Strong Convergence Theorems for Variational Inequality Problems and Fixed Point Problems in Banach Spaces

${ }^{1}$ GANG Cai and ${ }^{2}$ ShangQuan Bu
${ }^{1,2}$ Department of Mathematical Sciences, Tsinghua University, 100084 Beijing, China
${ }^{1}$ caigang-aaaa@163.com, ${ }^{2}$ sbu@ math.tsinghua.edu.cn

Abstract

In this paper, we introduce a new iterative algorithm for finding a common element of the set of solutions of a general variational inequality problem for finite inversestrongly accretive mappings and the set of common fixed points of a countable family of strict pseudocontractive mappings in a Banach space. We obtain a strong convergence theorem under some suitable conditions. Our results improve and extend the recent ones announced by many others in the literature.

2010 Mathematics Subject Classification: 47H09, 47H10
Keywords and phrases: Strong convergence, variational inequality, fixed point, strict pseudocontractive mapping.

1. Introduction

Throughout this paper, we denote by E and E^{*} a real Banach space and the dual space of E, respectively. Let C be a subset of E and T be a self-mapping of C. We use $F(T)$ to denote the fixed points of T.

The duality mapping $J: E \rightarrow 2^{E^{*}}$ is defined by

$$
J(x)=\left\{x^{*} \in E^{*}:\left\langle x, x^{*}\right\rangle=\|x\|^{2},\left\|x^{*}\right\|=\|x\|\right\}, \quad \forall x \in E .
$$

If E is a Hilbert space, then $J=I$, where I is the identity mapping. It is well-known that if E is smooth, then J is single-valued, which is denoted by j.

Recall that $T: C \rightarrow C$ is said to be nonexpansive if

$$
\begin{equation*}
\|T x-T y\| \leq\|x-y\|, \quad \forall x, y \in C \tag{1.1}
\end{equation*}
$$

$T: C \rightarrow C$ is said to be Lipschitzian if there exists a constant $L>0$ such that

$$
\begin{equation*}
\|T x-T y\| \leq L\|x-y\|, \quad \forall x, y \in C \tag{1.2}
\end{equation*}
$$

$T: C \rightarrow C$ is said to be a λ-strict pseudo-contractive, if there exists a constant $\lambda>0$ and $j(x-y) \in J(x-y)$ such that

$$
\begin{equation*}
\langle T x-T y, j(x-y)\rangle \leq\|x-y\|^{2}-\lambda\|(I-T) x-(I-T) y\|^{2}, \quad \forall x, y \in C . \tag{1.3}
\end{equation*}
$$

[^0]Received: February 23, 2011; Revised: August 17, 2011.

Remark 1.1. From (1.3) we can prove that if T is λ-strict pseudo-contractive, then T is Lipschitz continuous with the Lipschitz constant $L=(1+\lambda) / \lambda$.

A mapping $A: C \rightarrow E$ is said to be accretive if there exists $j(x-y) \in J(x-y)$ such that

$$
\begin{equation*}
\langle A x-A y, j(x-y)\rangle \geq 0, \quad \forall x, y \in C . \tag{1.4}
\end{equation*}
$$

A mapping $A: C \rightarrow E$ is said to be α-inverse strongly accretive if there exist $j(x-y) \in$ $J(x-y)$ and $\alpha>0$ such that

$$
\begin{equation*}
\langle A x-A y, j(x-y)\rangle \geq \alpha\|A x-A y\|^{2}, \quad \forall x, y \in C \tag{1.5}
\end{equation*}
$$

A mapping $f: C \rightarrow C$ is said to be a contraction if there exists a constant $\alpha \in(0,1)$ such that

$$
\begin{equation*}
\|f(x)-f(y)\| \leq \alpha\|x-y\|, \quad \forall x, y \in C \tag{1.6}
\end{equation*}
$$

We use the notation Π_{C} to denote the collection of all contractions on C.
Variational inequality theory has emerged as an important tool in studying a wide class of obstacle, unilateral, free, moving, equilibrium problems arising in several branches of pure and applied sciences in a unified and general framework. Several numerical methods have been developed for solving variational inequalities and related optimization problems, see $[4,6-9,12-17,20,23,25,26]$ and the references therein.

Let C be a nonempty closed convex subset of a real Hilbert space H. Let $A, B: C \rightarrow H$ be two mappings. In 2008, Ceng et al. [4] considered the following problem of finding $\left(x^{*}, y^{*}\right) \in C \times C$ such that

$$
\begin{cases}\left\langle\lambda A y^{*}+x^{*}-y^{*}, x-x^{*}\right\rangle \geq 0, & \forall x \in C, \tag{1.7}\\ \left\langle\mu B x^{*}+y^{*}-x^{*}, x-y^{*}\right\rangle \geq 0, & \forall x \in C,\end{cases}
$$

which is called a general system of variational inequalities, where $\lambda>0$ and $\mu>0$ are two constants. In particular, if $A=B$, then problem (1.7) reduces to finding $\left(x^{*}, y^{*}\right) \in C \times C$ such that

$$
\begin{cases}\left\langle\lambda A y^{*}+x^{*}-y^{*}, x-x^{*}\right\rangle \geq 0, & \forall x \in C, \tag{1.8}\\ \left\langle\mu A x^{*}+y^{*}-x^{*}, x-y^{*}\right\rangle \geq 0, & \forall x \in C .\end{cases}
$$

Ceng et al. [4] introduced a relaxed extragradient method for finding a common element of the set of solutions of problem (1.7) for two inverse-strongly monotone mappings and the set of fixed points of a nonexpansive mapping in a real Hilbert space. Let $x_{1}=v \in C$ and let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be given by

$$
\left\{\begin{array}{l}
y_{n}=P_{C}\left(x_{n}-\mu B x_{n}\right) \tag{1.9}\\
x_{n+1}=a_{n} v+b_{n} x_{n}+\left(1-a_{n}-b_{n}\right) S P_{C}\left(y_{n}-\lambda A y_{n}\right), \quad n \geq 1
\end{array}\right.
$$

where $\lambda \in(0,2 \alpha), \mu \in(0,2 \beta)$ and $\left\{a_{n}\right\},\left\{b_{n}\right\} \subset[0,1]$. Then they proved the sequence $\left\{x_{n}\right\}$ converges strongly to a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of problem (1.7) under some control conditions.

Recently, Wangkeeree [20] suggested and analyzed a new iterative scheme for finding a common element of the fixed point set of common fixed points of a countable family of nonexpansive mappings and the set of solutions of the variational inequality problem for an
inverse-strongly monotone mapping in a real Hilbert space. More precisely, they studied the following iterative algorithm

$$
\left\{\begin{array}{l}
x_{1}=x \in C, \tag{1.10}\\
y_{n}=P_{C}\left(x_{n}-\lambda_{n} B x_{n}\right) \\
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\beta_{n} x_{n}+\left(\left(1-\beta_{n}\right) I-\alpha_{n} A\right) S_{n} P_{C}\left(y_{n}-\lambda_{n} B y_{n}\right), \quad n \geq 1,
\end{array}\right.
$$

and proved a strong convergence under some suitable conditions.
Very recently, Qin and Kang [14] proposed an explicit viscosity approximation method for finding a common element of the set of fixed points of strict pseudo-contractions and the set of solutions of variational inequalities with inverse-strongly monotone mappings. They introduced the following iterative algorithm

$$
\left\{\begin{array}{l}
x_{1} \in C, \tag{1.11}\\
z_{n}=P_{C}\left(x_{n}-\mu_{n} B x_{n}\right), \\
y_{n}=P_{C}\left(x_{n}-\lambda_{n} A x_{n}\right), \\
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\beta_{n} x_{n}+\gamma_{n}\left[\delta_{(1, n)} S x_{n}+\delta_{(2, n)} y_{n}+\delta_{(3, n)} z_{n}\right], \quad n \geq 1,
\end{array}\right.
$$

and obtained a strong convergence theorem.
On the other hand, Yao et al. [24] introduced the following system of general variational inequlities in Banach spaces. Let C be a nonempty closed convex subset of a real Banach space E. For given two operators $A, B: C \rightarrow E$, they considered the problem of finding $\left(x^{*}, y^{*}\right) \in C \times C$ such that

$$
\begin{cases}\left\langle A y^{*}+x^{*}-y^{*}, j\left(x-x^{*}\right)\right\rangle \geq 0, & \forall x \in C, \tag{1.12}\\ \left\langle B x^{*}+y^{*}-x^{*}, j\left(x-y^{*}\right)\right\rangle \geq 0, & \forall x \in C,\end{cases}
$$

which is called the system of general variational inequalities in a real Banach space. Under some suitable conditions they proved a strong convergence theorem by using the following iterative algorithm:

$$
\left\{\begin{array}{l}
x_{0} \in C \tag{1.13}\\
y_{n}=Q_{C}\left(x_{n}-B x_{n}\right) \\
x_{n+1}=a_{n} u+b_{n} x_{n}+c_{n} Q_{C}\left(y_{n}-A y_{n}\right), \quad n \geq 0
\end{array}\right.
$$

where $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ are three sequences in $(0,1)$ and $u \in C$.
In this paper, motivated and inspired by the above facts, we introduce the following system of variational inequalities in a Banach space: Let C be a nonempty closed convex subset of a real Banach space E. Let $\left\{A_{i}\right\}_{i=1}^{M}: C \rightarrow E$ be a family of mappings. First we consider the following problem of finding $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{M}^{*}\right) \in C \times C \ldots \times C$ such that

$$
\begin{cases}\left\langle\mu_{M} A_{M} x_{M}^{*}+x_{1}^{*}-x_{M}^{*}, j\left(x-x_{1}^{*}\right)\right\rangle \geq 0, & \forall x \in C, \tag{1.14}\\ \left\langle\mu_{M-1} A_{M-1} x_{M-1}^{*}+x_{M}^{*}-x_{M-1}^{*}, j\left(x-x_{M}^{*}\right)\right\rangle \geq 0, & \forall x \in C, \\ \vdots & \\ \left\langle\mu_{2} A_{2} x_{2}^{*}+x_{3}^{*}-x_{2}^{*}, j\left(x-x_{3}^{*}\right)\right\rangle \geq 0, & \forall x \in C, \\ \left\langle\mu_{1} A_{1} x_{1}^{*}+x_{2}^{*}-x_{1}^{*}, j\left(x-x_{2}^{*}\right)\right\rangle \geq 0, & \forall x \in C,\end{cases}
$$

which is called a more general system of variational inequalities in Banach spaces, where $\mu_{i}>0$ for all $i \in\{1,2, \ldots, M\}$. The set of solutions to (1.14) is denoted by Ω. In particular, if $M=2, A_{1}=B, A_{2}=A, \mu_{1}=\mu_{2}=1, x_{1}^{*}=x^{*}, x_{2}^{*}=y^{*}$, then problem (1.14) reduces to problem (1.12). Subsequently, we introduce a new iterative algorithm for finding a common element of the set of solutions of a general variational inequality problem (1.14) for finite inverse-strongly accretive mappings and the set of common fixed points of a countable family of strict pseudocontractive mappings in a Banach space. The results presented in this paper improve and extend the corresponding results announced by Qin and Kang [14], Wangkeeree [20], Yao et al. [24], Ceng et al. [4] and many others in the literature.

2. Preliminaries

A Banach space E is said to be strictly convex, if whenever x and y are not collinear, then: $\|x+y\|<\|x\|+\|y\|$. The modulus of convexity of E is defined by

$$
\delta_{E}(\varepsilon)=\inf \left\{1-\frac{1}{2}\|(x+y)\|:\|x\|,\|y\| \leq 1,\|x-y\| \geq \varepsilon\right\}
$$

for all $\varepsilon \in[0,2] . \quad E$ is said to be uniformly convex if $\delta_{E}(0)=0$, and $\delta_{E}(\varepsilon)>0$ for all $0<\varepsilon \leq 2$. Hilbert space H is 2-uniformly convex, while L^{p} is $\max \{p, 2\}$-uniformly convex for every $p>1$.

Let $S(E)=\{x \in E:\|x\|=1\}$. Then the norm of E is said to be Gâteaux differentiable if

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t} \tag{2.1}
\end{equation*}
$$

exists for each $x, y \in S(E)$. In this case, E is said to be smooth. The norm of E is said to be uniformly Gâteaux differentiable, if for each $y \in S(E)$, the limit (2.1) is attained uniformly for $x \in S(E)$. The norm of the E is said to be Frêchet differentiable, if for each $x \in S(E)$, the limit (2.1) is attained uniformly for $y \in S(E)$. The norm of E is called uniformly Frêchet differentiable, if the limit (2.1) is attained uniformly for $x, y \in S(E)$. It is well-known that (uniform) Frêchet differentiability of the norm E implies (uniform) Gâteaux differentiability of norm E.

Let $\rho_{E}:[0, \infty) \rightarrow[0, \infty)$ be the modulus of smoothness of E defined by

$$
\rho_{E}(t)=\sup \left\{\frac{1}{2}(\|x+y\|+\|x-y\|)-1: x \in S(E),\|y\| \leq t\right\}
$$

A Banach space E is said to be uniformly smooth if $\left(\rho_{E}(t)\right) / t \rightarrow 0$ as $t \rightarrow 0$. A Banach space E is said to be q-uniformly smooth, if there exists a fixed constant $c>0$ such that $\rho_{E}(t) \leq c t^{q}$. It is well-known that E is uniformly smooth if and only if the norm of E is uniformly Fréchet differentiable. If E is q-uniformly smooth, then $q \leq 2$ and E is uniformly smooth, and hence the norm of E is uniformly Fréchet differentiable, in particular, the norm of E is Fréchet differentiable. Typical example of uniformly smooth Banach spaces is L^{p}, where $p>1$. More precisely, L^{p} is $\min \{p, 2\}$-uniformly smooth for every $p>1$.

Recall that, if C and D are nonempty subsets of a Banach space E such that C is nonempty closed convex and $D \subset C$, then a mapping $P: C \rightarrow D$ is sunny [18] provided

$$
P(x+t(x-P(x)))=P(x) \quad \text { for all } x \in C \text { and } t \geq 0
$$

whenever $x+t(x-P(x)) \in C$. A mapping $P: C \rightarrow D$ is called a retraction if $P x=x$ for all $x \in D$. Furthermore, P is a sunny nonexpansive retraction from C onto D if P is retraction from C onto D which is also sunny and nonexpansive.

A subset D of C is called a sunny nonexpansive retraction of C if there exists a sunny nonexpansive retraction from C onto D. The following propositions concern the sunny nonexpansive retraction.
Proposition 2.1. [18] Let C be a closed convex subset of a smooth Banach space E. Let D be a nonempty subset of C. Let $P: C \rightarrow D$ be a retraction and let J be the normalized duality mapping on E. Then the following are equivalent:
(a) P is sunny and nonexpansive.
(b) $\|P x-P y\|^{2} \leq\langle x-y, J(P x-P y)\rangle, \forall x, y \in C$.
(c) $\langle x-P x, J(y-P x)\rangle \leq 0, \forall x \in C, y \in D$.

Proposition 2.2. [11] If E is strictly convex and uniformly smooth and if $T: C \rightarrow C$ is a nonexpansive mapping having a nonempty fixed point set $F(T)$, then the set $F(T)$ is a sunny nonexpansive retraction of C.

In order to prove our main results, we need the following lemmas.
Lemma 2.1. [10] Let E be a real smooth and uniformly convex Banach space and let $r>0$. Then there exists a strictly increasing, continuous and convex function $g:[0,2 r] \rightarrow \mathbb{R}$ such that $g(0)=0$ and $g(\|x-y\|) \leq\|x\|^{2}-2\langle x, j y\rangle+\|y\|^{2}$, for all $x, y \in B_{r}$.
Lemma 2.2. [19] Let $\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ be bounded sequences in a Banach space E and let $\left\{\beta_{n}\right\}$ be a sequence in $[0,1]$ which satisfies the following condition: $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq$ $\limsup { }_{n \rightarrow \infty} \beta_{n}<1$. Suppose $x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) z_{n}, n \geq 0$ and $\limsup \operatorname{sum}_{n \rightarrow \infty}\left(\left\|z_{n+1}-z_{n}\right\|-\right.$ $\left.\left\|x_{n+1}-x_{n}\right\|\right) \leq 0$. Then $\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0$.
Lemma 2.3. [22] Assume $\left\{a_{n}\right\}$ is a sequence of nonnegative real numbers such that $a_{n+1} \leq$ $\left(1-\alpha_{n}\right) a_{n}+\delta_{n}, n \geq 0$, where $\left\{\alpha_{n}\right\}$ is a sequence in $(0,1)$ and $\left\{\delta_{n}\right\}$ is a sequence in \mathbb{R} such that
(i) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(ii) $\limsup { }_{n \rightarrow \infty} \delta_{n} / \alpha_{n} \leq 0$ or $\sum_{n=0}^{\infty}\left|\delta_{n}\right|<\infty$.

Then $\lim _{n \rightarrow \infty} a_{n}=0$.
Lemma 2.4. [21] Let E be a real q-uniformly smooth Banach space, then there exists a constant $C_{q}>0$ such that

$$
\|x+y\|^{q} \leq\|x\|^{q}+q\left\langle y, j_{q} x\right\rangle+C_{q}\|y\|^{q},
$$

for all $x, y \in E$. In particular, if E is real 2 -uniformly smooth Banach space, then there exists a best smooth constant $K>0$ such that

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, j x\rangle+2\|K y\|^{2}
$$

for all $x, y \in E$.
Lemma 2.5. [1] Let C be a nonempty closed convex subset of a Banach space E. Let S_{1}, S_{2}, \cdots be a sequence of mappings of C into itself. Suppose that $\sum_{n=1}^{\infty} \sup \left\|S_{n+1} x-S_{n} x\right\|$: $x \in C<\infty$. Then for each $y \in C,\left\{S_{n} y\right\}$ converges strongly to some point of C. Moreover, let S be a mapping of C into itself defined by $S y=\lim _{n \rightarrow \infty} S_{n} y$ for all $y \in C$. Then $\lim _{n \rightarrow \infty} \sup \left\{\left\|S x-S_{n} x\right\|: x \in C\right\}=0$.

Lemma 2.6. [3] Let C be a closed convex subset of a strictly convex Banach space E. Let $\left\{T_{n}: n \in \mathbb{N}\right\}$ be a sequence of nonexpansive mappings on C. Suppose $\cap_{n=1}^{\infty} F\left(T_{n}\right)$ is nonempty. Let $\left\{\lambda_{n}\right\}$ be a sequence of positive numbers with $\sum_{n=1}^{\infty} \lambda_{n}=1$. Then a mapping S on C defined by $S x=\sum_{n=1}^{\infty} \lambda_{n} T_{n} x$ for $x \in C$ is well defined, non-expansive and $F(S)=$ $\cap_{n=1}^{\infty} F\left(T_{n}\right)$ holds.

Lemma 2.7. [2] Let C be a nonempty closed convex subset of a uniformly convex Banach space E and let T be nonexpansive mapping of C into itself. If $\left\{x_{n}\right\}$ is a sequence of C such that $x_{n} \rightarrow x$ weakly and $x_{n}-T x_{n} \rightarrow 0$ strongly, then x is a fixed point of T.

Lemma 2.8. [22] Let E be a uniformly smooth Banach space, C be a closed convex subset of $E, T: C \rightarrow C$ be a nonexpansive mapping with $F(T) \neq \emptyset$ and let $f \in \Pi_{C}$. Then the sequence $\left\{x_{t}\right\}$ define by

$$
x_{t}=t f\left(x_{t}\right)+(1-t) T x_{t}
$$

converges strongly to a point in $F(T)$. If we define a mapping $Q: \Pi_{C} \rightarrow F(T)$ by

$$
Q(f):=\lim _{t \rightarrow 0} x_{t}, \quad \forall f \in \Pi_{C} .
$$

Then $Q(f)$ solves the following variational inequality:

$$
\langle(I-f) Q(f), j(Q(f)-p)\rangle \leq 0, \quad \forall f \in \Pi_{C}, p \in F(T)
$$

Lemma 2.9. [5] In a Banach space E, the following inequality holds:

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, j(x+y)\rangle, \quad \forall x, y \in E
$$

where $j(x+y) \in J(x+y)$.
Lemma 2.10. [27] Let C be a nonempty convex subset of a real 2-uniformly smooth Banach space E and $T: C \rightarrow C$ be a λ-strict pseudo-contraction. For $\alpha \in(0,1)$, we define $T_{\alpha} x=$ $(1-\alpha) x+\alpha T x$. Then, as $\alpha \in\left(0, \lambda / K^{2}\right], T_{\alpha}: C \rightarrow C$ is nonexpansive such that $F\left(T_{\alpha}\right)=$ $F(T)$.

Lemma 2.11. Let C be a nonempty closed convex subset of a real 2-uniformly smooth Banach space E. Let the mapping $A: C \rightarrow E$ be α-inverse-strongly accretive. Then, we have

$$
\|(I-\mu A) x-(I-\mu A) y\|^{2} \leq\|x-y\|^{2}+2 \mu\left(\mu K^{2}-\alpha\right)\|A x-A y\|^{2}
$$

where $\mu>0$. In particular, if $\mu \leq \alpha / K^{2}$, then $I-\mu A$ is nonexpansive.
Proof. Indeed, for all $x, y \in C$, it follows from Lemma 2.4 that

$$
\begin{aligned}
\|(I-\mu A) x-(I-\mu A) y\|^{2} & =\|x-y-\mu(A x-A y)\|^{2} \\
& \leq\|x-y\|^{2}-2 \mu\langle A x-A y, j(x-y)\rangle+2 \mu^{2} K^{2}\|A x-A y\|^{2} \\
& \leq\|x-y\|^{2}-2 \mu \alpha\|A x-A y\|^{2}+2 \mu^{2} K^{2}\|A x-A y\|^{2} \\
& =\|x-y\|^{2}+2 \mu\left(\mu K^{2}-\alpha\right)\|A x-A y\|^{2} .
\end{aligned}
$$

It is clear that if $0<\mu \leq \alpha / K^{2}$, then $I-\mu A$ is nonexpansive. This completes the proof.
Lemma 2.12. Let C be a nonempty closed convex subset of a real 2-uniformly smooth Banach space E. Let Q_{C} be the sunny nonexpansive retraction from E onto C. Let $A_{i}: C \rightarrow E$
be an α_{i}-inverse-strongly accretive mapping, where $i \in\{1,2, \ldots, M\}$. Let $G: C \rightarrow C$ be a mapping defined by

$$
G(x)=Q_{C}\left(I-\mu_{M} A_{M}\right) Q_{C}\left(I-\mu_{M-1} A_{M-1}\right) \ldots Q_{C}\left(I-\mu_{2} A_{2}\right) Q_{C}\left(I-\mu_{1} A_{1}\right) x, \forall x \in C
$$

If $0<\mu_{i} \leq \alpha_{i} / K^{2}, i=1,2, \ldots, M$, then $G: C \rightarrow C$ is nonexpansive.
Proof. Put $\Theta^{i}=Q_{C}\left(I-\mu_{i} A_{i}\right) Q_{C}\left(I-\mu_{i-1} A_{i-1}\right) \ldots Q_{C}\left(I-\mu_{2} A_{2}\right) Q_{C}\left(I-\mu_{1} A_{1}\right), i=1,2, \ldots, M$ and $\Theta^{0}=I$, where I is identity mapping. Then $G=\Theta^{M}$. For all $x, y \in C$, it follows from Lemma 2.11 that

$$
\begin{aligned}
\|G x-G y\| & =\left\|\Theta^{M} x-\Theta^{M} y\right\| \\
& =\left\|Q_{C}\left(I-\mu_{M} A_{M}\right) \Theta^{M-1} x-Q_{C}\left(I-\mu_{M} A_{M}\right) \Theta^{M-1} y\right\| \\
& \leq\left\|\left(I-\mu_{M} A_{M}\right) \Theta^{M-1} x-\left(I-\mu_{M} A_{M}\right) \Theta^{M-1} y\right\| \\
& \leq\left\|\Theta^{M-1} x-\Theta^{M-1} y\right\| \\
& \vdots \\
& \leq\left\|\Theta^{0} x-\Theta^{0} y\right\| \\
& =\|x-y\|
\end{aligned}
$$

which implies G is nonexpansive. This completes the proof.
Lemma 2.13. Let C be a nonempty closed convex subset of a real smooth Banach space E. Let Q_{C} be the sunny nonexpansive retraction from E onto C. Let $A_{i}: C \rightarrow E$ be nonlinear mapping, where $i=1,2, \ldots, M$. For given $x_{i}^{*} \in C, i=1,2, \ldots, M,\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{M}^{*}\right)$ is a solution of problem (1.14) if and only if

$$
x_{i}^{*}=Q_{C}\left(I-\mu_{i-1} A_{i-1}\right) x_{i-1}^{*}, x_{1}^{*}=Q_{C}\left(I-\mu_{M} A_{M}\right) x_{M}^{*}, \quad i=2, \ldots, M .
$$

That is

$$
x_{1}^{*}=Q_{C}\left(I-\mu_{M} A_{M}\right) Q_{C}\left(I-\mu_{M-1} A_{M-1}\right) \ldots Q_{C}\left(I-\mu_{2} A_{2}\right) Q_{C}\left(I-\mu_{1} A_{1}\right) x_{1}^{*} .
$$

Proof. We can rewrite (1.14) as

$$
\begin{cases}\left\langle x_{1}^{*}-\left(x_{M}^{*}-\mu_{M} A_{M} x_{M}^{*}\right), j\left(x-x_{1}^{*}\right)\right\rangle \geq 0, & \forall x \in C, \tag{2.2}\\ \left\langle x_{M}^{*}-\left(x_{M-1}^{*}-\mu_{M-1} A_{M-1} x_{M-1}^{*}\right), j\left(x-x_{M}^{*}\right)\right\rangle \geq 0, & \forall x \in C, \\ \quad \vdots & \forall x \in C \\ \left\langle x_{3}^{*}-\left(x_{2}^{*}-\mu_{2} A_{2} x_{2}^{*}\right), j\left(x-x_{3}^{*}\right)\right\rangle \geq 0, & \forall x \in C \\ \left\langle x_{2}^{*}-\left(x_{1}^{*}-\mu_{1} A_{1} x_{1}^{*}\right), j\left(x-x_{2}^{*}\right)\right\rangle \geq 0, & \end{cases}
$$

From Proposition 2.1, we deduce that (2.2) is equivalent to

$$
x_{i}^{*}=Q_{C}\left(I-\mu_{i-1} A_{i-1}\right) x_{i-1}^{*}, x_{1}^{*}=Q_{C}\left(I-\mu_{M} A_{M}\right) x_{M}^{*}, \quad i=2, \ldots, M .
$$

Therefore we have

$$
x_{1}^{*}=Q_{C}\left(I-\mu_{M} A_{M}\right) Q_{C}\left(I-\mu_{M-1} A_{M-1}\right) \ldots Q_{C}\left(I-\mu_{2} A_{2}\right) Q_{C}\left(I-\mu_{1} A_{1}\right) x_{1}^{*}
$$

3. Main results

Theorem 3.1. Let C be a nonempty closed convex subset of uniformly convex and 2uniformly smooth Banach space E. Let Q_{C} be the sunny nonexpansive retraction from E to C. Let the mapping $A_{i}: C \rightarrow E$ be η_{i}-inverse-strongly accretive, where $i \in\{1,2, \ldots, M\}$. Let f be a contraction of C into itself with coefficient $\alpha \in(0,1)$. Let $\left\{T_{n}\right\}_{n=1}^{\infty}$ be a sequence of λ_{i}-strict pseudocontractive mappings of C into itself such that $F=\cap_{i=1}^{\infty} F\left(T_{i}\right) \cap \Omega \neq \emptyset$. Let $\lambda=\inf \left\{\lambda_{i}: i \in \mathbb{N}\right\}>0, L=\sup _{i \geq 1}\left(1+\lambda_{i}\right) / \lambda_{i}$. Let $\left\{x_{n}\right\}$ be a sequence generated by the following manner: $x_{1} \in C$,

$$
\left\{\begin{array}{l}
z_{n}=Q_{C}\left(I-\mu_{M} A_{M}\right) \ldots Q_{C}\left(I-\mu_{2} A_{2}\right) Q_{C}\left(I-\mu_{1} A_{1}\right) x_{n} \tag{3.1}\\
y_{n}=\left(1-\delta_{n}\right) z_{n}+\delta_{n} T_{n} z_{n} \\
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\beta_{n} x_{n}+\left(1-\beta_{n}-\alpha_{n}\right) y_{n}
\end{array}\right.
$$

where $0<\mu_{i}<\eta_{i} / K^{2}, i \in\{1,2, \ldots, M\}$. Suppose that $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\delta_{n}\right\}$ be sequences in $[0,1]$ satisfying the following conditions:
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(ii) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1$;
(iii) $0<a \leq \delta_{n} \leq \lambda / K^{2}, \lim _{n \rightarrow \infty}\left|\delta_{n+1}-\delta_{n}\right|=0$.

Assume that $\sum_{n=1}^{\infty} \sup _{x \in D}\left\|T_{n+1} x-T_{n} x\right\|<\infty$ for any bounded subset D of C and let T be a mapping of C into itself defined by $T x=\lim _{n \rightarrow \infty} T_{n} x$ for all $x \in C$ and suppose that $F(T)=$ $\cap_{i=1}^{\infty} F\left(T_{i}\right)$. Then $\left\{x_{n}\right\}$ converges strongly to $q \in F$, which solves the following variational inequality:

$$
\langle q-f(q), j(q-p)\rangle \leq 0 \quad \forall p \in F .
$$

Proof. We divide the proof into five steps.
Step 1: We show that $\left\{x_{n}\right\}$ is bounded. Put $\Theta^{i}=Q_{C}\left(I-\mu_{i} A_{i}\right) \ldots Q_{C}\left(I-\mu_{2} A_{2}\right) Q_{C}(I-$ $\left.\mu_{1} A_{1}\right)$ and $\Theta^{0}=I$, where I is identity mapping and $i \in\{1,2, \ldots, M\}$. Then $z_{n}=\Theta^{M} x_{n}$. Take $x^{*} \in F$, by Lemma 2.13, we have $x^{*}=\Theta^{M} x^{*}$, it follows from Lemma 2.12 that

$$
\begin{equation*}
\left\|z_{n}-x^{*}\right\|=\left\|\Theta^{M} x_{n}-\Theta^{M} x^{*}\right\| \leq\left\|x_{n}-x^{*}\right\| . \tag{3.2}
\end{equation*}
$$

Put $S_{n}=\left(1-\delta_{n}\right) I+\delta_{n} T_{n}$, it follows from Lemma 2.10 and (3.2) that

$$
\begin{equation*}
\left\|y_{n}-x^{*}\right\|=\left\|S_{n} z_{n}-S_{n} x^{*}\right\| \leq\left\|z_{n}-x^{*}\right\| \leq\left\|x_{n}-x^{*}\right\| . \tag{3.3}
\end{equation*}
$$

By (3.3), we have

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\| & =\left\|\alpha_{n} f\left(x_{n}\right)+\beta_{n} x_{n}+\left(1-\beta_{n}-\alpha_{n}\right) y_{n}-x^{*}\right\| \\
& =\left\|\alpha_{n}\left(f\left(x_{n}\right)-x^{*}\right)+\beta_{n}\left(x_{n}-x^{*}\right)+\left(1-\beta_{n}-\alpha_{n}\right)\left(y_{n}-x^{*}\right)\right\| \\
& \leq\left(1-\beta_{n}-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|+\beta_{n}\left\|x_{n}-x^{*}\right\|+\alpha_{n}\left\|f\left(x_{n}\right)-x^{*}\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n} \alpha\left\|x_{n}-x^{*}\right\|+\alpha_{n}\left\|f\left(x^{*}\right)-x^{*}\right\| \\
& =\left(1-\alpha_{n}(1-\alpha)\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n}(1-\alpha) \frac{\left\|f\left(x^{*}\right)-x^{*}\right\|}{1-\alpha} .
\end{aligned}
$$

By induction, we have

$$
\left\|x_{n}-x^{*}\right\| \leq \max \left\{\left\|x_{1}-x^{*}\right\|, \frac{\left\|f\left(x^{*}\right)-x^{*}\right\|}{1-\alpha}\right\}, \quad \forall n \geq 2
$$

which implies that the sequence $\left\{x_{n}\right\}$ is bounded. By (3.2) and (3.3), we have that $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ are also bounded.
Step 2: We show that $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$. By Lemma 2.12, we have

$$
\begin{equation*}
\left\|z_{n+1}-z_{n}\right\|=\left\|\Theta^{M} x_{n+1}-\Theta^{M} x_{n}\right\| \leq\left\|x_{n+1}-x_{n}\right\| \tag{3.4}
\end{equation*}
$$

and

$$
\begin{align*}
\left\|y_{n+1}-y_{n}\right\| & =\left\|S_{n+1} z_{n+1}-S_{n} z_{n}\right\| \\
& \leq\left\|S_{n+1} z_{n+1}-S_{n+1} z_{n}\right\|+\left\|S_{n+1} z_{n}-S_{n} z_{n}\right\| \\
& \leq\left\|z_{n+1}-z_{n}\right\|+\left\|\left[\left(1-\delta_{n+1}\right) z_{n}+\delta_{n+1} T_{n+1} z_{n}\right]-\left[\left(1-\delta_{n}\right) z_{n}+\delta_{n} T_{n} z_{n}\right]\right\| \\
& =\left\|x_{n+1}-x_{n}\right\|+\left\|\left(\delta_{n+1}-\delta_{n}\right)\left(T_{n+1} z_{n}-z_{n}\right)+\delta_{n}\left(T_{n+1} z_{n}-T_{n} z_{n}\right)\right\| \\
& \leq\left\|x_{n+1}-x_{n}\right\|+\left|\delta_{n+1}-\delta_{n}\right|\left\|T_{n+1} z_{n}-z_{n}\right\|+\delta_{n}\left\|T_{n+1} z_{n}-T_{n} z_{n}\right\| \\
& \leq\left\|x_{n+1}-x_{n}\right\|+\left|\delta_{n+1}-\delta_{n}\right| M_{1}+\left\|T_{n+1} z_{n}-T_{n} z_{n}\right\|, \tag{3.5}
\end{align*}
$$

where $M_{1}=\sup _{n \geq 1}\left\|T_{n+1} z_{n}-z_{n}\right\|$.
Put $l_{n}=\left(x_{n+1}-\beta_{n} x_{n}\right) /\left(1-\beta_{n}\right)$, for all $n \geq 1$, that is,

$$
\begin{equation*}
x_{n+1}=\left(1-\beta_{n}\right) l_{n}+\beta_{n} x_{n}, \quad \forall n \geq 1 . \tag{3.6}
\end{equation*}
$$

We observe that

$$
\begin{aligned}
l_{n+1}-l_{n} & =\frac{\alpha_{n+1}\left(f\left(x_{n+1}\right)-y_{n+1}\right)+\left(1-\beta_{n+1}\right) y_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}\left(f\left(x_{n}\right)-y_{n}\right)+\left(1-\beta_{n}\right) y_{n}}{1-\beta_{n}} \\
& =\frac{\alpha_{n+1}\left(f\left(x_{n+1}\right)-y_{n+1}\right)}{1-\beta_{n+1}}-\frac{\alpha_{n}\left(f\left(x_{n}\right)-y_{n}\right)}{1-\beta_{n}}+y_{n+1}-y_{n} .
\end{aligned}
$$

It follows that

$$
\begin{align*}
\left\|l_{n+1}-l_{n}\right\| \leq & \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left(\left\|f\left(x_{n+1}\right)\right\|+\left\|y_{n+1}\right\|\right) \tag{3.7}\\
& +\frac{\alpha_{n}}{1-\beta_{n}}\left(\left\|f\left(x_{n}\right)\right\|+\left\|y_{n}\right\|\right)+\left\|y_{n+1}-y_{n}\right\| .
\end{align*}
$$

Substituting (3.5) into (3.7), we have

$$
\begin{aligned}
\left\|l_{n+1}-l_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \leq & \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left(\left\|f\left(x_{n+1}\right)\right\|+\left\|y_{n+1}\right\|\right)+\frac{\alpha_{n}}{1-\beta_{n}}\left(\left\|f\left(x_{n}\right)\right\|+\left\|y_{n}\right\|\right) \\
& +\left|\delta_{n+1}-\delta_{n}\right| M_{1}+\left\|T_{n+1} z_{n}-T_{n} z_{n}\right\| .
\end{aligned}
$$

By conditions (i)-(iii) and the assumption on $\left\{T_{n}\right\}$, we obtain

$$
\underset{n \rightarrow \infty}{\limsup }\left(\left\|l_{n+1}-l_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

From Lemma 2.2, we have $\lim _{n \rightarrow \infty}\left\|l_{n}-x_{n}\right\|=0$. It follows from (3.6) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left(1-\beta_{n}\right)\left\|l_{n}-x_{n}\right\|=0 . \tag{3.8}
\end{equation*}
$$

We note that

$$
\begin{aligned}
\left\|x_{n}-y_{n}\right\| & \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-y_{n}\right\| \\
& =\left\|x_{n}-x_{n+1}\right\|+\left\|\alpha_{n}\left(f\left(x_{n}\right)-y_{n}\right)+\beta_{n}\left(x_{n}-y_{n}\right)\right\| \\
& \leq\left\|x_{n}-x_{n+1}\right\|+\alpha_{n}\left\|f\left(x_{n}\right)-y_{n}\right\|+\beta_{n}\left\|x_{n}-y_{n}\right\|,
\end{aligned}
$$

which implies

$$
\left\|x_{n}-y_{n}\right\| \leq \frac{1}{1-\beta_{n}}\left(\left\|x_{n}-x_{n+1}\right\|+\alpha_{n}\left\|f\left(x_{n}\right)-y_{n}\right\|\right)
$$

By (3.8) and conditions (i), (ii), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0 \tag{3.9}
\end{equation*}
$$

Step 3: We show that $\lim _{n \rightarrow \infty}\left\|x_{n}-z_{n}\right\|=0$.
From Lemma 2.9 and (3.3), we have

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\|^{2} & =\left\|\alpha_{n}\left(f\left(x_{n}\right)-y_{n}\right)+\beta_{n}\left(x_{n}-x^{*}\right)+\left(1-\beta_{n}\right)\left(y_{n}-x^{*}\right)\right\|^{2} \\
& \leq\left\|\beta_{n}\left(x_{n}-x^{*}\right)+\left(1-\beta_{n}\right)\left(y_{n}-x^{*}\right)\right\|^{2}+2 \alpha_{n}\left\langle f\left(x_{n}\right)-y_{n}, j\left(x_{n+1}-x^{*}\right)\right\rangle \\
& \leq \beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\beta_{n}\right)\left\|y_{n}-x^{*}\right\|^{2}+2 \alpha_{n}\left\|f\left(x_{n}\right)-y_{n}\right\|\left\|x_{n+1}-x^{*}\right\| \\
& \leq \beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\beta_{n}\right)\left\|z_{n}-x^{*}\right\|^{2}+\alpha_{n} M_{2} \\
& =\alpha_{n} M_{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\beta_{n}\right)\left\|\Theta^{M} x_{n}-x^{*}\right\|^{2}, \tag{3.10}
\end{align*}
$$

where $M_{2}=\sup _{n \geq 1}\left\{2\left\|f\left(x_{n}\right)-y_{n}\right\|\left\|x_{n+1}-x^{*}\right\|\right\}$.
On the other hand, it follows from Lemma 2.11 that

$$
\begin{aligned}
& \left\|\Theta^{M} x_{n}-x^{*}\right\|^{2} \\
& =\left\|\Theta^{M} x_{n}-\Theta^{M} x^{*}\right\|^{2} \\
& =\left\|Q_{C}\left(I-\mu_{M} A_{M}\right) \Theta^{M-1} x_{n}-Q_{C}\left(I-\mu_{M} A_{M}\right) \Theta^{M-1} x^{*}\right\|^{2} \\
& \leq\left\|\left(I-\mu_{M} A_{M}\right) \Theta^{M-1} x_{n}-\left(I-\mu_{M} A_{M}\right) \Theta^{M-1} x^{*}\right\|^{2} \\
& \leq\left\|\Theta^{M-1} x_{n}-\Theta^{M-1} x^{*}\right\|^{2}-2 \mu_{M}\left(\eta_{M}-K^{2} \mu_{M}\right)\left\|A_{M} \Theta^{M-1} x_{n}-A_{M} \Theta^{M-1} x^{*}\right\|^{2} .
\end{aligned}
$$

By induction, we have

$$
\begin{align*}
\left\|\Theta^{M} x_{n}-x^{*}\right\|^{2} \leq & \left\|\Theta^{0} x_{n}-\Theta^{0} x^{*}\right\|^{2}-2 \mu_{1}\left(\eta_{1}-K^{2} \mu_{1}\right)\left\|A_{1} \Theta^{0} x_{n}-A_{1} \Theta^{0} x^{*}\right\|^{2} \\
& -\ldots-2 \mu_{M}\left(\eta_{M}-K^{2} \mu_{M}\right)\left\|A_{M} \Theta^{M-1} x_{n}-A_{M} \Theta^{M-1} x^{*}\right\|^{2} \\
= & \left\|x_{n}-x^{*}\right\|^{2}-\sum_{i=1}^{M} 2 \mu_{i}\left(\eta_{i}-K^{2} \mu_{i}\right)\left\|A_{i} \Theta^{i-1} x_{n}-A_{i} \Theta^{i-1} x^{*}\right\|^{2} . \tag{3.11}
\end{align*}
$$

Substituting (3.11) into (3.10), we have

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\|^{2} \leq & \alpha_{n} M_{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\beta_{n}\right)\left\|x_{n}-x^{*}\right\|^{2} \\
& -\sum_{i=1}^{M} 2 \mu_{i}\left(1-\beta_{n}\right)\left(\eta_{i}-K^{2} \mu_{i}\right)\left\|A_{i} \Theta^{i-1} x_{n}-A_{i} \Theta^{i-1} x^{*}\right\|^{2}
\end{aligned}
$$

which implies

$$
\begin{aligned}
& \sum_{i=1}^{M} 2 \mu_{i}\left(1-\beta_{n}\right)\left(\eta_{i}-K^{2} \mu_{i}\right)\left\|A_{i} \Theta^{i-1} x_{n}-A_{i} \Theta^{i-1} x^{*}\right\|^{2} \\
& \leq \alpha_{n} M_{2}+\left\|x_{n}-x^{*}\right\|^{2}-\left\|x_{n+1}-x^{*}\right\|^{2} \\
& \leq \alpha_{n} M_{2}+\left\|x_{n}-x_{n+1}\right\|\left(\left\|x_{n}-x^{*}\right\|+\left\|x_{n+1}-x^{*}\right\|\right)
\end{aligned}
$$

Since $0<\mu_{i}<\eta_{i} / K^{2}, \liminf _{n \rightarrow \infty}\left(1-\beta_{n}\right)>0, \lim _{n \rightarrow \infty} \alpha_{n}=0$ and (3.8), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A_{i} \Theta^{i-1} x_{n}-A_{i} \Theta^{i-1} x^{*}\right\|=0, i \in\{1,2, \ldots, M\} . \tag{3.12}
\end{equation*}
$$

From Proposition 2.1 and Lemma 2.1, we have

$$
\begin{aligned}
& \left\|\Theta^{M} x_{n}-x^{*}\right\|^{2} \\
& =\left\|\Theta^{M} x_{n}-\Theta^{M} x^{*}\right\|^{2} \\
& =\left\|Q_{C}\left(I-\mu_{M} A_{M}\right) \Theta^{M-1} x_{n}-Q_{C}\left(I-\mu_{M} A_{M}\right) \Theta^{M-1} x^{*}\right\|^{2} \\
& \leq\left\langle\Theta^{M-1} x_{n}-\Theta^{M-1} x^{*}-\mu_{M}\left(A_{M} \Theta^{M-1} x_{n}-A_{M} \Theta^{M-1} x^{*}\right), j\left(\Theta^{M} x_{n}-\Theta^{M} x^{*}\right)\right\rangle \\
& =\left\langle\Theta^{M-1} x_{n}-\Theta^{M-1} x^{*}, j\left(\Theta^{M} x_{n}-\Theta^{M} x^{*}\right)\right\rangle-\mu_{M}\left\langle A_{M} \Theta^{M-1} x_{n}-A_{M} \Theta^{M-1} x^{*}, j\left(\Theta^{M} x_{n}-\Theta^{M} x^{*}\right)\right\rangle \\
& \leq \frac{1}{2}\left(\left\|\Theta^{M-1} x_{n}-\Theta^{M-1} x^{*}\right\|^{2}+\left\|\Theta^{M} x_{n}-\Theta^{M} x^{*}\right\|^{2}-g_{M}\left(\left\|\Theta^{M-1} x_{n}-\Theta^{M} x_{n}+\Theta^{M} x^{*}-\Theta^{M-1} x^{*}\right\|\right)\right) \\
& \quad+\mu_{M}\left\|A_{M} \Theta^{M-1} x_{n}-A_{M} \Theta^{M-1} x^{*}\right\|\left\|\Theta^{M} x_{n}-\Theta^{M} x^{*}\right\|,
\end{aligned}
$$

which implies

$$
\begin{aligned}
\left\|\Theta^{M} x_{n}-x^{*}\right\|^{2} \leq & \left.\left\|\Theta^{M-1} x_{n}-\Theta^{M-1} x^{*}\right\|^{2}-g_{M}\left(\left\|\Theta^{M-1} x_{n}-\Theta^{M} x_{n}+\Theta^{M} x^{*}-\Theta^{M-1} x^{*}\right\|\right)\right) \\
& +2 \mu_{M}\left\|A_{M} \Theta^{M-1} x_{n}-A_{M} \Theta^{M-1} x^{*}\right\|\left\|\Theta^{M} x_{n}-\Theta^{M} x^{*}\right\| .
\end{aligned}
$$

By induction, we have

$$
\begin{align*}
\left\|\Theta^{M} x_{n}-x^{*}\right\|^{2} \leq & \left\|\Theta^{0} x_{n}-\Theta^{0} x^{*}\right\|^{2}-\sum_{i=1}^{M} g_{i}\left(\left\|\Theta^{i-1} x_{n}-\Theta^{i} x_{n}+\Theta^{i} x^{*}-\Theta^{i-1} x^{*}\right\|\right) \\
& +\sum_{i=1}^{M} 2 \mu_{i}\left\|A_{i} \Theta^{i-1} x_{n}-A_{i} \Theta^{i-1} x^{*}\right\|\left\|\Theta^{i} x_{n}-\Theta^{i} x^{*}\right\| \\
= & \left\|x_{n}-x^{*}\right\|^{2}-\sum_{i=1}^{M} g_{i}\left(\left\|\Theta^{i-1} x_{n}-\Theta^{i} x_{n}+\Theta^{i} x^{*}-\Theta^{i-1} x^{*}\right\|\right) \\
& +\sum_{i=1}^{M} 2 \mu_{i}\left\|A_{i} \Theta^{i-1} x_{n}-A_{i} \Theta^{i-1} x^{*}\right\|\left\|\Theta^{i} x_{n}-\Theta^{i} x^{*}\right\| \tag{3.13}
\end{align*}
$$

Substituting (3.13) into (3.10), we have

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\|^{2} \leq & \alpha_{n} M_{2}+\beta_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\beta_{n}\right)\left\|x_{n}-x^{*}\right\|^{2} \\
& -\sum_{i=1}^{M}\left(1-\beta_{n}\right) g_{i}\left(\left\|\Theta^{i-1} x_{n}-\Theta^{i} x_{n}+\Theta^{i} x^{*}-\Theta^{i-1} x^{*}\right\|\right) \\
& +\sum_{i=1}^{M} 2\left(1-\beta_{n}\right) \mu_{i}\left\|A_{i} \Theta^{i-1} x_{n}-A_{i} \Theta^{i-1} x^{*}\right\|\left\|\Theta^{i} x_{n}-\Theta^{i} x^{*}\right\|
\end{aligned}
$$

which implies

$$
\begin{aligned}
& \sum_{i=1}^{M}\left(1-\beta_{n}\right) g_{i}\left(\left\|\Theta^{i-1} x_{n}-\Theta^{i} x_{n}+\Theta^{i} x^{*}-\Theta^{i-1} x^{*}\right\|\right) \\
& \leq \alpha_{n} M_{2}+\left\|x_{n}-x^{*}\right\|^{2}-\left\|x_{n+1}-x^{*}\right\|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{i=1}^{M} 2\left(1-\beta_{n}\right) \mu_{i}\left\|A_{i} \Theta^{i-1} x_{n}-A_{i} \Theta^{i-1} x^{*}\right\|\left\|\Theta^{i} x_{n}-\Theta^{i} x^{*}\right\| \\
\leq & \alpha_{n} M_{2}+\left\|x_{n}-x_{n+1}\right\|\left(\left\|x_{n}-x^{*}\right\|+\left\|x_{n+1}-x^{*}\right\|\right) \\
& +\sum_{i=1}^{M} 2\left(1-\beta_{n}\right) \mu_{i}\left\|A_{i} \Theta^{i-1} x_{n}-A_{i} \Theta^{i-1} x^{*}\right\|\left\|\Theta^{i} x_{n}-\Theta^{i} x^{*}\right\|
\end{aligned}
$$

Since $\liminf _{n \rightarrow \infty}\left(1-\beta_{n}\right)>0, \lim _{n \rightarrow \infty} \alpha_{n}=0$, (3.8) and (3.12), we have

$$
\lim _{n \rightarrow \infty} g_{i}\left(\left\|\Theta^{i-1} x_{n}-\Theta^{i} x_{n}+\Theta^{i} x^{*}-\Theta^{i-1} x^{*}\right\|\right)=0, \quad \forall i \in\{1,2, \ldots, M\}
$$

It follows from the properties of g_{i} that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\Theta^{i-1} x_{n}-\Theta^{i} x_{n}+\Theta^{i} x^{*}-\Theta^{i-1} x^{*}\right\|=0, \quad \forall i \in\{1,2, \ldots, M\} \tag{3.14}
\end{equation*}
$$

From (3.14), we have

$$
\begin{equation*}
\left\|x_{n}-z_{n}\right\|=\left\|\Theta^{0} x_{n}-\Theta^{M} x_{n}\right\| \leq \sum_{i=1}^{M}\left\|\Theta^{i-1} x_{n}-\Theta^{i} x_{n}+\Theta^{i} x^{*}-\Theta^{i-1} x^{*}\right\| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty . \tag{3.15}
\end{equation*}
$$

From (3.9) and (3.15), we obtain

$$
\begin{equation*}
\left\|y_{n}-z_{n}\right\| \leq\left\|y_{n}-x_{n}\right\|+\left\|x_{n}-z_{n}\right\| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty . \tag{3.16}
\end{equation*}
$$

We note $y_{n}-z_{n}=\delta_{n}\left(T_{n} z_{n}-z_{n}\right)$. It follows from (3.16) and $\delta_{n}>a>0$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T_{n} z_{n}-z_{n}\right\|=0 \tag{3.17}
\end{equation*}
$$

By (3.15) and (3.17), we get

$$
\begin{align*}
\left\|x_{n}-T_{n} x_{n}\right\| & \leq\left\|x_{n}-z_{n}\right\|+\left\|z_{n}-T_{n} z_{n}\right\|+\left\|T_{n} z_{n}-T_{n} x_{n}\right\| \\
& \leq(1+L)\left\|x_{n}-z_{n}\right\|+\left\|z_{n}-T_{n} z_{n}\right\| \\
& \rightarrow 0 \text { as } n \rightarrow \infty . \tag{3.18}
\end{align*}
$$

From (3.9) and (3.15), we have

$$
\begin{align*}
\left\|x_{n}-S_{n} x_{n}\right\| & \leq\left\|x_{n}-S_{n} z_{n}\right\|+\left\|S_{n} z_{n}-S_{n} x_{n}\right\| \\
& \leq\left\|x_{n}-S_{n} z_{n}\right\|+\left\|z_{n}-x_{n}\right\| \\
& =\left\|x_{n}-y_{n}\right\|+\left\|z_{n}-x_{n}\right\| \\
& \rightarrow 0 \text { as } n \rightarrow \infty . \tag{3.19}
\end{align*}
$$

Define a mapping $S x=(1-\delta) x+\delta T x$, where $\delta \in\left(0, \lambda / K^{2}\right)$ is a constant. Then by Lemma 2.10, we have $F(S)=F(T)=\cap_{i=1}^{\infty} F\left(T_{i}\right)$. We note that

$$
\begin{aligned}
\left\|x_{n}-S x_{n}\right\| & \leq\left\|x_{n}-S_{n} x_{n}\right\|+\left\|S_{n} x_{n}-S x_{n}\right\| \\
& =\left\|x_{n}-S_{n} x_{n}\right\|+\left\|\left(1-\delta_{n}\right) x_{n}+\delta_{n} T_{n} x_{n}-(1-\delta) x_{n}-\delta T x_{n}\right\| \\
& =\left\|x_{n}-S_{n} x_{n}\right\|+\left\|\left(\delta_{n}-\delta\right)\left(T_{n} x_{n}-x_{n}\right)+\delta\left(T_{n} x_{n}-T x_{n}\right)\right\| \\
& \leq\left\|x_{n}-S_{n} x_{n}\right\|+\left|\delta_{n}-\delta\right|\left\|T_{n} x_{n}-x_{n}\right\|+\delta\left\|T_{n} x_{n}-T x_{n}\right\| .
\end{aligned}
$$

By (3.18), (3.19) and Lemma 2.5, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-S x_{n}\right\|=0 \tag{3.20}
\end{equation*}
$$

Define a mapping $W x=(1-\theta) S x+\theta G x$, where G is defined by Lemma 2.12, $\theta \in(0,1)$ is a constant. Then by Lemma 2.6, we have that $F(W)=F(S) \cap F(G)=F(S) \cap \Omega=F$. We observe that

$$
\begin{aligned}
\left\|x_{n}-W x_{n}\right\| & =\left\|(1-\theta)\left(x_{n}-S x_{n}\right)+\theta\left(x_{n}-G x_{n}\right)\right\| \\
& \leq(1-\theta)\left\|x_{n}-S x_{n}\right\|+\theta\left\|x_{n}-G x_{n}\right\| \\
& =(1-\theta)\left\|x_{n}-S x_{n}\right\|+\theta\left\|x_{n}-z_{n}\right\| .
\end{aligned}
$$

By (3.15) and (3.20), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-W x_{n}\right\|=0 \tag{3.21}
\end{equation*}
$$

Step 4: We claim that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle f(q)-q, j\left(x_{n}-q\right)\right\rangle \leq 0, \tag{3.22}
\end{equation*}
$$

where $q=\lim _{t \rightarrow 0} x_{t}$ with x_{t} being the fixed point of the contraction

$$
x \mapsto t f(x)+(1-t) W x .
$$

Then x_{t} solves the fixed point equation $x_{t}=t f\left(x_{t}\right)+(1-t) W x_{t}$. Thus we have

$$
\left\|x_{t}-x_{n}\right\|=\left\|(1-t)\left(W x_{t}-x_{n}\right)+t\left(f\left(x_{t}\right)-x_{n}\right)\right\| .
$$

It follows from Lemma 2.9 that

$$
\begin{align*}
\left\|x_{t}-x_{n}\right\|^{2}= & \left\|(1-t)\left(W x_{t}-x_{n}\right)+t\left(f\left(x_{t}\right)-x_{n}\right)\right\|^{2} \\
\leq & (1-t)^{2}\left\|W x_{t}-x_{n}\right\|^{2}+2 t\left\langle f\left(x_{t}\right)-x_{n}, j\left(x_{t}-x_{n}\right)\right\rangle \\
\leq & (1-t)^{2}\left(\left\|W x_{t}-W x_{n}\right\|+\left\|W x_{n}-x_{n}\right\|\right)^{2}+2 t\left\langle f\left(x_{t}\right)-x_{n}, j\left(x_{t}-x_{n}\right)\right\rangle \\
\leq & (1-t)^{2}\left(\left\|x_{t}-x_{n}\right\|+\left\|W x_{n}-x_{n}\right\|\right)^{2}+2 t\left\langle f\left(x_{t}\right)-x_{n}, j\left(x_{t}-x_{n}\right)\right\rangle \\
= & (1-t)^{2}\left[\left\|x_{t}-x_{n}\right\|^{2}+2\left\|x_{t}-x_{n}\right\|\left\|W x_{n}-x_{n}\right\|+\left\|W x_{n}-x_{n}\right\|^{2}\right] \\
& +2 t\left\langle f\left(x_{t}\right)-x_{t}, j\left(x_{t}-x_{n}\right)\right\rangle+2 t\left\langle x_{t}-x_{n}, j\left(x_{t}-x_{n}\right)\right\rangle \\
3.23) & \left(1-2 t+t^{2}\right)\left\|x_{t}-x_{n}\right\|^{2}+f_{n}(t)+2 t\left\langle f\left(x_{t}\right)-x_{t}, j\left(x_{t}-x_{n}\right)\right\rangle+2 t\left\|x_{t}-x_{n}\right\|^{2}, \tag{3.23}
\end{align*}
$$

$$
\begin{equation*}
f_{n}(t)=(1-t)^{2}\left(2\left\|x_{t}-x_{n}\right\|+\left\|x_{n}-W x_{n}\right\|\right)\left\|x_{n}-W x_{n}\right\| \rightarrow 0, \quad \text { as } \quad n \rightarrow \infty . \tag{3.24}
\end{equation*}
$$

It follows from (3.23) that

$$
\begin{equation*}
\left\langle x_{t}-f\left(x_{t}\right), j\left(x_{t}-x_{n}\right)\right\rangle \leq \frac{t}{2}\left\|x_{t}-x_{n}\right\|^{2}+\frac{1}{2 t} f_{n}(t) . \tag{3.25}
\end{equation*}
$$

Let $n \rightarrow \infty$ in (3.25) and note that (3.24) yields

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle x_{t}-f\left(x_{t}\right), j\left(x_{t}-x_{n}\right)\right\rangle \leq \frac{t}{2} M_{3}, \tag{3.26}
\end{equation*}
$$

where $M_{3}>0$ is a constant such that $M_{3} \geq\left\|x_{t}-x_{n}\right\|^{2}$ for all $t \in(0,1)$ and $n \geq 1$. Taking $t \rightarrow 0$ from (3.26), we have

$$
\begin{equation*}
\underset{t \rightarrow 0}{\limsup } \limsup _{n \rightarrow \infty}\left\langle x_{t}-f\left(x_{t}\right), j\left(x_{t}-x_{n}\right)\right\rangle \leq 0 . \tag{3.27}
\end{equation*}
$$

On the other hand, we have

$$
\begin{aligned}
\left\langle f(q)-q, j\left(x_{n}-q\right)\right\rangle= & \left\langle f(q)-q, j\left(x_{n}-q\right)\right\rangle-\left\langle f(q)-q, j\left(x_{n}-x_{t}\right)\right\rangle \\
& +\left\langle f(q)-q, j\left(x_{n}-x_{t}\right)\right\rangle-\left\langle f(q)-x_{t}, j\left(x_{n}-x_{t}\right)\right\rangle \\
& +\left\langle f(q)-x_{t}, j\left(x_{n}-x_{t}\right)\right\rangle-\left\langle f\left(x_{t}\right)-x_{t}, j\left(x_{n}-x_{t}\right)\right\rangle \\
& +\left\langle f\left(x_{t}\right)-x_{t}, j\left(x_{n}-x_{t}\right)\right\rangle \\
= & \left\langle f(q)-q, j\left(x_{n}-q\right)-j\left(x_{n}-x_{t}\right)\right\rangle+\left\langle x_{t}-q, j\left(x_{n}-x_{t}\right)\right\rangle \\
& +\left\langle f(q)-f\left(x_{t}\right), j\left(x_{n}-x_{t}\right)\right\rangle+\left\langle f\left(x_{t}\right)-x_{t}, j\left(x_{n}-x_{t}\right)\right\rangle
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\langle f(q)-q, j\left(x_{n}-q\right)\right\rangle \leq & \limsup _{n \rightarrow \infty}\left\langle f(q)-q, j\left(x_{n}-q\right)-j\left(x_{n}-x_{t}\right)\right\rangle \\
& +\left\|x_{t}-q\right\| \limsup _{n \rightarrow \infty}\left\|x_{n}-x_{t}\right\|+\alpha\left\|q-x_{t}\right\| \limsup _{n \rightarrow \infty}\left\|x_{n}-x_{t}\right\| \\
& +\limsup _{n \rightarrow \infty}\left\langle f\left(x_{t}\right)-x_{t}, j\left(x_{n}-x_{t}\right)\right\rangle
\end{aligned}
$$

Noticing that j is norm-to-norm uniformly continuous on bounded subsets of C, it follows from (3.27), we have

$$
\limsup _{n \rightarrow \infty}\left\langle f(q)-q, j\left(x_{n}-q\right)\right\rangle=\limsup _{t \rightarrow 0} \limsup _{n \rightarrow \infty}\left\langle f(q)-q, j\left(x_{n}-q\right)\right\rangle \leq 0
$$

Hence, (3.22) holds.
Step 5: Finally we prove that $x_{n} \rightarrow q$ as $n \rightarrow \infty$.
From (3.3), we have

$$
\begin{aligned}
& \left\|x_{n+1}-q\right\|^{2} \\
& =\alpha_{n}\left\langle f\left(x_{n}\right)-q, j\left(x_{n+1}-q\right)\right\rangle+\beta_{n}\left\langle x_{n}-q, j\left(x_{n+1}-q\right)\right\rangle \\
& \quad+\left\langle\left(1-\beta_{n}-\alpha_{n}\right)\left(y_{n}-q\right), j\left(x_{n+1}-q\right)\right\rangle \\
& \leq\left(1-\beta_{n}-\alpha_{n}\right)\left\|x_{n}-q\right\|\left\|x_{n+1}-q\right\|+\beta_{n}\left\|x_{n}-q\right\|\left\|x_{n+1}-q\right\| \\
& \quad+\alpha_{n}\left\langle f\left(x_{n}\right)-f(q), j\left(x_{n+1}-q\right)\right\rangle+\alpha_{n}\left\langle f(q)-q, j\left(x_{n+1}-q\right)\right\rangle \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-q\right\|\left\|x_{n+1}-q\right\|+\alpha_{n} \alpha\left\|x_{n}-q\right\|\left\|x_{n+1}-q\right\|+\alpha_{n}\left\langle f(q)-q, j\left(x_{n+1}-q\right)\right\rangle \\
& =\left[1-\alpha_{n}(1-\alpha)\right]\left\|x_{n}-q\right\|\left\|x_{n+1}-q\right\|+\alpha_{n}\left\langle f(q)-q, j\left(x_{n+1}-q\right)\right\rangle \\
& \leq \frac{1-\alpha_{n}(1-\alpha)}{2}\left(\left\|x_{n}-q\right\|^{2}+\left\|x_{n+1}-q\right\|^{2}\right)+\alpha_{n}\left\langle f(q)-q, j\left(x_{n+1}-q\right)\right\rangle \\
& \leq \frac{1-\alpha_{n}(1-\alpha)}{2}\left\|x_{n}-q\right\|^{2}+\frac{1}{2}\left\|x_{n+1}-q\right\|^{2}+\alpha_{n}\left\langle f(q)-q, j\left(x_{n+1}-q\right)\right\rangle,
\end{aligned}
$$

which implies

$$
\begin{equation*}
\left\|x_{n+1}-q\right\|^{2} \leq\left[1-\alpha_{n}(1-\alpha)\right]\left\|x_{n}-q\right\|^{2}+\alpha_{n}(1-\alpha) \frac{2\left\langle f(q)-q, j\left(x_{n+1}-q\right)\right\rangle}{1-\alpha} \tag{3.28}
\end{equation*}
$$

Apply Lemma 2.3 to (3.28), we obtain that $x_{n} \rightarrow q$ as $n \rightarrow \infty$. This completes the proof.

References

[1] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007), no. 8, 2350-2360.
[2] F. E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, in Nonlinear Functional Analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, Ill., 1968), 1-308, Amer. Math. Soc., Providence, RI.
[3] R. E. Bruck, Jr., Properties of fixed-point sets of nonexpansive mappings in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 251-262.
[4] L.-C. Ceng, C. Wang and J.-C. Yao, Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. Methods Oper. Res. 67 (2008), no. 3, 375-390.
[5] S. Chang, On Chidume's open questions and approximate solutions of multivalued strongly accretive mapping equations in Banach spaces, J. Math. Anal. Appl. 216 (1997), no. 1, 94-111.
[6] Y. J. Cho, X. Qin and J. I. Kang, Convergence theorems based on hybrid methods for generalized equilibrium problems and fixed point problems, Nonlinear Anal. 71 (2009), no. 9, 4203-4214.
[7] J.-P. Gossez and E. Lami Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math. 40 (1972), 565-573.
[8] Y. Hao, Zero theorems of accretive operators, Bull. Malays. Math. Sci. Soc. (2) 34 (2011), no. 1, 103-112.
[9] C. Jaiboon, P. Kumam and U. W. Humphries, Weak convergence theorem by an extragradient method for variational inequality, equilibrium and fixed point problems, Bull. Malays. Math. Sci. Soc. (2) 32 (2009), no. 2, 173-185.
[10] S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13 (2002), no. 3, 938-945 (electronic) (2003).
[11] S. Kitahara and W. Takahashi, Image recovery by convex combinations of sunny nonexpansive retractions, Topol. Methods Nonlinear Anal. 2 (1993), no. 2, 333-342.
[12] P. Kumam, N. Petrot and R. Wangkeeree, A hybrid iterative scheme for equilibrium problems and fixed point problems of asymptotically k-strict pseudo-contractions, J. Comput. Appl. Math. 233 (2010), no. 8, 20132026.
[13] X. Qin, S. Chang and Y. J. Cho, Iterative methods for generalized equilibrium problems and fixed point problems with applications, Nonlinear Anal. Real World Appl. 11 (2010), no. 4, 2963-2972.
[14] X. Qin and S. M. Kang, Convergence theorems on an iterative method for variational inequality problems and fixed point problems, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 1, 155-167.
[15] X. Qin, M. Shang and Y. Su, Strong convergence of a general iterative algorithm for equilibrium problems and variational inequality problems, Math. Comput. Modelling 48 (2008), no. 7-8, 1033-1046.
[16] X. Qin, Y. J. Cho and S. M. Kang, An iterative method for an infinite family of nonexpansive mappings in Hilbert spaces, Bull. Malays. Math. Sci. Soc. (2) 32 (2009), no. 2, 161-171.
[17] A. Razani and M. Yazdi, A new iterative method for generalized equilibrium and fixed point problems of nonexpansive mappings, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 4, 1049-1061.
[18] S. Reich, Asymptotic behavior of contractions in Banach spaces, J. Math. Anal. Appl. 44 (1973), 57-70.
[19] T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl. 305 (2005), no. 1, 227-239.
[20] R. Wangkeeree, An iterative approximation method for a countable family of nonexpansive mappings in Hilbert spaces, Bull. Malays. Math. Sci. Soc. (2) 32 (2009), no. 3, 313-326.
[21] H.-K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), no. 12, 1127-1138.
[22] H.-K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004), no. 1, 279-291.
[23] Y. Yao, M. A. Noor, S. Zainab, Y.-C. Liou, Mixed equilibrium problems and optimization problems, J. Math. Anal. Appl. 354 (2009), no. 1, 319-329.
[24] Y. Yao, M. Aslam Noor, K. Inayat Noor, Y.-C. Liou, H. Yaqoob, Modified extragradient methods for a system of variational inequalities in Banach spaces, Acta Appl. Math. 110 (2010), no. 3, 1211-1224.
[25] Y. Yao, Y. J. Cho and R. Chen, An iterative algorithm for solving fixed point problems, variational inequality problems and mixed equilibrium problems, Nonlinear Anal. 71 (2009), no. 7-8, 3363-3373.
[26] Y. Yao, Y.-C. Liou and S. M. Kang, Approach to common elements of variational inequality problems and fixed point problems via a relaxed extragradient method, Comput. Math. Appl. 59 (2010), no. 11, 3472-3480.
[27] H. Zhou, Convergence theorems for λ-strict pseudo-contractions in 2-uniformly smooth Banach spaces, Nonlinear Anal. 69 (2008), no. 9, 3160-3173.

[^0]: Communicated by Tomonari Suzuki.

