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Abstract. Given fixed integers a, b and c with a > c > b > 1, the notion of (a,b,c)-Koszul
algebra is introduced, which is another extension of Koszul algebras and includes some
Artin-Schelter regular algebras of global dimension five as special examples. Some criteria
for a standard graded algebra to be (a,b,c)-Koszul are given. Further, the Yoneda algebras
and the H-Galois graded extensions of (a,b,c)-Koszul algebras are discussed, where H is
a finite dimensional semisimple and cosemisimple Hopf algebra. Moreover, the so-called
(generalized) (a,b,c)-Koszul modules are introduced and some basic properties are also
provided.
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1. Introduction

Noncommutative graded algebras play an important role in algebra, topology, and mathe-
matical physics, etc. Maybe one of the most interesting class of such algebras is the class of
Koszul algebras, which were originally defined by Priddy in 1970 (see [23]) and studied by
many people since then, such as [2,3,11,20–22], etc. In the last decade, several extensions of
this theory to some more general cases have been developed (see [5–7,9,12,16–19], etc.). In
some sense, the development of the classification of Artin-Schelter regular algebras of lower
global dimension accelerates and promotes the progress of Koszul theory. More precisely,
motivated by the classification problem of Artin-Schelter regular algebras of global dimen-
sion three (see [1]), Berger introduced the notion of nonquadratic Koszul algebra (see [5])
in 2001, which was often called d-Koszul algebra later (such as [4, 8, 10, 12–14, 24, 25],
etc.), where d ≥ 2 is a fixed integer. Inspired by the classification problem of Artin-Schelter
regular algebras of global dimension four (see [15]), Si and Lu introduced the notion of
bi-Koszul algebra in 2008 (see [16]). From [15], one can see clearly that it is too compli-
cated to classify Artin-Schelter regular algebras of global dimension four completely and of
course, let alone the case of dimension five.

In this paper, the notion of (a,b,c)-Koszul algebra is introduced, which is another exten-
sion of Koszul algebras and determined by a triple of integers (a,b,c) with a > c > b > 1.
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It should be noted that such algebras include Koszul algebras, d-Koszul algebras and some
Artin-Schelter regular algebras of global dimension five as special examples. Motivated
by [4], the notion of generalized (a,b,c)-Koszul module is also introduced, which can be re-
garded as a natural generalization of (a,b,c)-Koszul modules. The whole paper is arranged
as follows: In Section 2, we give some notation, definitions and examples. In Section 3, we
give some criteria for a standard graded algebra to be (a,b,c)-Koszul. In Section 4, for a fi-
nite dimensional semisimple and cosemisimple Hopf algebra H, the Koszulity of the graded
right H-module algebra A =

⊕
n≥0 An and the coinvariant graded subalgebra B = AcoH of

A is studied. It turns out that we can judge the Koszulity of A in terms of B and vice
versa. In the last section, we turn to study (a,b,c)-Koszul modules and define the so-called
generalized (a,b,c)-Koszul modules, some basic properties of (a,b,c)-Koszul modules and
generalized (a,b,c)-Koszul modules are given and further, follow the ideals of Backelin and
Fröberg (see [2]), we obtain many Koszul modules from a given (a,b,c)-Koszul module.

2. Notation, definitions and examples

Throughout, N denotes the set of natural numbers, k is a fixed base field and the phrase
“standard graded algebra” means a positively graded k-algebra A =

⊕
i≥0 Ai with (a) A0 =

k×·· ·×k, a finite product of k; (b) Ai ·A j = Ai+ j for all 0≤ i, j < ∞; and (c) dimkAi < ∞

for all i≥ 0. Obviously, condition (b) implies that A is generated by A1 over A0.

Proposition 2.1. [11] Let A be a standard graded algebra. Then there exists a finite quiver
Γ = (Γ0,Γ1) and a graded ideal I in kΓ with I ⊂ ∑n≥2(kΓ)n such that A ∼= kΓ/I as graded
algebras, where Γ0 denotes the set of vertices of Γ and Γ1 the set of arrows of Γ.

Under the above assumptions, it is easy to see that the graded Jacobson radical of A,
which we denote by J, is

⊕
i≥1 Ai and for any finitely generated graded left A-module M (It

is sufficient that M is bounded below in fact, i.e., Mi = 0 for all i < i0 for some integer i0),
M has a graded projective resolution

· · · // Qn
dn // · · · // Q1

d1 // Q0
d0 // M // 0

in the category of finitely generated graded left A-modules such that “kerdi ⊆ JQi” for all
i≥ 0, i.e., the resolution is “minimal”.

Let Gr(A) denote the category of graded left A-modules and gr(A) denote the cat-
egory of finitely generated graded left A-modules. Endowed with the Yoneda product,⊕

i≥0 ExtiA(A0,A0) is a bigraded algebra. Let M be a finitely generated graded left A-module.
Then

⊕
i≥0 ExtiA(M,A0) is a bigraded

⊕
i≥0 ExtiA(A0,A0)-module. For simplicity, we write

E(A) =
⊕
i≥0

ExtiA(A0,A0), E (M) =
⊕
i≥0

ExtiA(M,A0)

and call E(A) the Yoneda algebra of A, and E (M) the Ext module of M.
Given integers a, b, c with a > c > b > 1, we introduce a set function δ a

b,c : N→ N by

δ
a
b,c(n) =


ka, n = 4k;
ka+1, n = 4k +1;
ka+b, n = 4k +2;
ka+ c, n = 4k +3,

where k ∈ N.
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Definition 2.2. Let A be a standard graded k-algebra and M =
⊕

i≥0 Mi ∈ gr(A). We call M
an (a,b,c)-Koszul module provided that M admits a minimal graded projective resolution

· · · // Qn // · · · // Q1 // Q0 // M // 0,

such that each Qn is generated in degree δ a
b,c(n) for all n ≥ 0. In particular, the standard

graded algebra A will be called an (a,b,c)-Koszul algebra if the trivial left A-module A0 is
an (a,b,c)-Koszul module.

Let K a
b,c(A) denote the category of (a,b,c)-Koszul modules.

We now give some examples.

Example 2.3. The following list some trivial examples of (a,b,c)-Koszul algebras:
(1) Koszul algebras (see [2, 3, 20, 21, 23], etc.) are (4,2,3)-Koszul algebras.
(2) d-Koszul algebras (see [5, 10], etc.) are (2d,d,d +1)-Koszul algebras.
(3) The opposite algebra of an (a,b,c)-Koszul algebra is also an (a,b,c)-Koszul alge-

bra, we omit the details here since it is similar to that of Proposition 2.2.1 of [3].
(4) Let A be an (a,b,c)-Koszul algebra and M a finitely 1-generated graded left A-

module. Let

· · · // Pn // · · · // P1 // P0 // A0 // 0

and

· · · // Qn // · · · // Q1 // Q0 // M // 0

be the corresponding minimal graded projective resolutions in gr(A). If in addition,
Ω3(M)[−a] is an (a,b,c)-Koszul module and Qi is generated in degree δ a

b,c(i + 1)
for i = 1, 2, then the triangular graded algebra

AlgA
M =

(
A M
0 k

)
,

with the new grading:

(AlgA
M)0 =

(
A0 0
0 k

)
, and (AlgA

M)i =
(

Ai Mi
0 0

)
(∀ i≥ 1),

is an (a,b,c)-Koszul algebra, which can be seen easily from the minimal graded
AlgA

M-projective resolution in gr(AlgA
M):

· · · →
(

Pn
0

)
⊕
(

Qn−1
0

)
→ ··· →

(
P0
0

)
⊕
(

M
k

)
→ (AlgA

M)0→ 0.

Example 2.4. The following are two concrete examples of (a,b,c)-Koszul algebras.
(1) Let Γ be the quiver:

•1 �α1
β1
•2 �α2

β2
•3 �α3

β3
•4.

Let

A =
kΓ

〈αiβi = βi+1αi+1, αi+1αi, βiβi+1 : i = 1, 2, 3〉
.

Then under a routine computation, one can get a minimal projective resolution of
the trivial A-module k⊕4:
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· · ·→ (A⊕P2⊕P3)[7]→ (A⊕P2⊕P3)[6]→A[5]→ (A⊕P2⊕P3)[3]→ (A⊕P2⊕
P3)[2]→ (A⊕P2⊕P3)[1]→ A→ k⊕4→ 0, where Pi denotes the simple A-module
related to the vertex i. Thus A is a (5,2,3)-Koszul algebra.

(2) Let A = k〈x,y〉/(x3y− 3x2yx + 3xyx2 − yx3, 2xyxy− x2y2 − 2yxyx + y2x2, xy3 +
3y2xy− y3x− 3yxy2), where deg(x) = deg(y) = 1. Under a routine computation,
the Hilbert series of A is

HA(z) =
1

(1− z)2(1− z2)(1− z3)2 =
1

1−2z+3z4−3z6 +2z9− z10 ,

which implies a minimal graded projective resolution of the trivial module k
0→ A[10]→ A[9]⊕2→ A[6]⊕3→ A[4]⊕3→ A[1]⊕2→ A→ k→ 0.

Therefore, A is an Artin-Schelter regular algebra of global dimension five and a
(9,4,6)-Koszul algebra.

Definition 2.5. Let A be an (a,b,c)-Koszul algebra. If a > c + 1 > b + 2 > 4 and a > 2b,
then A is called a nontrivial (a,b,c)-Koszul algebra.

Example 2.6. The following are some examples of nontrivial (a,b,c)-Koszul algebras:
(1) The opposite algebra of a nontrivial (a,b,c)-Koszul algebra is again a nontrivial

(a,b,c)-Koszul algebra.
(2) In (4) of Example 2.3, if A is a nontrivial (a,b,c)-Koszul algebra and Ω3(M)[−a]

is a nontrivial (a,b,c)-Koszul module. Then so is the triangular algebra AlgA
M .

(3) The algebra in (2) of Example 2.4 is a nontrivial (9,4,6)-Koszul algebra.

3. (a,b,c)-Koszul algebras

In this section, we will give some criteria for a standard graded algebra to be (a,b,c)-Koszul.

Proposition 3.1. The following are equivalent for a standard graded algebra A:
(1) A is (a,b,c)-Koszul;
(2) ExtnA(A0,A0) = ExtnA(A0,A0)−δ a

b,c(n) for all n≥ 2;

(3) TorA
n (A0,A0) = TorA

n (A0,A0)δ a
b,c(n) for all n≥ 2.

Proof. We omit the details since it is similar to that of Proposition 2.1.3 of [3].

Lemma 3.1. [26] Let A be a standard graded algebra and Ae := A⊗k Aop its enveloping
algebra. Let r be the graded Jacobson radical of Ae and f : P→ Q be a homomorphism
of finitely generated Ae-projective modules. Then Im f ⊆ rQ if and only if for each simple
A-module S, we have Im( f ⊗A 1S)⊆ J(Q⊗A S).

Proposition 3.2. Let A be a standard graded algebra. Then A is an (a,b,c)-Koszul algebra
if and only if A is an (a,b,c)-Koszul Ae-module.

Proof. Let

P∗ : · · · // Pn // · · · // P1 // P0 // A // 0

be a minimal graded projective Ae-resolution of A in gr(Ae). Then by Lemma 3.1, P∗ is
minimal if and only if P∗⊗A A0 :

· · · // Pn⊗A A0 // · · · // P1⊗A A0 // P0⊗A A0 // A⊗A A0 ∼= A0 // 0
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is a minimal graded projective resolution of A0 in gr(A). Further, for all i≥ 0, Pi is generated
in degree s as a graded Ae-module if and only if Pi⊗A A0 is generated in degree s as a graded
left A-module, where s ∈ Z, which completes the proof.

Proposition 3.3. Let A = kΓ/I be a standard graded algebra and

· · · // Pn
dn // · · · // P1

d1 // P0
d0 // A0 // 0

a minimal graded projective resolution of the trivial A-module A0 in gr(A). Then the fol-
lowing statements are equivalent:

(1) A is an (a,b,c)-Koszul algebra;
(2) kerdn ⊆ Jδ a

b,c(n+1)−δ a
b,c(n)Pn and J kerdn = kerdn∩Jδ a

b,c(n+1)−δ a
b,c(n)+1Pn for all n≥ 0;

(3) for any fixed n≥ 1 and 1≤ i≤ n, Pi =
⊕

l≥1 Aeil [−δ a
b,c(i)], the component of di(eil )

in some Aei−1m is in Aδ a
b,c(i)−δ a

b,c(i−1), kerdn ⊆ Jδ a
b,c(n+1)−δ a

b,c(n)Pn and J kerdn =

kerdn∩ Jδ a
b,c(n+1)−δ a

b,c(n)+1Pn.

Proof. (1)⇒ (2) Suppose that A is an (a,b,c)-Koszul algebra. Then for all n ≥ 0, Pn is
generated in degree δ a

b,c(n). Note that dn+1(Pn+1) = kerdn, which implies that kerdn is
generated in degree δ a

b,c(n + 1). But recall that Pn is generated in degree δ a
b,c(n), hence the

elements of degree δ a
b,c(n + 1) of Pn are in Jδ a

b,c(n+1)−δ a
b,c(n)Pn. Thus for all n ≥ 0, kerdn ⊆

Jδ a
b,c(n+1)−δ a

b,c(n)Pn. Now it is clear that J ker fn ⊆ ker fn ∩ Jδ a
b,c(n+1)−δ a

b,c(n)+1Pn. Let x ∈
ker fn ∩ Jδ a

b,c(n+1)−δ a
b,c(n)+1Pn be a homogeneous element of degree i. It is easy to see that

i ≥ δ a
b,c(n + 1)+ 1. If x /∈ J kerdn, then x is a generator of kerdn, which implies that kerdn

is generated in degree larger than δ a
b,c(n+1)+1 since the degree of x is larger than δ a

b,c(n+
1)+ 1, which contradicts to that kerdn is generated in degree δ a

b,c(n + 1). Therefore, x ∈
J kerdn and J ker fn ⊇ ker fn∩ Jδ a

b,c(n+1)−δ a
b,c(n)+1Pn.

(2)⇒ (1) First we claim that for all n ≥ 0, (Pn) j = 0 for all j < δ a
b,c(n). Do it by

induction on n. First we prove that (P0) j = 0 for j < δ a
b,c(0) = 0. If not, since P0 is a finitely

generated graded module, there exists a smallest j0 < δ a
b,c(0) such that (P0) j0 6= 0. Let

x 6= 0 be a homogeneous element of P0 of degree j0. Then d0(x) = 0 since d0(x) ∈ (A0) j0
and A0 = (A0)0, which implies that x ∈ kerd0 ⊂ JP0, which contradicts to the choice of
j0. Now suppose that (Pn−1) j = 0 for all j < δ a

b,c(n− 1). Similarly, assume that there
exists a smallest j′0 < δ a

b,c(n) such that (Pn) j′0
6= 0. Let x 6= 0 be a homogeneous element

of Pn of degree j′0. Note that dn(x) ∈ Imdn = kerdn−1 ⊆ Jδ a
b,c(n)−δ a

b,c(n−1)Pn−1, we have
dn(x) = 0 since Jδ a

b,c(n)−δ a
b,c(n−1)Pn−1 is supported in {i|i≥ δ a

b,c(n)}. Therefore, x ∈ kerdn ⊆
Jδ a

b,c(n+1)−δ a
b,c(n)Pn, which also contradicts to the choice of j′0.

Now we claim that for any x ∈ (Pn)i with i > δ a
b,c(n), then x ∈ JsPn for some s > 0. If we

prove this claim, then it is clear that for all n≥ 0, Pn is generated in degree δ a
b,c(n). In fact,

we can prove this by induction on n. Note that A0 is generated in degree 0, thus d0(x) ∈
JA0 = J, which implies that x ∈ d−1

0 (J) = JP0 +kerd0 ⊆ JP0. Therefore, P0 is generated in
degree 0. Suppose that for any x ∈ (Pn−1)i with i > δ a

b,c(n− 1), then we have x ∈ JsPn−1

for some s > 0 and Pn−1 is generated in degree δ a
b,c(n− 1). By the condition J ker fn−1 =

ker fn−1 ∩ Jδ a
b,c(n)−δ a

b,c(n−1)+1Pn−1, we have kerdn−1 is generated in degree δ a
b,c(n), which
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implies that Pn is generated in degree δ a
b,c(n) for all n≥ 0. Of course, for any x ∈ (Pn)i with

i > δ a
b,c(n), we have x ∈ JsPn for some s > 0.

(1) and (2)⇒ (3) Suppose that A is an (a,b,c)-Koszul algebra. Then for each i ≥ 0, Pi
is generated in degree δ a

b,c(i). Thus all eil are of degree δ a
b,c(i), which implies that di(eil ) ∈

(Pi−1)δ a
b,c(i)

. But Pi−1 is generated in degree δ a
b,c(i− 1), so (Pi−1)δ a

b,c(i)
⊆ Aδ a

b,c(i)−δ a
b,c(i−1)

(Pi−1)δ a
b,c(i−1). Now (3) is clear by (2).

(3)⇒ (1) By an induction on n, it suffices to prove that P0 is generated in degree δ a
b,c(0)

and kerd0 is generated in degree δ a
b,c(1), which is similar to the proof of (2)⇒ (1) and we

omit the details.

Proposition 3.4. Let A be a standard graded algebra and M ∈K a
b,c(A). Then the the Ext

module E (M) is generated in degree 0 as a graded E(A)-module if and only if A is an
(a,b,c)-Koszul algebra.

Proof. Let P∗ and Q∗ be the minimal graded projective resolutions of A0 and M, respec-
tively. We have Qn is generated in degree δ a

b,c(n) for each n≥ 0 since M ∈K a
b,c(A).

(⇒) By the hypothesis, we have ExtnA(M,A0) = ExtnA(A0,A0) ·Ext0A(M,A0) for all n≥ 1.
By Proposition 3.1, we have ExtnA(M,A0) = ExtnA(M,A0)−δ a

b,c(n) for each n ≥ 0 since M ∈
K a

b,c(A). Thus ExtnA(A0,A0) = ExtnA(A0,A0)−δ a
b,c(n) for all n≥ 0, which implies that A is an

(a,b,c)-Koszul algebra by Proposition 3.1.
(⇐) By Proposition 3.5 of [10].

Now combining Propositions 3.1, 3.2, 3.3 and 3.4, we have obtained the following crite-
ria for (a,b,c)-Koszul algebras:

Theorem 3.5. Let A =
⊕

i≥0 Ai be a standard graded algebra and

· · · // Pn
dn // · · · // P1

d1 // P0
d0 // A0 // 0

be a minimal graded projective resolution of the trivial A-module A0 in gr(A). Then the
following statements are equivalent:

(1) A is (a,b,c)-Koszul;
(2) The opposite algebra Aopp of A is (a,b,c)-Koszul;
(3) A is (a,b,c)-Koszul as a graded Ae-module, where Ae := A⊗k Aop denotes the

enveloping algebra of A;
(4) ExtnA(A0,A0) = ExtnA(A0,A0)−δ a

b,c(n) for all n≥ 2;

(5) TorA
n (A0,A0) = TorA

n (A0,A0)δ a
b,c(n) for all n≥ 2;

(6) We have kerdn ⊆ Jδ a
b,c(n+1)−δ a

b,c(n)Pn and J kerdn = kerdn∩Jδ a
b,c(n+1)−δ a

b,c(n)+1Pn for
all n≥ 0;

(7) For any fixed integer n ≥ 1 and 1 ≤ i ≤ n, Pi = ⊕l≥1Aeil [−δ a
b,c(i)], the compo-

nent of di(eil ) in some Aei−1m is in Aδ a
b,c(i)−δ a

b,c(i−1), kerdn ⊆ Jδ a
b,c(n+1)−δ a

b,c(n)Pn and

J kerdn = kerdn∩ Jδ a
b,c(n+1)−δ a

b,c(n)+1Pn;
(8) Let M ∈ K a

b,c(A). Then the the Ext module E (M) is generated in degree 0 as a
graded E(A)-module.
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Theorem 3.6. Let A be a standard graded algebra and E(A) its Yoneda algebra. If A is a
nontrivial (a,b,c)-Koszul algebra, then as a graded k-algebra, E(A) is minimally generated
in ext-degrees 0,1,2,3 and 4.

Proof. Suppose that A is a nontrivial (a,b,c)-Koszul algebra, then A0 has a minimal graded
projective resolution in gr(A)

· · · // Pn
dn // · · · // P1

d1 // P0
d0 // A0 // 0

such that for all n ≥ 0, Pn is generated in degree δ a
b,c(n). Note that δ a

b,c(n) = δ a
b,c(4) +

δ a
b,c(n− 4) for all n ≥ 4. By Proposition 3.6 of [10], we know that for all n > 4, we have

ExtnA(A0,A0) = Ext4A(A0,A0) ·Extn−4
A (A0,A0), which implies that E(A) can be generated in

degrees 0, 1, 2, 3 and 4.
To finish the proof we only need to prove the “minimally generating property”, which

can be seen clearly from the following analysis:
(i) (Ext1A(A0,A0))2 ⊆ Ext2A(A0,A0)−2 = 0 since Ext2A(A0,A0) = Ext2A(A0,A0)−b and

b > 2;
(ii) Ext1A(A0,A0) ·Ext2A(A0,A0)⊆ Ext3A(A0,A0)−b−1 = 0 since Ext3A(A0,A0) = Ext3A(A0,

A0)−c and c > b+1;
(iii) Ext1A(A0,A0) ·Ext3A(A0,A0)⊆ Ext4A(A0,A0)−c−1 = 0 since Ext4A(A0,A0) = Ext4A(A0,

A0)−a and a > c+1;
(iv) (Ext2A(A0,A0))2 ⊆ Ext4A(A0,A0)−2b = 0 since Ext4A(A0,A0) = Ext4A(A0,A0)−a and

a > 2b.

Theorem 3.7. Let A be a standard graded algebra and E(A) its Yoneda algebra. If the
following conditions are satisfied:

(1) E(A) is minimally generated in the ext-degrees 0,1,2,3 and 4;
(2) Ext2A(A0,A0) = Ext2A(A0,A0)−b, Ext3A(A0,A0) = Ext3A(A0,A0)−c and Ext4A(A0,A0) =

Ext4A(A0,A0)−a;
(3) Ext2A(A0,A0) ·Ext3A(A0,A0) = 0 and (Ext3A(A0,A0))2 = 0,

then A is a nontrivial (a,b,c)-Koszul algebra.

Proof. By (1), we have that Ext4A(A0,A0) and Ext2A(A0,A0) can’t be generated in lower
degrees, which imply a > c+1 > b+2 > 4 and a > 2b.

Let

· · · // Pn
dn // · · · // P1

d1 // P0
d0 // A0 // 0

be a minimal graded projective resolution of the trivial A-module A0 in gr(A). In order to
prove A is a nontrivial (a,b,c)-Koszul algebra, it suffices to prove, for all n ≥ 0, that Pn is
generated in degree δ a

b,c(n). Note that A is a standard graded algebra, which implies that P0

is generated in degree δ a
b,c(0) = 0 and P1 is generated in degree δ a

b,c(1) = 1. By condition
(2), we have Pi is generated in degree δ a

b,c(i) for i = 2, 3, 4.
By (3) and the conditions a > c+1 > b+2 > 4 and a > 2b, we have the fact that

∑
s+t=4k+ j, s,t 6= j,4k

ExtsA(A0,A0) ·ExttA(A0,A0) = 0.

Now let i > 4, writing i = 4k + j, where 0≤ j < 4. We have
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Ext4k+ j
A (A0,A0) =(a)

∑
s+t=4k+ j

ExtsA(A0,A0) ·ExttA(A0,A0)

= ∑
s+t=4k+ j, s,t 6= j,4k

ExtsA(A0,A0) ·ExttA(A0,A0)

+Ext j
A(A0,A0) ·Ext4k

A (A0,A0)+Ext4k
A (A0,A0) ·Ext j

A(A0,A0)

=(b) Ext j
A(A0,A0) · (Ext4A(A0,A0))k +(Ext4A(A0,A0))k ·Ext j

A(A0,A0)

=(c) Ext j
A(A0,A0)−δ a

b,c( j) · (Ext4A(A0,A0)−δ a
b,c(4))

k

+(Ext4A(A0,A0)−δ a
b,c(4))

k ·Ext j
A(A0,A0)−δ a

b,c( j)

=(d) Ext j
A(A0,A0)−δ a

b,c( j) ·Ext4k
A (A0,A0)−kδ a

b,c(4)

+Ext4k
A (A0,A0)−kδ a

b,c(4) ·Ext j
A(A0,A0)−δ a

b,c( j)

=(e) Ext j
A(A0,A0)−δ a

b,c( j) ·Ext4k
A (A0,A0)−δ a

b,c(4k)

+Ext4k
A (A0,A0)−δ a

b,c(4k) ·Ext j
A(A0,A0)−δ a

b,c( j)

=( f ) Ext4k+ j
A (A0,A0)−δ a

b,c(4k)−δ a
b,c( j)

=(g) Ext4k+ j
A (A0,A0)−δ a

b,c(4k+ j),

where (a) is by that E(A) is a positively graded algebra under the Yoneda product, (b) is by
the above fact and Proposition 3.6 of [10], (c) is by the condition (2), (d) is by Proposition
3.6 of [10], (e) is by the definition of δ a

b,c, ( f ) is by Proposition 3.6 of [10] and (g) is by
the definition of δ a

b,c. Now by Proposition 3.1, we have that A is a nontrivial (a,b,c)-Koszul
algebra.

4. The H-Galois graded extensions of (a,b,c)-Koszul algebras

In this section, for a special given standard graded algebra A, we will find a proper graded
subalgebra B of A, such that the (a,b,c)-Koszulity of A and B can be determined by each
other.

We refer to [14] for the related notions, such as H-Galois graded extension, etc.

Lemma 4.1. [14] Let H be a finite dimensional semisimple and cosemisimple Hopf algebra
and A/B be an H-Galois graded extension. If A =

⊕
i≥0 Ai is a standard graded algebra,

then A0/B0 is an H-Galois extension.

Lemma 4.2. [14] Let H be a finite dimensional semisimple and cosemisimple Hopf algebra,
A =

⊕
n≥0 An be a graded right H-module algebra and B = AcoH , the coinvariant subalgebra

of A. Suppose that A/B is an H-Galois graded extension. Then we have an isomorphism of
bigraded algebras

(
⊕
i≥0

ExtiB(A0,A0))∼= (
⊕
i≥0

ExtiA(A0,A0))#H,

where the bigrading of (
⊕

i≥0 ExtiA(A0,A0))#H is induced from that of
⊕

i≥0 ExtiA(A0,A0).
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Theorem 4.1. Let H be a finite dimensional semisimple and cosemisimple Hopf algebra,
A =

⊕
n≥0 An be a graded right H-module algebra such that A is a standard graded algebra,

and let B = AcoH , the coinvariant subalgebra of A. Suppose that A/B is an H-Galois graded
extension. Then B is (a,b,c)-Koszul if and only if A is (a,b,c)-Koszul.

Proof. (⇒) By Lemma 4.1, A0/B0 is an H-Galois extension since A/B is an H-Galois
graded extension. Note that A0#H and B0, A0 and (A0#H)#H∗ are both Morita equivalent,
and H is a finite dimensional semisimple and cosemisimple Hopf algebra, we have that A0 is
semisimple since B0 is semisimple and A0 = B0⊕S as right B0-modules for some semisim-
ple B0-module S. By the hypothesis, B is an (a,b,c)-Koszul algebra, by Proposition 3.1,
which is equivalent to that ExtiB(B0,B0) = ExtiB(B0,B0)−δ a

b,c(i)
for all i≥ 0. Note that S is a

direct summand of B0⊕B0⊕·· ·⊕B0, a finite copies of B0, which implies that ExtiB(B0,S) =
ExtiB(B0,S)−δ a

b,c(i)
, ExtiB(S,B0) = ExtiB(S,B0)−δ a

b,c(i)
and ExtiB(S,S) = ExtiB(S,S)−δ a

b,c(i)
for

all i≥ 0. Also observe that we have the following isomorphism

ExtiB(A0,A0) = ExtiB(B0,B0)⊕ExtiB(B0,S)⊕ExtiB(S,B0)⊕ExtiB(S,S)

for all i≥ 0, which implies that ExtiB(A0,A0) = ExtiB(A0,A0)−δ a
b,c(i)

for all i≥ 0. By Lemma

4.2, we have ExtiA(A0,A0)#H = (ExtiA(A0,A0)#H)−δ a
b,c(i)

for all i ≥ 0. By the definition of

the bigrading of ExtiA(A0,A0)#H, we obtain that ExtiA(A0,A0) = ExtiA(A0,A0)−δ a
b,c(i)

for all
i≥ 0. By Proposition 3.1, A is an (a,b,c)-Koszul algebra.

(⇐) Suppose that A is an (a,b,c)-Koszul algebra, by Proposition 3.1, which is equivalent
to ExtiA(A0,A0) = ExtiA(A0,A0)−δ a

b,c(i)
for all i≥ 0. By Lemma 4.2, we have ExtiB(A0,A0) =

ExtiB(A0,A0)−δ a
b,c(i)

for all i ≥ 0. Similarly, we have A0 = B0⊕ S as right B0-modules for
some semisimple B0-module S, thus we have

ExtiB(A0,A0) = ExtiB(B0,B0)⊕ExtiB(B0,S)⊕ExtiB(S,B0)⊕ExtiB(S,S)

for all i≥ 0, which implies ExtiB(B0,B0) = ExtiB(B0,B0)−δ a
b,c(i)

for all i≥ 0. By Proposition
3.1, B is an (a,b,c)-Koszul algebra.

5. (Generalized) (a,b,c)-Koszul modules

We mainly focus on (generalized) (a,b,c)-Koszul modules in this section.

Lemma 5.1. Let A be a standard graded algebra and

0 // K // M // N // 0

be an exact sequence in gr(A). Then the following statements are equivalent:

(1) If M and N are generated in a single degree s, then so is K;
(2) JK = K∩ JM;
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(3) We have the following commutative diagram

0

��

0

��

0

��
0 // Ω1(K)

��

// Ω1(M)

��

// Ω1(N)

��

// 0

0 // P0

��

// L0

��

// Q0

��

// 0

0 // K

��

// M

��

// N

��

// 0

0 0 0

with P0, L0 and Q0 are graded projective covers.

Proof. (1)⇒ (2) A routine check.
(2)⇒ (3) Clearly, we have the exact sequence

0 // K/JK // M/JM // N/JN // 0

since JK = K ∩ JM. Note that for any X ∈ gr(A), A⊗A0 X/JX −→ X −→ 0 is a projec-
tive cover. Now setting P0 := A⊗A0 K/JK, L0 := A⊗A0 M/JM and Q0 := A⊗A0 N/JN.
We have the following exact sequence 0 // P0 // Q0 // L0 // 0 since A0 is
semisimple. Therefore, (3) is true by the “Snake Lemma”.

(3)⇒ (1) Suppose that we have the given commutative diagram. Then L0 ∼= P0⊕Q0 as
graded left A-modules. By assumption, L0 is generated in degree s since M is generated in
degree s, which implies that P0 is generated in degree s. Thus, K is generated in degree s
since P0→ K→ 0 is a graded projective cover, (1) follows.

Proposition 5.1. Let A be a standard graded algebra and

0 // K // M // N // 0

be an exact sequence in gr(A). Then JΩi(K) = Ωi(K)∩ JΩi(M) for all i≥ 0 if and only if
the minimal Horseshoe Lemma holds. That is, given a diagram

P∗

��

Q∗

��
0 // K

��

// M // N

��

// 0

0 0
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with P∗ and Q∗ being minimal graded projective resolutions of K and N, respectively.
Then we can complete it into the following commutative diagram

0 // P∗

��

// L∗

��

// Q∗

��

// 0

0 // K

��

// M

��

// N

��

// 0

0 0 0

such that L∗ // M // 0 is also a minimal graded projective resolution.

Proof. (⇒) By Lemma 5.1, for all i ≥ 0, we have the the following commutative diagram
with exact rows and columns

0

��

0

��

0

��
0 // Ωi+1(K)

��

// Ωi+1(M)

��

// Ωi+1(N)

��

// 0

0 // Pi

��

// Li

��

// Qi

��

// 0

0 // Ωi(K)

��

// Ωi(M)

��

// Ωi(N)

��

// 0,

0 0 0

where Pi→Ωi(K)→ 0, Li→Ωi(M)→ 0 and Qi→Ωi(N)→ 0 are graded projective covers.
Now pasting these commutative diagrams together, we finish the proof.

(⇐) In particular, we obtain a lot of commutative diagrams as above for all i ≥ 0. Now
by Lemma 5.1, we are done.

Proposition 5.2. Let 0 // K // M // N // 0 be an exact sequence in gr(A)
and A a standard graded algebra. Then

(1) If K, N ∈K a
b,c(A), then so is M.

(2) If K, M ∈K a
b,c(A), then so is N.

(3) If M, N ∈K a
b,c(A), then K ∈K a

b,c(A) if and only if the minimal Horseshoe Lemma
holds.
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Proof. (1) By Lemma 5.1 and Proposition 5.1, we have the following commutative diagram
with exact rows and columns

0 // P∗

��

// L∗

��

// Q∗

��

// 0

0 // K

��

// M

��

// N

��

// 0,

0 0 0

where the vertical columns are minimal graded projective resolutions. Then Ln is generated
in degree δ a

b,c(n) for all n≥ 0 since (L∗)n = (P∗⊕Q∗)n = Pn⊕Qn. By the hypothesis, Pn

and Qn are both generated in degree δ a
b,c(n) for all n≥ 0, which implies that M ∈K a

b,c(A).
(2) Note that K, M and N are all generated in degree zero as graded left A-modules, by

Lemma 5.1, we have the commutative diagram as in (3) of Lemma 5.1. By hypothesis,
Ω1(K) and Ω1(M) are generated in degree δ a

b,c(1), which implies that Ω1(N) is also gen-
erated in degree δ a

b,c(1). Thus, by Lemma 5.1 and Proposition 5.1 several times, repeating
the above arguments, we can get the above commutative diagram. Note that Qn and Ln are
generated in the same single degree and M ∈K a

b,c(A), which implies that N ∈K a
b,c(A).

(3) Suppose K ∈K a
b,c(A), then by Lemma 5.1 and similar to the proof of (1), we can ob-

tain the desired commutative diagram. Conversely, let 0 // K // M // N // 0
be an exact sequence with M and N being (a,b,c)-Koszul modules. Then by the hypoth-
esis, we have the above commutative diagram and Ln ∼= Pn⊕Qn for all n ≥ 0. Note that
M ∈K a

b,c(A), then Pn⊕Qn is generated in degree δ a
b,c(n) for all n ≥ 0, which implies that

for all n≥ 0, Pn is generated in degree δ a
b,c(n). Therefore, K ∈K a

b,c(A).

Proposition 5.3. Let M ∈K a
b,c(A). Then

(1) Ω4k(M)[−ka] ∈K a
b,c(A) for all k ∈ N;

(2) If A is an (a,b,c)-Koszul algebra, then Ω4k−1(JM)[−ka] ∈K a
b,c(A) for all k ∈ N.

Proof. (1) can be obtained by truncating a minimal graded projective resolution of M at an
appropriate place and we omit the details.

For (2), consider the exact sequence 0 // JM // M // M/JM // 0, we
have the exact sequence

0 // Ω1(M) // Ω1(M/JM) // JM // 0

such that each term is generated in degree δ a
b,c(1). By Lemma 5.1, we have the following

commutative diagram with exact rows and columns
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0

��

0

��

0

��
0 // Ω2(M)

��

// Ω2(M/JM)

��

// Ω1(JM)

��

// 0

0 // Q1

��

// Q1⊕L0

��

// L0

��

// 0

0 // Ω1(M)

��

// Ω1(M/JM)

��

// JM

��

// 0,

0 0 0
where the vertical columns are graded projective covers. Repeating the above procedures,
for all k ≥ 0, we get the following exact sequences

0 // Ω4k(M) // Ω4k(M/JM) // Ω4k−1(JM) // 0,

which implies the following exact sequences

0 // Ω4k(M)[−ka] // Ω4k(M/JM)[−ka] // Ω4k−1(JM)[−ka] // 0.

Note that M/JM is an (a,b,c)-Koszul module since A is an (a,b,c)-Koszul algebra. Now by
(1), we have Ω4k(M)[−ka] and Ω4k(M/JM)[−ka] are (a,b,c)-Koszul modules. Therefore,
Ω4k−1(JM)[−ka] ∈K a

b,c(A) by Proposition 5.2.

Proposition 5.4. Let A be a standard graded algebra. Then the following are equivalent for
a finitely generated graded left A-module M:

(1) M is (a,b,c)-Koszul;
(2) ExtnA(M,A0) = ExtnA(M,A0)−δ a

b,c(n) for all n≥ 0;

(3) TorA
n (M,A0) = TorA

n (M,A0)δ a
b,c(n) for all n≥ 0.

Proposition 5.5. Let A be an (a,b,c)-Koszul algebra and M ∈ gr0(A). Then M ∈K a
b,c(A)

if and only if the Ext module E (M) is generated in degree 0 as a graded E(A)-module.

Proof. Let P∗ and Q∗ be the minimal graded projective resolutions of A0 and M, respec-
tively. By the hypothesis, for all n ≥ 0, Pn is generated in degree δ a

b,c(n). By Proposi-
tion 3.5 of [10], the Ext module E (M) is generated by Ext0A(M,A0) as a graded E(A)-
module if and only if for all n≥ 0, Qn is generated in degree δ a

b,c(n), which is equivalent to
M ∈K a

b,c(A).

From now on, A denotes an (a,b,c)-Koszul algebra and M ∈K a
b,c(A). Set

E[l](A) :=
⊕
i≥0

Ext4ki+l
A (A0,A0) and E [l](M) :=

⊕
i≥0

Ext4ki+l
A (M,A0), (k ∈ N, l = 0,1,2,3).

Lemma 5.2. Let E[l](A) and E [l](M) be defined as above. Then
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(1) E[0](A) :=
⊕

i≥0 Ext4ki
A (A0,A0) is a standard graded subalgebra of E(A) for each

k ≥ 0;
(2) E[l](A) and E [l](M) can be viewed as 0-generated graded E[0](A)-modules for l =

0,1,2,3.

Proof. (1) E[0](A) is a graded subalgebra of E(A) can be obtained directly from (E[0](A))i ·
(E[0](A)) j = Ext4ki

A (A0,A0)·Ext4k j
A (A0,A0)⊆Ext4k(i+ j)

A (A0,A0)= (E[0](A))i+ j. Thus to com-
plete the proof, it suffices to prove that E[0](A) is generated in degrees 0 and 1. Note that
δ a

b,c(4ki) = δ a
b,c(4ki− 4k) + δ a

b,c(4k). By Proposition 3.6 of [10], we have (E[0](A))i =
(E[0](A))1 · (E[0](A))i−1, which implies that E[0](A) can be generated by (E[k](A))0 and
(E[k](A))1.

(2) We only consider the case of E [l](M) since E[l](A) = E [l](A0). Note that for all i, j ≥
0, we have (E[0](A))i ·(E [l](M)) j = Ext4ki

A (A0,A0) ·Ext4k j+l
A (M,A0)⊆Ext4k(i+ j)+l

A (M,A0) =
(E [l](M))i+ j, which implies that E [l](M) can be viewed as a graded E[0](A)-module, and

E [l](M)=E[0](A)·E [l](M)0 can be obtained by (E [l](M))i = Ext4ki+l
A (M,A0)

(a)
= Ext4ki

A (A0,A0)·
ExtlA(M,A0) = (E[0](A))i · (E [l](M))0, where i≥ 1 and (a) is implied by Proposition 5.5.

Proposition 5.6. E [0](M) is a Koszul E[0](A)-module for each k ≥ 0. In particular, E[0](A)
is a Koszul algebra for each k ≥ 0.

Proof. It suffices to prove E [0](M) is a Koszul module since E[0](A) = E [0](A0).
Consider the exact sequence 0 // JM // M // M/JM // 0. Similar to

the proof of Proposition 5.3 (2), for all k, n≥ 0, we have the exact sequences

0 // Ω4kn(M) // Ω4kn(M/JM) // Ω4kn−1(JM) // 0,

which imply the following exact sequences

0 // HomA(Ω4kn−1(JM),A0) // HomA(Ω4kn(M/JM),A0) // HomA(Ω4kn(M),A0) // 0

since A0 is semisimple as a graded left A-module. Therefore, for all k, n ≥ 0, we have the
exact sequences

0 // Ext4kn−1
A (JM,A0) // Ext4kn

A (M/JM,A0) // Ext4kn
A (M,A0) // 0

such that all terms in the above exact sequences are supported in shifting-degree δ a
b,c(4kn) =

kna. Clearly, we have the exact sequences

0 // Ext4k(n−1)
A (Ω4k−1(JM),A0) // Ext4kn

A (M/JM,A0) // Ext4kn
A (M,A0) // 0

for all k, n ≥ 0 since Ext4kn−1
A (JM,A0) = Ext4k(n−1)

A (Ω4k−1(JM),A0). Thus, we obtain the
following exact sequences

0 // E [0](Ω4k−1(JM))[1] // ⊕
n≥1 Ext4kn

A (M/JM,A0) // ⊕
n≥1 Ext4kn

A (M,A0) // 0.

Now we claim that E [0](M/JM) is a graded projective cover of E [0](M) and it is gener-
ated in degree δ a

b,c(0) = 0. In fact, E [0](M/JM) is an E[0](A)-projective module since
M/JM is semisimple. It is trivial that M/JM is an (a,b,c)-Koszul module since A is an
(a,b,c)-Koszul algebra. By Proposition 5.5, E [0](M/JM) is generated in degree 0 as a
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graded E[0](A)-module, and by the above exact sequence, it is the graded projective cover
of E [0](M).

Therefore the first syzygy is
⊕

n>0 Ext4k(n−1)
A (Ω4k−1(JM),A0), and Ω4k−1(JM) is gener-

ated in degree δ a
b,c(4k) = ka and by Proposition 5.3, Ω4k−1(JM)[−ka] is again an (a,b,c)-

Koszul module. Inductively, we complete the proof.

Remark 5.1. Motivated by Lemma 5.2 and Proposition 5.6, one can ask a natural question:
• Are these E[0](A)-modules E[l](A) and E [l](M) Koszul?

We can give a sufficient condition for the above question to be positive in terms of general-
ized (a,b,c)-Koszul modules.

Definition 5.7. Let A be a standard graded algebra and M =
⊕

i≥0 Mi a finitely generated
graded left A-module. Let

· · · // Qn // · · · // Q1 // Q0 // M // 0

be a minimal graded projective resolution of M. Then M is called an generalized (a,b,c)-
Koszul module if for each n ≥ 0, Qn is generated in degrees in ∆a

b,c(n), where a, b, c ∈ N
satisfy a > c > b > 1 and ∆a

b,c is a set function from N to N defined by

∆
a
b,c(n) =


{ka}, n = 4k;
{ka+1,ka+2, · · · ,ka+b−1}, n = 4k +1;
{ka+b,ka+b+1, · · · ,ka+ c−1}, n = 4k +2;
{ka+ c,ka+ c+1, · · · ,ka+a−1}, n = 4k +3,

and k ∈ N.

Example 5.8. Let Γ be the following quiver:

1α
$$ β // 2

γ // 3
ε // 4.

Let I be the graded homogeneous ideal generated by α3 and αβγ and A := kΓ

I . Now con-
sider the minimal graded projective resolution of the simple module S1 = k related to the
vertex 1, under a routine computation, we obtain the following minimal graded projec-
tive resolution P1∗ : · · · → (Ae1⊕Ae3)[6]→ Ae1[4]⊕Ae3[5]→ (Ae1⊕Ae3)[3]→ (Ae1⊕
Ae2)[1]→ Ae1 → S1 → 0. Note that ker((Ae1⊕Ae3)[6]→ Ae1[4]⊕Ae3[5]) = ker((Ae1⊕
Ae3)[3]→ (Ae1⊕Ae2)[1])[3] = (Aα⊕Aβγ)[6], thus we get a clear periodic minimal graded
projective resolution of S1. Thus S1 is a generalized (6,3,4)-Koszul module.

Example 5.9. Let A be an (a,b,c)-Koszul algebra and M an (a,b,c)-Koszul module. Then
all the syzygies of M, Ωi(M)[−δ a

b,c(i)] (∀i≥ 0), are generalized (a,b,c)-Koszul modules.

Lemma 5.3. Let A be a standard graded algebra and M a finitely generated graded left
A-module. Then we have E [l](M)∼= E [0](Ωl(M)) as graded E[0]-modules.

Proof. Let

· · · // Qn // · · · // Q1 // Q0 // M // 0

be a minimal graded projective resolution of M in gr(A). Then Ωl(M) has the following
minimal graded projective resolution in gr(A)

· · · // Qn // · · · // Ql+1 // Ql // Ωl(M) // 0.
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Note that A0 is semisimple, we have

E [l](M) =
⊕
i≥0

Ext4ki+l
A (M,A0) =

⊕
i≥0

HomA(Q4ki+l ,A0)

and
E [0](Ωl(M)) =

⊕
i≥0

Ext4ki
A (Ωl(M),A0) =

⊕
i≥0

HomA(Q4ki+l ,A0),

which complete the proof.

Theorem 5.10. Let A be an (a,b,c)-Koszul algebra and X be any generalized (a,b,c)-
Koszul module. Suppose that E [0](X) is a Koszul E[0](A)-module. Then all E[0](A)-modules
E[l](A) and E [l](M), (l = 1, 2, 3) are Koszul, where M is an (a,b,c)-Koszul module.

Proof. By Example 5.9, we have Ωi(M)[−δ a
b,c(i)] is a generalized (a,b,c)-Koszul module

since M is an (a,b,c)-Koszul module . By the hypothesis, E [0](Ωi(M)[−δ a
b,c(i)]) is a Koszul

E[0](A)-module for all i≥ 0. By Lemma 5.3, E [l](M)∼=E [0](Ωl(M))=E [0](Ωl(M)[−δ a
b,c(l)])

for l = 1, 2, 3. Therefore, all E [l](M) (l = 1, 2, 3), are Koszul E[0](A)-modules.
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