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1. Introduction and results

Let R and R+ be the set of all real numbers and the set of all positive real numbers, re-
spectively. We denote by Rn(n ≥ 2) the n-dimensional Euclidean space. A point in Rn is
denoted by P = (X ,xn), X = (x1,x2, . . . ,xn−1). The Euclidean distance of two points P and
Q in Rn is denoted by |P−Q|. Also |P−O| with the origin O of Rn is simply denoted by
|P|. The boundary and the closure of a set S in Rn are denoted by ∂S and S, respectively.

We introduce a system of spherical coordinates (r,Θ), Θ = (θ1,θ2, . . . ,θn−1), in Rn

which are related to cartesian coordinates (X ,xn) = (x1,x2, . . . ,xn−1,xn) by xn = r cosθ1.
For P ∈ Rn and R > 0, Let B(P,R) denote the open ball with center at P and radius R in
Rn. SR = B(O,R). The unit sphere and the upper half unit sphere in Rn(n≥ 2) are denoted
by S1 and S+

1 , respectively. For simplicity, a point (1,Θ) on S1 and the set {Θ;(1,Θ) ∈ Γ}
for a set Γ, Γ ⊂ S1, are often identified with Θ and Γ, respectively. For two sets Λ ⊂ R+
and Γ ⊂ S1, the set {(r,Θ) ∈ Rn;r ∈ Λ,(1,Θ) ∈ Γ} in Rn is simply denoted by Λ×Γ. In
particular, the half space R+× S+

1 = {(X ,xn) ∈ Rn;xn > 0} will be denoted by Tn. By
Cn(Γ), we denote the set R+×Γ in Rn with the domain Γ on S1. We call it a cone. Then
Tn is a special cone obtained by putting Γ = S+

1 . We denote the sets I×Γ and I× ∂Γ with
an interval on R by Cn(Γ; I) and Sn(Γ; I). By Sn(Γ;R) we denote Cn(Γ)∩SR. By Sn(Γ) we
denote Sn(Γ;(0,+∞)) which is ∂Cn(Γ)−{O}.
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Furthermore, we denote by dσQ (resp. dSR) the (n−1)-dimensional volume elements in-
duced by the Euclidean metric on ∂Cn(Γ) (resp. SR) and by dw the elements of the Euclidean
volume in Rn. Let Γ ⊂ S1, ∆ be the Laplace operator in Rn and ∆∗ be a Laplace-Beltrami
(spherical part of the Laplace) on the unit sphere. It is known (see, e.g. [7, p. 41]) that

∆
∗
ϕ(Θ)+λϕ(Θ) = 0 in Γ,(1.1)

ϕ(Θ) = 0 on ∂Γ,

has the non-decreasing sequence of positive eigenvalues of (1.1) in the domain Γ, repeat-
ing accordingly to their multiplicities, and the corresponding eigenfunctions are denoted,
respectively, by λi and ϕi(Θ), i = 1,2,3, . . .. Especially, we denote the least positive eigen-
value of (1.1) by λ1 and the normalized positive eigenfunction to λ1 by ϕ1(Θ),

∫
Γ
|ϕ1(Θ)|2

dS1 = 1.
To make simplify our consideration in the following, we put a rather strong assumption

on Γ: if n ≥ 3, then Γ is a C2,α -domain (0 < α < 1) on S1 surrounded by a finite num-
ber of mutually disjoint closed hypersurfaces (e.g. see [4, p. 88–89] for the definition of
C2,α -domain). Then ϕi ∈ C2(Γ) (i = 1,2,3, . . .) and ∂ϕ1/∂n > 0 on ∂Γ (here and below,
∂/∂n denotes differentiation along the interior normal). Further, there exist three positive
constants c1, c2 and c3 such that

(1.2) |ϕi(Θ)| ≤ c1i
1
2 (Θ ∈ Γ, i = 1,2,3, . . .)

and

(1.3) c2 dist(Θ,∂Γ)≤ ϕ1(Θ)≤ c3 dist(Θ,∂Γ) (Θ ∈ Γ)

(by modifying Miranda’s method [5, p. 7–8], we can prove this inequality).
The set of sequential eigenfunctions corresponding to the same value of λi in the se-

quence ϕi(Θ) (i = 1,2,3, . . .) makes an orthonormal basis for the eigenspace of the eigen-
value λi. Hence for each Γ ⊂ S1 there is a sequence {k j} of positive integers such that
k1 = 1, λk j < λk j+1 , λk j = λk j+1 = λk j+2 = . . . = λk j+1−1 and {ϕk j ,ϕk j+1, . . . ,ϕk j+1−1} is
an orthonormal basis for the eigenspace of the eigenvalue λk j ( j = 1,2,3, . . .). By Ikm we
denote the set of all positive integers less than km (m = 1,2,3, . . .). In spite of the fact
Ik1 = ∅, the summation over Ik1 of a function S(k) of a variable k will be used by promising
∑i∈Ik1

S(i) = 0.

We note that each function

rℵ
±
i ϕi(Θ) (i = 1,2,3, . . .)

is harmonic in Cn(Γ), belongs to the class C2(Cn(Γ)\{O}) and vanishes on Sn(Γ), where

2ℵ
±
i =−n+2±

√
(n−2)2 +4λi (i = 1,2,3, . . .).

If Γ = S+
1 , then ℵ

+
1 = 1, ℵ

−
1 = 1−n and ϕ1(Θ) = (2nw−1

n )1/2 cosθ1, where wn is the surface
area 2πn/2(Γ(n/2))−1 of S1. In the sequel, for the sake of brevity, we shall write ϕ instead
of ϕ1, ℵ± instead of ℵ

±
1 and χ instead of ℵ

+
1 −ℵ

−
1 .

Let GCn(Γ)(P,Q) (P = (r,Θ),Q = (t,Φ) ∈Cn(Γ)) be the Green function of Cn(Γ). Then
the ordinary Poisson kernel relative to Cn(Γ) is defined by

PCn(Γ)(P,Q) =
1
cn

∂

∂nQ
GCn(Γ)(P,Q), cn =

{
2π if n = 2
(n−2)wn if n≥ 3,
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where Q ∈ Sn(Γ) and ∂/∂nQ denotes the differentiation at Q along the inward normal into
Cn(Γ).

Let F(Θ) be a function on Γ. The integral∫
Γ

F(Θ)ϕi(Θ)dS1,

is denoted by Ni(F), when it exists. For a non-negative integer m and two points P = (r,Θ)∈
Cn(Γ), Q = (t,Φ) ∈ Sn(Γ), we put

K̃Cn(Γ),m(P,Q) =

{
0 if 0 < t < 1,

KCn(Γ),m(P,Q) if 1≤ t < ∞,

where

(1.4) KCn(Γ),m(P,Q) = ∑
i∈Ikm+1

2ℵ
+
i +n−1Ni(PCn(Γ)((1,Θ),(2,Φ)))rℵ

+
i t−ℵ

+
i −n+1

ϕi(Θ).

To obtain the modified Poisson integral representation in a cone, as in [9], we use the fol-
lowing modified kernel function defined by

(1.5) PCn(Γ),m(P,Q) = PCn(Γ)(P,Q)− K̃Cn(Γ),m(P,Q),

where P ∈Cn(Γ) and Q ∈ Sn(Γ).

Remark 1.1. Suppose Γ = S+
1 , P = (r,Θ) = (X ,xn) ∈ Tn and Q = (t,Φ) = (Y,0) ∈ ∂Tn

satisfying r < t. Then we have ℵ
+
ki

= i (i = 1,2,3, . . .) and

(1.6) PTn,m(P,Q) =

{
PTn(P,Q) = 2w−1

n xn|P−Q|−n if 0 < t < 1,

PTn(P,Q)−2w−1
n ∑

m−1
i=0 xnrit−n−iC

n
2
i (cosη) if 1≤ t < ∞,

where Cn/2
i (·) is the Gegenbauer polynomial of degree i and η is the angle between M =

(X ,0) and N = (Y,0) defined by

cosη =
(M,N)
|M||N|

(see [9, Remarks 1, 2 and 3]).

Write
UCn(Γ),m(P) =

∫
Sn(Γ)

PCn(Γ),m(P,Q)u(Q)dσQ,

where u(Q) is a continuous function on ∂Cn(Γ).
For real numbers β ≥ 1, we denote AΓ,β the class of all measurable functions f (t,Φ)

(Q = (t,Φ) = (Y,yn) ∈Cn(Γ)) satisfying the following inequality

(1.7)
∫

Cn(Γ)

| f (t,Φ)|ϕ

1+ t
n+ℵ

+
k[β ]

+{β}
dw < ∞

and the class BΓ,β , consists of all measurable functions g(t,Φ) (Q = (t,Φ) = (Y,yn) ∈
Sn(Γ)) satisfying

(1.8)
∫

Sn(Γ)

|g(t,Φ)|

1+ t
n+ℵ

+
k[β ]

+{β}−2

∂ϕ

∂n
dσQ < ∞,

where [β ] is the integral part of β and β = [β ]+{β}.
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We will also consider the class of all continuous functions u(t,Φ) ((t,Φ) ∈Cn(Γ)) har-
monic in Cn(Γ) with u+(t,Φ) = max(u(t,Φ),0) ∈ AΓ,β ((t,Φ) ∈ Cn(Γ)) and u+(t,Φ) ∈
BΓ,β ((t,Φ) ∈ Sn(Γ)) is denoted by CΓ,β .

Remark 1.2. If we denote Γ = S+
1 and α = β −1 in (1.7)–(1.8), by Remark 1.1 we have∫

Tn

yn| f (Y,yn)|
1+ tn+α+2 dQ < ∞ and

∫
∂Tn

|g(Y,0)|
1+ tn+α

dY < ∞,

which yield that CS+
1 ,α+1 is equivalent to (CH)α in the notation of [3].

Recently, Siegel-Talvila (cf. [8, Corollary 2.1]) proved the following result.

Theorem 1.1. If u is a continuous function on ∂Tn satisfying∫
∂Tn

|u(t,Φ)|
1+ tn+m dQ < ∞,

then the function UTn,m(P) satisfies

UTn,m ∈C2(Tn)∩C0(Tn),

∆UTn,m = 0 in Tn, UTn,m = u on ∂Tn,

lim
r→∞,P=(r,Θ)∈Tn

r−m−1 cosn−1
θ1UTn,m(P) = 0.

Our first aim is to be concerned with the growth property of UCn(Γ),m.

Theorem 1.2. If γ + ℵ+− 1 > 0, γ − n + 1 ≤ ℵ
+
km+1

< γ − n + 2 and u is a continuous
function on ∂Cn(Γ) satisfying

(1.9)
∫

Sn(Γ)

|u(t,Φ)|
1+ tγ

dσQ < ∞,

then the function UCn(Γ),m(P) satisfies

UCn(Γ),m ∈C2(Cn(Γ))∩C0(Cn(Γ)),

∆UCn(Γ),m = 0 in Cn(Γ), UCn(Γ),m = u on ∂Cn(Γ),

lim
r→∞,P=(r,Θ)∈Cn(Γ)

rn−γ−1
ϕ

n−1(Θ)UCn(Γ),m(P) = 0.

The following Corollary 1.1 generalizes the growth property of UTn,m to the conical case.

Corollary 1.1. If u is a continuous function on ∂Cn(Γ) satisfying

(1.10)
∫

Sn(Γ)

|u(t,Φ)|

1+ t
n+ℵ

+
km+1

−1
dσQ < ∞,

then
lim

r→∞,P=(r,Θ)∈Cn(Γ)
r
−ℵ

+
km+1 ϕ

n−1(Θ)UCn(Γ),m(P) = 0.

By the boundedness of ϕ(Θ), we immediately obtain

Corollary 1.2. If u is a continuous function on ∂Cn(Γ) satisfying (1.10), then

(1.11) lim
r→∞,P=(r,Θ)∈Cn(Γ)

r
−ℵ

+
km+1

∫
Γ

|UCn(Γ),m(P)|ϕ(Θ)dS1 = 0.
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An integral representation of harmonic functions in a half space, due to Deng (see [3]) is
the following

Theorem 1.3. If u ∈ CS+
1 ,α+1 (α ≥ 0), m is an integer such that m < α ≤ m + 1 and PTn,m

is defined by (1.6), then the following properties hold:
(I) If α = 0, then the integral∫

∂Tn

PTn(P,Q)u(Q)dσQ

is absolutely convergent, it represents a harmonic function UTn(P) in Tn and can
be continuously extended to Tn such that u(P) = UTn(P) for P = (r,Θ) = (X ,0) ∈
∂Tn and there exists a constant b such that u(P) = bxn +UTn(P) for P = (r,Θ) =
(X ,xn) ∈ Tn.

(II) If α > 0, then the integral∫
∂Tn

PTn,m(P,Q)u(Q)dσQ

is absolutely convergent, it represents a harmonic function UTn,m(P) in Tn and can
be continuously extended to Tn such that u(P) = UTn,m(P) for P = (r,Θ) = (X ,0) ∈
∂Tn,

lim
R→∞

R−α−1 sup{|xn−1
n UTn,m(RP)| : P = (1,Θ) = (X ,xn) ∈ Tn}= 0

and there exists a harmonic polynomial QTn,m(P) of degree not greater than m
which vanishes on the boundary ∂Tn such that u(P) = UTn,m(P) + QTn,m(P) for
P = (r,Θ) = (X ,xn) ∈ Tn.

As an application of Theorem 1.2, we give the following result, which is a generalization
of Theorem 1.3.

Theorem 1.4. If u∈CΓ,β , m is an integer such that ℵ
+
km

< ℵ
+
k[β ]

+{β}≤ℵ
+
km+1

and PCn(Γ),m

is defined by (1.5), then the following properties hold:
(I) If β = 1, then the integral∫

Sn(Γ)
PCn(Γ),1(P,Q)u(Q)dσQ,

is absolutely convergent, it represents a harmonic function UCn(Γ),0(P) in Cn(Γ)
and can be continuously extended to Cn(Γ) such that UCn(Γ),0(P) = u(P) for P =
(r,Θ) ∈ Sn(Γ) and there exists a constant c such that u(P) = crϕ(Θ)+UCn(Γ),0(P)
for P = (r,Θ) ∈Cn(Γ).

(II) If β > 1, then
(i) u(t,Φ) ∈BΓ,β ((t,Φ) ∈ Sn(Γ)), i.e.

(1.12)
∫

Sn(Γ)

|u(t,Φ)|

1+ t
n+ℵ

+
k[β ]

+{β}−2

∂ϕ

∂n
dσQ < ∞.

(ii) The integral ∫
Sn(Γ)

PCn(Γ),m(P,Q)u(Q)dσQ,
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is absolutely convergent, it represents a harmonic function UCn(Γ),m(P) in Cn(Γ)
and can be continuously extended to Cn(Γ) such that UCn(Γ),m(P) = u(P) for
P = (r,Θ) ∈ Sn(Γ).

(iii) There exists a harmonic polynomial h(P) = ∑
km+1−1
i=1 Airℵ

+
i ϕi(Θ) vanishing

continuously on ∂Cn(Γ) such that u(P) = UCn(Γ),m(P)+h(P) for P = (r,Θ) ∈
Cn(Γ), where Ai (i = 1,2,3, . . . ,km+1−1) is a constant.

2. Lemmas

Throughout this paper, Let M denote various constants independent of the variables in ques-
tions, which may be different from line to line.

Lemma 2.1.
(i)

PCn(Γ)(P,Q)≤Mrℵ−tℵ+−1
ϕ(Θ)

(ii) (
resp. PCn(Γ)(P,Q)≤Mrℵ+

tℵ−−1
ϕ(Θ)

)
for any P = (r,Θ) ∈ Cn(Γ) and any Q = (t,Φ) ∈ Sn(Γ) satisfying 0 < t/r ≤ 4/5
(resp. 0 < r/t ≤ 4/5);

(iii)

PCn(Γ)(P,Q)≤M
ϕ(Θ)
tn−1 +M

rϕ(Θ)
|P−Q|n

for any P = (r,Θ) ∈Cn(Γ) and any Q = (t,Φ) ∈ Sn(Γ;(4/5r,5/4r)).

Proof. These immediately follow from [1, Lemma 4 and Remark] and (1.3).

Lemma 2.2. [9, Lemma 3]. For a non-negative integer m, we have

|PCn(Γ)(P,Q)−KCn(Γ),m(P,Q)| ≤M(2r)
ℵ

+
km+1 t

−ℵ
+
km+1

−n+1

for any P = (r,Θ) ∈Cn(Γ) and any Q = (t,Φ) ∈ Sn(Γ) satisfying 0 < r/t < 1/2, where M
is a constant independent of P, Q and m.

Lemma 2.3. [9, Lemma 5]. If u is a locally integrable and upper semi-continuous function
on ∂Cn(Γ). For any fixed P ∈Cn(Γ), V (P,Q) (Q ∈ ∂Cn(Γ)) is a locally integrable function
on ∂Cn(Γ). Put

W (P,Q) = PCn(Γ)(P,Q)−V (P,Q) (P ∈Cn(Γ),Q ∈ ∂Cn(Γ)).

Suppose that the following conditions (I) and (II) are satisfied:
(I) For any Q′ ∈ ∂Cn(Γ) and any ε > 0, there exist a neighborhood B(Q′) of Q′ in Rn

and a number R (0 < R < ∞) such that

(2.1)
∫

Sn(Γ;[R,∞))
|W (P,Q)||u(Q)|dσQ < ε

for any P = (r,Θ) ∈Cn(Γ)∩B(Q′).
(II) For any Q′ ∈ ∂Cn(Γ) and any number R (0 < R < ∞),

(2.2) limsup
P→Q′,P∈Cn(Γ)

∫
Sn(Γ;(0,R))

|V (P,Q)||u(Q)|dσQ = 0.
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Then

limsup
P→Q′,P∈Cn(Γ)

∫
Sn(Γ)

W (P,Q)u(Q)dσQ ≤ u(Q′)

for any Q′ ∈ ∂Cn(Γ).

The following Lemma generalizes the Carleman’s formula (referring to the holomorphic
functions in the half space, see [2]) to the subharmonic functions in smooth cones Rn (see [6,
Theorem 1]).

Lemma 2.4. If R > r > 0 and u(t,Φ) is a subharmonic function on a domain containing
Cn(Γ;(r,R)), then∫

Cn(Γ;(r,R))

(
1

t−ℵ−
− tℵ+

Rχ

)
ϕ∆udw

= χ

∫
Sn(Γ;R)

uϕ

R1−ℵ−
dSR +

∫
Sn(Γ;(r,R))

u

(
1

t−ℵ−
− tℵ+

Rχ

)
∂ϕ

∂n
dσQ +d1(r)+

d2(r)
Rχ

,

(2.3)

where

d1(r) =
∫

Sn(Γ;r)

ℵ−

r1−ℵ−
uϕ− ϕ

r−ℵ−
∂u
∂n

dSr

and

d2(r) =
∫

Sn(Γ;r)
rℵ+

ϕ
∂u
∂n
− ℵ+uϕ

r1−ℵ+ dSr.

Lemma 2.5. [10, Theorem 3.3]. Let m (≥ 1) be a positive integer and h(r,Θ) be a harmonic
function in Cn(Γ) vanishing continuously on ∂Cn(Γ). If

liminf
r→∞

r
−ℵ

+
km+1

∫
Γ

h+(r,Θ)ϕ(Θ)dS1 = 0,

then

h(r,Θ) =
km+1−1

∑
i=1

Airℵ
+
i ϕi(Θ),

where Ai (i = 1,2,3, . . . ,km+1−1) is a constant.

3. Proof of Theorem 1.2

For any fixed P = (r,Θ) ∈ Cn(Γ), take a number R satisfying R > max(1,2r). By γ −
ℵ

+
km+1
−n+1≤ 0, Lemma 2.2 and (1.9) we have∫

Sn(Γ;(R,∞))
|PCn(Γ),m(P,Q)||u(Q)|dσQ ≤M(2r)

ℵ
+
km+1

∫
Sn(Γ;(R,∞))

t
−ℵ

+
km+1

−n+1|u(t,Φ)|dσQ

≤Mrγ−n+1
∫

Sn(Γ;(R,∞))
|u(t,Φ)|t−γ dσQ

≤Mrγ−n+1 < ∞.(3.1)

Hence UCn(Γ),m(P) is absolutely convergent and finite for any P ∈Cn(Γ). Thus UCn(Γ),m(P)
is harmonic on Cn(Γ).
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Next we prove that limP∈Cn(Γ),P→Q′UCn(Γ),m(P) = u(Q′) for any Q′ = (t ′,Φ′) ∈ ∂Cn(Γ).
Setting V (P,Q) = K̃Cn(Γ),m(P,Q), which is locally integrable on ∂Cn(Γ) for any fixed P ∈
Cn(Γ). Then we apply Lemma 2.3 to u(Q) and −u(Q).

For any ε > 0 and a positive number δ , by (3.1) we can choose a number R, R >
max{1,2(t ′+δ )} such that (2.1) holds, where P∈Cn(Γ)∩B(Q′,δ ). Since limΘ→Φ′ ϕi(Θ) =
0 (i = 1,2,3 . . .) as P = (r,Θ)→ Q′ = (t ′,Φ′) ∈ Sn(Γ), limP∈Cn(Γ),P→Q′ K̃Cn(Γ),m(P,Q) = 0,
where Q ∈ Sn(Γ) and Q′ ∈ ∂Cn(Γ). Then (2.2) holds.

For ε mentioned above, there exists Rε > 1 such that∫
Sn(Γ;(Rε ,∞))

|u(t,Φ)|
1+ tγ

dσQ < ε.

Take any fixed point P = (r,Θ) ∈Cn(Γ) such that r > 5/4Rε , write

UCn(Γ),m(P)≤U1(P)+U2(P)+U3(P)+U4(P)+U5(P)+U6(P)+U7(P),

where

U1(P) =
∫

Sn(Γ;(0,1])
|PCn(Γ)(P,Q)||u(Q)|dσQ,

U2(P) =
∫

Sn(Γ;(1,Rε ])
|PCn(Γ)(P,Q)||u(Q)|dσQ,

U3(P) =
∫

Sn(Γ;(Rε , 4
5 r])
|PCn(Γ)(P,Q)||u(Q)|dσQ,

U4(P) =
∫

Sn(Γ;( 4
5 r, 5

4 r))
|PCn(Γ)(P,Q)||u(Q)|dσQ,

U5(P) =
∫

Sn(Γ;[ 5
4 r,2r])

|PCn(Γ)(P,Q)||u(Q)|dσQ,

U6(P) =
∫

Sn(Γ;[1,2r])
|K̃Cn(Γ),m(P,Q)||u(Q)|dσQ

and
U7(P) =

∫
Sn(Γ;(2r,∞))

|PCn(Γ),m(P,Q)||u(Q)|dσQ.

We first obtain the following growth estimates by γ +ℵ+−1 > 0 and Lemma 2.1 (i)

U2(P)≤Mrℵ−
ϕ(Θ)

∫
Sn(Γ;(1,Rε ])

tℵ+−1|u(t,Φ)|dσQ

≤Mrℵ−Rγ+ℵ+−1
ε ϕ(Θ)

∫
Sn(Γ;(1,Rε ])

|u(t,Φ)|t−γ dσQ ≤Mrℵ−Rγ+ℵ+−1
ε ϕ(Θ).(3.2)

U1(P)≤Mrℵ−
ϕ(Θ).(3.3)

U3(P)≤Mεrγ−n+1
ϕ(Θ).(3.4)

If ℵ
+
km+1
≥ γ−n+1, then γ−n−ℵ+ +1≤ 0. By Lemma 2.1 (ii)

U5(P)≤Mrℵ+
ϕ(Θ)

∫
Sn(Γ;[ 5

4 r,∞))
tℵ−−1|u(t,Φ)|dσQ

≤Mrγ−n+1
ϕ(Θ)

∫
Sn(Γ;[ 5

4 r,∞))
|u(t,Φ)|t−γ dσQ ≤Mεrγ−n+1

ϕ(Θ).(3.5)
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By Lemma 2.1 (iii), we consider the inequality

U4(P)≤U41(P)+U42(P),

where

U41(P) = Mϕ(Θ)
∫

Sn(Γ;( 4
5 r, 5

4 r))

|u(t,Φ)|
tn−1 dσQ,

U42(P) = Mrϕ(Θ)
∫

Sn(Γ;( 4
5 r, 5

4 r))

|u(t,Φ)|
|P−Q|n

dσQ.

We first have

U41(P)≤Mϕ(Θ)
∫

Sn(Γ;( 4
5 r, 5

4 r))
tℵ++ℵ−−1|u(t,Φ)|dσQ

≤Mrℵ+
ϕ(Θ)

∫
Sn(Γ;( 4

5 r,∞))
tℵ−−1|u(t,Φ)|dσQ ≤Mεrγ−n+1

ϕ(Θ),(3.6)

which is similar to the estimate of U5(P).
Next, we shall estimate U42(P). Take a sufficiently small positive number k such that

Sn

(
Γ;
(

4
5

r,
5
4

r
))
⊂

⋃
P=(r,Θ)∈Π(k)

B
(

P,
1
2

r
)

,

where

Π(k) =
{

P = (r,Θ) ∈Cn(Γ); inf
(1,z)∈∂Γ

|(1,Θ)− (1,z)|< k, 0 < r < ∞

}
,

and divide Cn(Γ) into two sets Π(k) and Cn(Γ)−Π(k). If P = (r,Θ) ∈Cn(Γ)−Π(k), then
there exists a positive k′ such that |P−Q| ≥ k′r for any Q ∈ Sn(Γ), and hence

(3.7) U42(P)≤Mϕ(Θ)
∫

Sn(Γ;( 4
5 r, 5

4 r))

|u(t,Φ)|
tn−1 dσQ ≤Mεrγ−n+1

ϕ(Θ),

which is similar to the estimate of U41(P).
We shall consider the case P = (r,Θ) ∈Π(k). Now put

Hi(P) =
{

Q ∈ Sn

(
Γ;
(

4
5

r,
5
4

r
))

; 2i−1
δ (P)≤ |P−Q|< 2i

δ (P)
}

,

where δ (P) = infQ∈∂Cn(Γ) |P−Q|. Since Sn(Γ)∩{Q ∈ Rn : |P−Q|< δ (P)}= ∅, we have

U42(P) = M
i(P)

∑
i=1

∫
Hi(P)

rϕ(Θ)
|u(t,Φ)|
|P−Q|n

dσQ,

where i(P) is a positive integer satisfying 2i(P)−1δ (P) ≤ r/2 < 2i(P)δ (P). Since rϕ(Θ) ≤
Mδ (P) (P = (r,Θ) ∈Cn(Γ)), similar to the estimate of U41(P) we obtain∫

Hi(P)
rϕ(Θ)

|u(t,Φ)|
|P−Q|n

dσQ ≤
∫

Hi(P)
rϕ(Θ)

|u(t,Φ)|
(2i−1δ (P))n dσQ

≤M2(1−i)n
ϕ

1−n(Θ)
∫

Hi(P)
t1−n|u(t,Φ)|dσQ ≤Mεrγ−n+1

ϕ
1−n(Θ),

for i = 0,1,2, . . . , i(P). So

(3.8) U42(P)≤Mεrγ−n+1
ϕ

1−n(Θ).
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Since in the case m = 0, U6(P) ≡ 0, we only consider the case U6(P) for m ≥ 1. From
(1.2) and (1.4), we see

U6(P)≤ML ∑
i∈Ikm+1

i2ℵ
+
i +n−1qi(r),

where

L = max
Θ∈Γ,Φ∈∂Γ

PCn(Γ)((1,Θ),(2,Φ)),

and

qi(r) = rℵ
+
i

∫
Sn(Γ;[1,2r))

t−ℵ
+
i −n+1|u(t,Φ)|dσQ.

To estimate qi(r), we write

qi(r)≤ q′i(r)+q′′i (r),

where

q′i(r) = rℵ
+
i

∫
Sn(Γ;[1,Rε ])

t−ℵ
+
i −n+1|u(t,Φ)|dσQ,

q′′i (r) = rℵ
+
i

∫
Sn(Γ;(Rε ,2r))

t−ℵ
+
i −n+1|u(t,Φ)|dσQ.

By γ−ℵ
+
km+1
−n+2 > 0, we have the following estimates

q′i(r) = rℵ
+
i

∫
Sn(Γ;[1,Rε ])

t
−ℵ

+
km+1 t

ℵ
+
km+1

−ℵ
+
i −n+1|u(t,Φ)|dσQ

≤ r
ℵ

+
km+1

−1
∫

Sn(Γ;[1,Rε ])
t
−ℵ

+
km+1

−n+2|u(t,Φ)|dσQ ≤Mr
ℵ

+
km+1

−1
R

γ−ℵ
+
km+1

−n+2
ε .

q′′i (r)≤Mεrγ−n+1.

Thus we can conclude that

qi(r)≤Mεrγ−n+1,

which yields

(3.9) U6(P)≤Mεrγ−n+1.

We obtain by r−ℵ
+
km+1
−n+1≤ 0 and Lemma 2.2

U7(P)≤M1(2r)
ℵ

+
km+1

∫
Sn(Γ;(2r,∞))

t
−ℵ

+
km+1

−n+1|u(t,Φ)|dσQ

≤Mrγ−n+1
∫

Sn(Γ;(2r,∞))
|u(t,Φ)|t−γ dσQ ≤Mεrγ−n+1.(3.10)

Combining (3.2)–(3.10), we complete the proof of Theorem 1.2.



Growth Property and Integral Representation of Harmonic Functions in a Cone 521

4. Proof of Theorem 1.4

To prove (II). We apply the formula (2.3) with R > r = 1 to u = u+− u− in Cn(Γ;(1,R)),
where u+ = max{u,0} and u− = (−u)+.

m+(R)+
∫

Sn(Γ;(1,R))
u+

(
1

t−ℵ−
− tℵ+

Rχ

)
∂ϕ

∂n
dσQ +d1 +

d2

Rχ

= m−(R)+
∫

Sn(Γ;(1,R))
u−
(

1
t−ℵ−

− tℵ+

Rχ

)
∂ϕ

∂n
dσQ,

(4.1)

where

m±(R) = χ

∫
Sn(Γ;R)

u±ϕ

R1−ℵ−
dSR,

d1 =
∫

Sn(Γ;1)
ℵ
−uϕ−ϕ

∂u
∂n

dS1, d2 =
∫

Sn(Γ;1)
ϕ

∂u
∂n
−ℵ

+uϕdS1.

Since u ∈ CΓ,β , we obtain by (1.7)

1
χ

∫
∞

1

m+(R)

R
ℵ

+
k[β ]

+{β}−ℵ++1
dR =

∫
Cn(Γ;(1,∞))

u+ϕ

t
n+ℵ

+
k[β ]

+{β}
dσQ

≤ 2
∫

Cn(Γ)

u+ϕ

1+ t
n+ℵ

+
k[β ]

+{β}
dσQ < ∞.(4.2)

From (1.8), we conclude that∫
∞

1

1

R
ℵ

+
k[β ]

+{β}−ℵ++1

∫
Sn(Γ;(1,R))

u+

(
1

t−ℵ−
− tℵ+

Rχ

)
∂ϕ

∂n
dσQdR

=
∫

Sn(Γ;(1,∞))
u+tℵ+

∫
∞

t

1

R
ℵ

+
k[β ]

+{β}−ℵ++1

(
1
tχ
− 1

Rχ

)
dR

∂ϕ

∂n
dσQ

≤ χ

χ +1

∫
Sn(Γ;(1,∞))

u+

t
n+ℵ

+
k[β ]

+{β}−2

∂ϕ

∂n
dσQ

≤ 2
χ

χ +1

∫
Sn(Γ)

u+

1+ t
n+ℵ

+
k[β ]

+{β}−2

∂ϕ

∂n
dσQ < ∞.(4.3)

Combining (4.1), (4.2) and (4.3), we obtain∫
∞

1

1

R
ℵ

+
k[β ]

+ {β}2 −ℵ++1

∫
Sn(Γ;(1,R))

u−
(

1
t−ℵ−

− tℵ+

Rχ

)
∂ϕ

∂n
dσQdR

≤
∫

∞

1

m+(R)

R
ℵ

+
k[β ]

+ {β}2 −ℵ++1
dR+

∫
∞

1

1

R
ℵ

+
k[β ]

+ {β}2 −ℵ++1

∫
Sn(Γ;(1,R))

u+

(
1

t−ℵ−
− tℵ+

Rχ

)
∂ϕ

∂n
dσQdR

+
∫

∞

1

1

R
ℵ

+
k[β ]

+ {β}2 −ℵ++1
(d1 +

d2

Rχ
)dR

< ∞.
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Set

H (β ) = lim
t→∞

∫
∞

t R
−ℵ

+
k[β ]
− {β}2 +ℵ+−1 ( 1

tχ − 1
Rχ

)
dR

t
−n−ℵ

+
k[β ]
−{β}−ℵ++2

.

By the L’hospital’s rule, we have

H (β ) =


χ

(ℵ+
k[β ]
−ℵ+)(n+ℵ

+
k[β ]

+ℵ+−2)
if {β}= 0,

+∞ if {β} 6= 0,

which yields that there exists a positive constant A such that for any t ≥ 1,∫
∞

t

tℵ+

R
ℵ

+
k[β ]

+ {β}2 −ℵ++1

(
1
tχ
− 1

Rχ

)
dR≥ A

t
n+ℵ

+
k[β ]

+{β}−2
.

Then

A
∫

Sn(Γ;(1,∞))

u−

t
n+ℵ

+
k[β ]

+{β}−2

∂ϕ

∂n
dσQ

≤
∫

Sn(Γ;(1,∞))
u−tℵ+

∫
∞

t

1

R
ℵ

+
k[β ]

+ {β}2 −ℵ++1

(
1
tχ
− 1

Rχ

)
dR

∂ϕ

∂n
dσQ

< ∞,

which shows that (1.12) holds. Notice that ℵ
+
km

< ℵ
+
k[β ]

+{β} ≤ℵ
+
km+1

and condition (1.12)
is stronger than (1.10). So the proofs of (ii) are similar to them in Theorem 1.2. Here we
omit them.

Finally we consider the function u(P)−UCn(Γ),m(P), which is harmonic in Cn(Γ) and
vanishes continuously on ∂Cn(Γ). Since

(4.4) 0≤
(
u(P)−UCn(Γ),m(P)

)+ ≤ u+(P)+
(
UCn(Γ),m

)− (P)

for any P ∈Cn(Γ). Further, (1.7) gives that

(4.5) liminf
r→∞

r
−ℵ

+
km+1

∫
Γ

u+(P)ϕ(Θ)dS1 = 0.

From Lemma 2.5, (1.11), (4.4) and (4.5), the conclusion (iii) holds. If u ∈ CΓ,1, then u ∈
CΓ,β for each β > 1, so there exists a constant c1 such that

u(P) = c1rϕ(Θ)+UCn(Γ),1(P)

for all P∈Cn(Γ). So if we take c = c1−
∫

Sn(Γ;[1,∞)) PCn(Γ)(0,Q)u(Q)dσQ, we see that u(P) =
crϕ(Θ)+UCn(Γ),0(P) holds for all P ∈Cn(Γ). Then we complete the proof of Theorem 1.4.
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