(1). Since Mg is finitely generated, each direct summand of My, is also finitely gener-
ated, so (1) follows because Mg is FC, by Theorem 1.2.

2). Let s € J(S). If s ¢ W(S), then ker(s)N K =0 for some 0 # K < Mg. Take k € K
such that sk # 0. Then rg(k) = rr(sk), and so the mapping f : skR — kR; skr — kr is
a monomorphism. Since M is PFQ-injective, there exists a f € S such that f =t-.
Hence k = f(sk) = tsk, i.e., (1 —ts)k = 0, and then k = 0, a contradiction. Thus,
J(S) € W(S). Since Mg is C; by (1), W(S) € J(S) by [15, 41.22]. Therefore,
J(S)=W(S).

(3). Let s be any injective endomorphism of M. Then s*M = M for each positive integer
k, and so s* M is a direct summand of Mg as My is a C» module by (1). Since My has
finite Goldie dimension, it satisfies the descending conditions on direct summands.
Hence s"M = s"*! M for some positive integer n. This s is bijective. Therefore, S
is semilocal by [3, Theorem 3].

(4). Let se S and S # S's. Since Mg is Cy, it is GC;. By [18, Theorem 4], Ker(s) # 0.
So Ker(s) € M as M is uniform. Thus s € W(S) = J(S). This means that S is
local. 1

Corollary 1.4. Let R be a right PF-injective ring. Then

(1) Ris aright Cy ring.

(2) J(R) = Z(Rg).

(3) IfR is right finite dimensional then R is semilocal.
(4) If Rg is uniform, then R is local.

B. Stenstrom [14] defined and studied F P-injective modules. Following [14] , a right R-
module M is said to be FP-injective if, for any projective right R-module P, every homomor-
phism from a finitely generated submodule of P to M can be extended to a homomorphism
from P to M. FP-injective modules have been generalized by several authors. For exam-
ple, principally injective modules, (m,n)-injective modules, (m,n)-small injective modules
have been introduced and studied in [1,7, 9], respectively. A right R-module M is called
principally injective if every homomorphism from a principal right ideal of R to M can be
extended to a homomorphism from R to M; a right R-module M is called (m,n)-injective
if every homomorphism from an n-generated submodule of R™ to M can be extended to a
homomorphism from R™ to M; a right R-module M is called (m,n)-small injective if every
homomorphism from an n- generated submodule of J™ to M can be extended to a homo-
morphism from R™ to M, where J = J(R) is the Jacobson radial of R. Clearly, a module
M is FP-injective if and only if it is (m,n)-injective for each pair of positive integers m,n, a
module M is principally injective if and only if it is (1, 1)-injective, (m,n)-injective module
is (m,n)- small injective. By [9, Theorem 2.12], if R is a semiregular ring, then an R-module
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is (m,n)-injective if and only if it is (m,n)-small injective. Motivated this notion of prin-
cipally injectivity, in 1999, Sanh, Shum ez al. [12] introduced the notion of M-pinjective
module, following that, a right R-module N is M-p-injective if every homomorphism from
an M-cyclic submodule of M to N can be extended to one from M to N; and a module M
is called QP-injective [12] if M is M-p-injective. The detailed discussion of QP-injective
modules can be found in [12, 13]. Continue this direction, Sanh et al., introduced the no-
tion of M-f-injectivity [6], following which, he replace an M-cylic submodule by a finitely
M-generated submodule, this kind of submodules is of the form }7 , s;(M) with all s; are
endomorphisms of M; and a module M is called quasi-f-injective [6] if M is M-f-injective.
Recently, the generalizations of QP-injective modules have been studied by many authors
also, for example, Sanh et al. studied the concepts of pseudo p-injectivity and quasi-rp-
injectivity in [11] and [2] respectively. Next we generalize the concept of quasi-f-injective
modules as following:

Definition 1.3. Let R be a ring. A right R-module M is called pseudo quasi F-injective (or
PQF-injective for short) if every monomorphism from a finitely M-generated submodule of
M to M extends to an endomorphism of M.

Proposition 1.3. The following conditions are equivalent for a module Mg with S = End
(Mp).

(1) M is PQF-injective.

(2) ry, (@) =ry,(B),a.f€S",neZ*, implies that S = S .

Proof. (1) = (2). Suppose that rys, (@) =1y, (B),@,B € S",neZ*. Write & = (51,52, , Sn),
B=(t1,t2,--+ ,t,). Then the mapping f: 37 | s;M — M; 3" | s;m; + 3.1, t;m; is a monomor-
phism. Since M is PQF-injective , there exists s € S such that s extends f, then t;m =
f(sim) = ss;m,i = 1,2,--- ,n, for each m € M. So 8 = sa, and thus S8 C Sa. Similarly,
Sa cSB. Hence Sa=SB.

(2)= (1). Assume (2). Let f: 3" | s;M — M be a monomorphism. Write & = (s1,52,-"-,
$n),B = (fs1,fs2,--, fsn), then ry, (@) = Ty, (B). By (2), we have 8 € Sa, so there exists
s € § such that 8 = sa, and hence s extends f. This proves (1). 1

Proposition 1.4. Let M be a right R-module with S = End(Mg). Then
(1) If S is right PF-injective, then My is PQF-injective.
(2) If Mg is PQF-injective and M generates ry, (@) for any positive integer n and a €
S", then S is right PF-injective.

Proof.

(1). Let ry, (@) =rp,(B),a,€S",neZ, then rg, (@) =rs,(B). Since S is right PF-
injective, by Corollary 1.1, we have Sa = §8. Hence M is PQF-injective by Propo-
sition 1.3.

(2). Let rs, (@) = rs,(B),a,8€S",n € Z*. Then for any x € ry, (@), since M gener-
ates ry, (@), we have x = Zf.‘zl Aim; with 4; € §,, and ;M C ry, (). Hence each
Ai € rg, (@). This implies that SA; =0,i = 1,2,--- ,k , and thus x € ry, (5). Hence,
ry, (@) €y, (B). Similarly, ry, (8) C ray,(a). And so ry, (@) =ry,(B). It follows
that S @ = S8 since Mg is PQF-injective. Consequently, S is PF-injective by Corol-
lary 1.1. 1
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Recall that a right R-module M is said to be a self-generator [15] if it generates all its
submodules.

Lemma 1.1. If M is a finitely generated right R-module which is a self-generator, then M
is PFQ-injective if and only if M is PQF-injective.

Proof. 1t is Obvious. 1

Recall that a right R-module N is said to be subgenerated by a right R-module M, if N
is isomorphic to a submodule of an M-generated module [15]. Following [15, p118], we
denote by o[M] the full subcategory of R — MOD whose objects are all R-modules sub-
generated by M. By Proposition 1.4 and Lemma 1.1, we have immediately the following
theorem.

Theorem 1.5. Let My be a finitely generated module with S = End(Mpg). If My is a gener-
ator in o[M]. Then the following conditions are equivalent:

(1) Sis right PF-injective.

(2) Mg is PQF-injective.

(3) Mg is PFQ-injective.

Corollary 1.5. The following statements are equivalent for a ring R and a positive integer n:
(1) The free right R-module R" is PFQ-injective.
(2) The full matrix ring My, (R) is right PF-injective.

Corollary 1.6. The following statements are equivalent for a ring R:

(1) Every finitely generated free right R-module is PFQ-injective.
(2) Every finitely generated projective right R-module is PFQ-injective.
(3) The full matrix ring M, (R) is right PF-injective for every positive integer n.

We call two modules M, N mutually F-injective (resp., PF-injective) if M is F-N-injective
(resp., PF-N-injective) and N is F-M-injective (resp., PF-M-injective).

Theorem 1.6. If M| ® M, is PFQ-injective. Then M| and M, are mutually F-injective.
In particular, if M is a right R-module such that M ® M is PFQ-injective, then M is FQ-
injective.

Proof. Let M| & M, be PFQ-injective. We show M| is F-M»-injective. Let K be any finitely
generated submodule of M, and f : K — M; be an R-homomorphism. Define g : K —
M ® M, by g(x) = (f(x),x) for all x € K, then g is a monomorphism. By Proposition 1.1,
M| & M, is PF-M;-injective, whence g extends to a homomorphism A : My — M| & M>.
If 7y : My ® My — M, is the natural projection, then m1h : M, — M is a homomorphism
extending f. Consequently, M is F-M;-injective. 1

Corollary 1.7. If the full matrix ring Ma(R) is right PF-injective, then the ring R is right
F-injective.

Proof. 1t is by Corollary 1.5 and Theorem 1.6. 1
Corollary 1.8. If ®;c;M; is PFQ-injective, then M is F-My-injective for all distinct j,k € I.
Proof. 1t is by Theorem 1.6 and Proposition 1.1. 1
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