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Abstract. In this paper, we introduce a new iterative algorithm for finding a common el-
ement of the set of solutions of a general variational inequality problem for finite inverse-
strongly accretive mappings and the set of common fixed points of a countable family of
strict pseudocontractive mappings in a Banach space. We obtain a strong convergence the-
orem under some suitable conditions. Our results improve and extend the recent ones an-
nounced by many others in the literature.
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1. Introduction

Throughout this paper, we denote by E and E∗ a real Banach space and the dual space of E,
respectively. Let C be a subset of E and T be a self-mapping of C. We use F(T ) to denote
the fixed points of T .

The duality mapping J : E→ 2E∗ is defined by

J(x) =
{

x∗ ∈ E∗ : 〈x,x∗〉= ‖x‖2 , ‖x∗‖= ‖x‖
}

, ∀x ∈ E.

If E is a Hilbert space, then J = I, where I is the identity mapping. It is well-known that if
E is smooth, then J is single-valued, which is denoted by j.

Recall that T : C→C is said to be nonexpansive if

(1.1) ‖T x−Ty‖ ≤ ‖x− y‖ , ∀x,y ∈C.

T : C→C is said to be Lipschitzian if there exists a constant L > 0 such that

(1.2) ‖T x−Ty‖ ≤ L‖x− y‖ , ∀x,y ∈C.

T : C→C is said to be a λ -strict pseudo-contractive, if there exists a constant λ > 0 and
j(x− y) ∈ J(x− y) such that

(1.3) 〈T x−Ty, j(x− y)〉 ≤ ‖x− y‖2−λ ‖(I−T )x− (I−T )y‖2 , ∀x,y ∈C.

Communicated by Tomonari Suzuki.
Received: February 23, 2011; Revised: August 17, 2011.



526 G. Cai and S. Bu

Remark 1.1. From (1.3) we can prove that if T is λ -strict pseudo-contractive, then T is
Lipschitz continuous with the Lipschitz constant L = (1+λ )/λ .

A mapping A : C→ E is said to be accretive if there exists j(x− y) ∈ J(x− y) such that

(1.4) 〈Ax−Ay, j(x− y)〉 ≥ 0, ∀x,y ∈C.

A mapping A : C→ E is said to be α-inverse strongly accretive if there exist j(x− y) ∈
J(x− y) and α > 0 such that

(1.5) 〈Ax−Ay, j(x− y)〉 ≥ α ‖Ax−Ay‖2 , ∀x,y ∈C.

A mapping f : C→C is said to be a contraction if there exists a constant α ∈ (0,1) such
that

(1.6) ‖ f (x)− f (y)‖ ≤ α ‖x− y‖ , ∀x,y ∈C.

We use the notation ΠC to denote the collection of all contractions on C.
Variational inequality theory has emerged as an important tool in studying a wide class

of obstacle, unilateral, free, moving, equilibrium problems arising in several branches of
pure and applied sciences in a unified and general framework. Several numerical methods
have been developed for solving variational inequalities and related optimization problems,
see [4, 6–9, 12–17, 20, 23, 25, 26] and the references therein.

Let C be a nonempty closed convex subset of a real Hilbert space H. Let A,B : C→ H
be two mappings. In 2008, Ceng et al. [4] considered the following problem of finding
(x∗,y∗) ∈C×C such that

(1.7)

{
〈λAy∗+ x∗− y∗,x− x∗〉 ≥ 0, ∀x ∈C,

〈µBx∗+ y∗− x∗,x− y∗〉 ≥ 0, ∀x ∈C,

which is called a general system of variational inequalities, where λ > 0 and µ > 0 are two
constants. In particular, if A = B, then problem (1.7) reduces to finding (x∗,y∗)∈C×C such
that

(1.8)

{
〈λAy∗+ x∗− y∗,x− x∗〉 ≥ 0, ∀x ∈C,

〈µAx∗+ y∗− x∗,x− y∗〉 ≥ 0, ∀x ∈C.

Ceng et al. [4] introduced a relaxed extragradient method for finding a common element of
the set of solutions of problem (1.7) for two inverse-strongly monotone mappings and the
set of fixed points of a nonexpansive mapping in a real Hilbert space. Let x1 = v ∈C and let
{xn} and {yn} be given by

(1.9)

{
yn = PC(xn−µBxn),
xn+1 = anv+bnxn +(1−an−bn)SPC(yn−λAyn), n≥ 1,

where λ ∈ (0,2α),µ ∈ (0,2β ) and {an} ,{bn} ⊂ [0,1]. Then they proved the sequence
{xn} converges strongly to a common element of the set of fixed points of a nonexpansive
mapping and the set of solutions of problem (1.7) under some control conditions.

Recently, Wangkeeree [20] suggested and analyzed a new iterative scheme for finding
a common element of the fixed point set of common fixed points of a countable family of
nonexpansive mappings and the set of solutions of the variational inequality problem for an
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inverse-strongly monotone mapping in a real Hilbert space. More precisely, they studied
the following iterative algorithm

(1.10)


x1 = x ∈C,

yn = PC(xn−λnBxn),
xn+1 = αnγ f (xn)+βnxn +((1−βn)I−αnA)SnPC(yn−λnByn), n≥ 1,

and proved a strong convergence under some suitable conditions.
Very recently, Qin and Kang [14] proposed an explicit viscosity approximation method

for finding a common element of the set of fixed points of strict pseudo-contractions and the
set of solutions of variational inequalities with inverse-strongly monotone mappings. They
introduced the following iterative algorithm

(1.11)


x1 ∈C,

zn = PC(xn−µnBxn),
yn = PC(xn−λnAxn),
xn+1 = αn f (xn)+βnxn + γn

[
δ(1,n)Sxn +δ(2,n)yn +δ(3,n)zn

]
, n≥ 1,

and obtained a strong convergence theorem.
On the other hand, Yao et al. [24] introduced the following system of general variational

inequlities in Banach spaces. Let C be a nonempty closed convex subset of a real Banach
space E. For given two operators A,B : C → E, they considered the problem of finding
(x∗,y∗) ∈C×C such that

(1.12)

{
〈Ay∗+ x∗− y∗, j(x− x∗)〉 ≥ 0, ∀x ∈C,

〈Bx∗+ y∗− x∗, j(x− y∗)〉 ≥ 0, ∀x ∈C,

which is called the system of general variational inequalities in a real Banach space. Under
some suitable conditions they proved a strong convergence theorem by using the following
iterative algorithm:

(1.13)


x0 ∈C,

yn = QC(xn−Bxn),
xn+1 = anu+bnxn + cnQC(yn−Ayn), n≥ 0,

where {an} ,{bn} and {cn} are three sequences in (0,1) and u ∈C.
In this paper, motivated and inspired by the above facts, we introduce the following

system of variational inequalities in a Banach space: Let C be a nonempty closed convex
subset of a real Banach space E. Let {Ai}M

i=1 : C→ E be a family of mappings. First we
consider the following problem of finding (x∗1,x

∗
2, . . . ,x

∗
M) ∈C×C . . .×C such that

(1.14)



〈µMAMx∗M + x∗1− x∗M, j(x− x∗1)〉 ≥ 0, ∀x ∈C,〈
µM−1AM−1x∗M−1 + x∗M− x∗M−1, j(x− x∗M)

〉
≥ 0, ∀x ∈C,

...〈
µ2A2x∗2 + x∗3− x∗2, j(x− x∗3)

〉
≥ 0, ∀x ∈C,

〈µ1A1x∗1 + x∗2− x∗1, j(x− x∗2)〉 ≥ 0, ∀x ∈C,
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which is called a more general system of variational inequalities in Banach spaces, where
µi > 0 for all i ∈ {1,2, . . . ,M}. The set of solutions to (1.14) is denoted by Ω. In partic-
ular, if M = 2,A1 = B,A2 = A,µ1 = µ2 = 1,x∗1 = x∗,x∗2 = y∗, then problem (1.14) reduces
to problem (1.12). Subsequently, we introduce a new iterative algorithm for finding a com-
mon element of the set of solutions of a general variational inequality problem (1.14) for
finite inverse-strongly accretive mappings and the set of common fixed points of a count-
able family of strict pseudocontractive mappings in a Banach space. The results presented in
this paper improve and extend the corresponding results announced by Qin and Kang [14],
Wangkeeree [20], Yao et al. [24], Ceng et al. [4] and many others in the literature.

2. Preliminaries

A Banach space E is said to be strictly convex, if whenever x and y are not collinear, then:
‖x+ y‖< ‖x‖+‖y‖. The modulus of convexity of E is defined by

δE(ε) = inf
{

1− 1
2
‖(x+ y)‖ : ‖x‖ ,‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
,

for all ε ∈ [0,2]. E is said to be uniformly convex if δE(0) = 0, and δE(ε) > 0 for all
0 < ε ≤ 2. Hilbert space H is 2-uniformly convex, while Lp is max{p,2}-uniformly convex
for every p > 1.

Let S(E) = {x ∈ E : ‖x‖= 1}. Then the norm of E is said to be Gâteaux differentiable if

(2.1) lim
t→0

‖x+ ty‖−‖x‖
t

exists for each x,y ∈ S(E). In this case, E is said to be smooth. The norm of E is said to be
uniformly Gâteaux differentiable, if for each y ∈ S(E), the limit (2.1) is attained uniformly
for x ∈ S(E). The norm of the E is said to be Frêchet differentiable, if for each x ∈ S(E),
the limit (2.1) is attained uniformly for y∈ S(E). The norm of E is called uniformly Frêchet
differentiable, if the limit (2.1) is attained uniformly for x,y ∈ S(E). It is well-known that
(uniform) Frêchet differentiability of the norm E implies (uniform) Gâteaux differentiability
of norm E.

Let ρE : [0,∞)→ [0,∞) be the modulus of smoothness of E defined by

ρE(t) = sup
{

1
2
(‖x+ y‖+‖x− y‖)−1 : x ∈ S(E), ‖y‖ ≤ t

}
.

A Banach space E is said to be uniformly smooth if (ρE(t))/t → 0 as t → 0. A Banach
space E is said to be q-uniformly smooth, if there exists a fixed constant c > 0 such that
ρE(t) ≤ ctq. It is well-known that E is uniformly smooth if and only if the norm of E is
uniformly Fréchet differentiable. If E is q-uniformly smooth, then q≤ 2 and E is uniformly
smooth, and hence the norm of E is uniformly Fréchet differentiable, in particular, the norm
of E is Fréchet differentiable. Typical example of uniformly smooth Banach spaces is Lp,
where p > 1. More precisely, Lp is min{p,2}-uniformly smooth for every p > 1.

Recall that, if C and D are nonempty subsets of a Banach space E such that C is nonempty
closed convex and D⊂C, then a mapping P : C→ D is sunny [18] provided

P(x+ t(x−P(x))) = P(x) for allx ∈C and t ≥ 0,
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whenever x + t(x−P(x)) ∈C. A mapping P : C→ D is called a retraction if Px = x for all
x ∈ D. Furthermore, P is a sunny nonexpansive retraction from C onto D if P is retraction
from C onto D which is also sunny and nonexpansive.

A subset D of C is called a sunny nonexpansive retraction of C if there exists a sunny
nonexpansive retraction from C onto D. The following propositions concern the sunny
nonexpansive retraction.

Proposition 2.1. [18] Let C be a closed convex subset of a smooth Banach space E. Let D
be a nonempty subset of C. Let P : C→D be a retraction and let J be the normalized duality
mapping on E. Then the following are equivalent:

(a) P is sunny and nonexpansive.
(b) ‖Px−Py‖2 ≤ 〈x− y,J(Px−Py)〉 , ∀x,y ∈C.
(c) 〈x−Px,J(y−Px)〉 ≤ 0, ∀x ∈C,y ∈ D.

Proposition 2.2. [11] If E is strictly convex and uniformly smooth and if T : C→ C is a
nonexpansive mapping having a nonempty fixed point set F(T ), then the set F(T ) is a sunny
nonexpansive retraction of C.

In order to prove our main results, we need the following lemmas.

Lemma 2.1. [10] Let E be a real smooth and uniformly convex Banach space and let r > 0.
Then there exists a strictly increasing, continuous and convex function g : [0,2r]→ R such
that g(0) = 0 and g(‖x− y‖)≤ ‖x‖2−2〈x, jy〉+‖y‖2, for all x,y ∈ Br.

Lemma 2.2. [19] Let {xn} and {zn} be bounded sequences in a Banach space E and let
{βn} be a sequence in [0,1] which satisfies the following condition: 0 < liminfn→∞ βn ≤
limsupn→∞ βn < 1. Suppose xn+1 = βnxn +(1−βn)zn, n≥ 0 and limsupn→∞(‖zn+1− zn‖−
‖xn+1− xn‖)≤ 0. Then limn→∞ ‖zn− xn‖= 0.

Lemma 2.3. [22] Assume {an} is a sequence of nonnegative real numbers such that an+1 ≤
(1−αn)an +δn, n≥ 0, where {αn} is a sequence in (0,1) and {δn} is a sequence in R such
that

(i) ∑
∞
n=0 αn = ∞;

(ii) limsupn→∞ δn/αn ≤ 0 or ∑
∞
n=0 |δn|< ∞.

Then limn→∞ an = 0.

Lemma 2.4. [21] Let E be a real q-uniformly smooth Banach space, then there exists a
constant Cq > 0 such that

‖x+ y‖q ≤ ‖x‖q +q
〈
y, jqx

〉
+Cq ‖y‖q ,

for all x,y∈ E. In particular, if E is real 2-uniformly smooth Banach space, then there exists
a best smooth constant K > 0 such that

‖x+ y‖2 ≤ ‖x‖2 +2〈y, jx〉+2‖Ky‖2 ,

for all x,y ∈ E.

Lemma 2.5. [1] Let C be a nonempty closed convex subset of a Banach space E. Let
S1,S2, · · · be a sequence of mappings of C into itself. Suppose that ∑

∞
n=1 sup‖Sn+1x−Snx‖ :

x ∈ C < ∞. Then for each y ∈ C, {Sny} converges strongly to some point of C. More-
over, let S be a mapping of C into itself defined by Sy = limn→∞ Sny for all y ∈ C. Then
limn→∞ sup{‖Sx−Snx‖ : x ∈C}= 0.



530 G. Cai and S. Bu

Lemma 2.6. [3] Let C be a closed convex subset of a strictly convex Banach space E.
Let {Tn : n ∈ N} be a sequence of nonexpansive mappings on C. Suppose ∩∞

n=1F(Tn) is
nonempty. Let {λn} be a sequence of positive numbers with ∑

∞
n=1 λn = 1. Then a mapping

S on C defined by Sx = ∑
∞
n=1 λnTnx for x ∈ C is well defined, non-expansive and F(S) =

∩∞
n=1F(Tn) holds.

Lemma 2.7. [2] Let C be a nonempty closed convex subset of a uniformly convex Banach
space E and let T be nonexpansive mapping of C into itself. If {xn} is a sequence of C such
that xn→ x weakly and xn−T xn→ 0 strongly, then x is a fixed point of T .

Lemma 2.8. [22] Let E be a uniformly smooth Banach space, C be a closed convex subset
of E, T : C → C be a nonexpansive mapping with F(T ) 6= /0 and let f ∈ ΠC. Then the
sequence {xt} define by

xt = t f (xt)+(1− t)T xt

converges strongly to a point in F(T ). If we define a mapping Q : ΠC→ F(T ) by

Q( f ) := lim
t→0

xt , ∀ f ∈ΠC.

Then Q( f ) solves the following variational inequality:

〈(I− f )Q( f ), j(Q( f )− p)〉 ≤ 0, ∀ f ∈ΠC, p ∈ F(T ).

Lemma 2.9. [5] In a Banach space E, the following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 +2〈y, j(x+ y)〉 , ∀ x,y ∈ E,

where j(x+ y) ∈ J(x+ y).

Lemma 2.10. [27] Let C be a nonempty convex subset of a real 2-uniformly smooth Banach
space E and T : C→C be a λ -strict pseudo-contraction. For α ∈ (0,1), we define Tα x =
(1−α)x + αT x. Then, as α ∈ (0,λ/K2], Tα : C→ C is nonexpansive such that F(Tα) =
F(T ).

Lemma 2.11. Let C be a nonempty closed convex subset of a real 2-uniformly smooth
Banach space E. Let the mapping A : C→ E be α-inverse-strongly accretive. Then, we
have

‖(I−µA)x− (I−µA)y‖2 ≤ ‖x− y‖2 +2µ(µK2−α)‖Ax−Ay‖2 ,

where µ > 0. In particular, if µ ≤ α/K2, then I−µA is nonexpansive.

Proof. Indeed, for all x,y ∈C, it follows from Lemma 2.4 that

‖(I−µA)x− (I−µA)y‖2 = ‖x− y−µ(Ax−Ay)‖2

≤ ‖x− y‖2−2µ 〈Ax−Ay, j(x− y)〉+2µ
2K2 ‖Ax−Ay‖2

≤ ‖x− y‖2−2µα ‖Ax−Ay‖2 +2µ
2K2 ‖Ax−Ay‖2

= ‖x− y‖2 +2µ(µK2−α)‖Ax−Ay‖2 .

It is clear that if 0 < µ ≤ α/K2, then I−µA is nonexpansive. This completes the proof.

Lemma 2.12. Let C be a nonempty closed convex subset of a real 2-uniformly smooth
Banach space E. Let QC be the sunny nonexpansive retraction from E onto C. Let Ai :C→E
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be an αi-inverse-strongly accretive mapping, where i ∈ {1,2, . . . ,M}. Let G : C→ C be a
mapping defined by

G(x) = QC(I−µMAM)QC(I−µM−1AM−1) . . .QC(I−µ2A2)QC(I−µ1A1)x, ∀x ∈C.

If 0 < µi ≤ αi/K2, i = 1,2, . . . ,M, then G : C→C is nonexpansive.

Proof. Put Θi = QC(I−µiAi)QC(I−µi−1Ai−1) . . .QC(I−µ2A2)QC(I−µ1A1), i = 1,2, . . . ,M
and Θ0 = I, where I is identity mapping. Then G = ΘM . For all x,y ∈ C, it follows from
Lemma 2.11 that

‖Gx−Gy‖=
∥∥Θ

Mx−Θ
My
∥∥

=
∥∥QC(I−µMAM)ΘM−1x−QC(I−µMAM)ΘM−1y

∥∥
≤
∥∥(I−µMAM)ΘM−1x− (I−µMAM)ΘM−1y

∥∥
≤
∥∥Θ

M−1x−Θ
M−1y

∥∥
...

≤
∥∥Θ

0x−Θ
0y
∥∥ ,

= ‖x− y‖

which implies G is nonexpansive. This completes the proof.

Lemma 2.13. Let C be a nonempty closed convex subset of a real smooth Banach space
E. Let QC be the sunny nonexpansive retraction from E onto C. Let Ai : C→ E be nonlin-
ear mapping, where i = 1,2, . . . ,M. For given x∗i ∈ C, i = 1,2, . . . ,M, (x∗1,x

∗
2, . . . ,x

∗
M) is a

solution of problem (1.14) if and only if

x∗i = QC(I−µi−1Ai−1)x∗i−1,x
∗
1 = QC(I−µMAM)x∗M, i = 2, . . . ,M.

That is

x∗1 = QC(I−µMAM)QC(I−µM−1AM−1) . . .QC(I−µ2A2)QC(I−µ1A1)x∗1.

Proof. We can rewrite (1.14) as

(2.2)



〈x∗1− (x∗M−µMAMx∗M), j(x− x∗1)〉 ≥ 0, ∀x ∈C,〈
x∗M− (x∗M−1−µM−1AM−1x∗M−1), j(x− x∗M)

〉
≥ 0, ∀x ∈C,

...〈
x∗3− (x∗2−µ2A2x∗2), j(x− x∗3)

〉
≥ 0, ∀x ∈C.

〈x∗2− (x∗1−µ1A1x∗1), j(x− x∗2)〉 ≥ 0, ∀x ∈C.

From Proposition 2.1, we deduce that (2.2) is equivalent to

x∗i = QC(I−µi−1Ai−1)x∗i−1,x
∗
1 = QC(I−µMAM)x∗M, i = 2, . . . ,M.

Therefore we have

x∗1 = QC(I−µMAM)QC(I−µM−1AM−1) . . .QC(I−µ2A2)QC(I−µ1A1)x∗1.
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3. Main results

Theorem 3.1. Let C be a nonempty closed convex subset of uniformly convex and 2-
uniformly smooth Banach space E. Let QC be the sunny nonexpansive retraction from E
to C. Let the mapping Ai : C→ E be ηi-inverse-strongly accretive, where i ∈ {1,2, . . . ,M}.
Let f be a contraction of C into itself with coefficient α ∈ (0,1). Let {Tn}∞

n=1 be a sequence
of λi-strict pseudocontractive mappings of C into itself such that F = ∩∞

i=1F(Ti)∩Ω 6= /0.
Let λ = inf{λi : i ∈ N} > 0, L = supi≥1(1 + λi)/λi. Let {xn} be a sequence generated by
the following manner: x1 ∈C,

(3.1)


zn = QC(I−µMAM) . . .QC(I−µ2A2)QC(I−µ1A1)xn,

yn = (1−δn)zn +δnTnzn,

xn+1 = αn f (xn)+βnxn +(1−βn−αn)yn,

where 0 < µi < ηi/K2, i ∈ {1,2, . . . ,M}. Suppose that {αn} ,{βn} and {δn} be sequences
in [0,1] satisfying the following conditions:

(i) limn→∞ αn = 0, ∑
∞
n=1 αn = ∞;

(ii) 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1;
(iii) 0 < a≤ δn ≤ λ/K2, limn→∞ |δn+1−δn|= 0.

Assume that ∑
∞
n=1 supx∈D ‖Tn+1x−Tnx‖< ∞ for any bounded subset D of C and let T be a

mapping of C into itself defined by T x = limn→∞ Tnx for all x ∈C and suppose that F(T ) =
∩∞

i=1F(Ti). Then {xn} converges strongly to q ∈ F, which solves the following variational
inequality:

〈q− f (q), j(q− p)〉 ≤ 0 ∀ p ∈ F.

Proof. We divide the proof into five steps.

Step 1: We show that {xn} is bounded. Put Θi = QC(I− µiAi) . . .QC(I− µ2A2)QC(I−
µ1A1) and Θ0 = I, where I is identity mapping and i∈ {1,2, . . . ,M}. Then zn = ΘMxn. Take
x∗ ∈ F , by Lemma 2.13, we have x∗ = ΘMx∗, it follows from Lemma 2.12 that

‖zn− x∗‖=
∥∥Θ

Mxn−Θ
Mx∗
∥∥≤ ‖xn− x∗‖ .(3.2)

Put Sn = (1−δn)I +δnTn, it follows from Lemma 2.10 and (3.2) that

‖yn− x∗‖= ‖Snzn−Snx∗‖ ≤ ‖zn− x∗‖ ≤ ‖xn− x∗‖ .(3.3)

By (3.3), we have

‖xn+1− x∗‖= ‖αn f (xn)+βnxn +(1−βn−αn)yn− x∗‖
= ‖αn( f (xn)− x∗)+βn(xn− x∗)+(1−βn−αn)(yn− x∗)‖
≤ (1−βn−αn)‖xn− x∗‖+βn ‖xn− x∗‖+αn ‖ f (xn)− x∗‖
≤ (1−αn)‖xn− x∗‖+αnα ‖xn− x∗‖+αn ‖ f (x∗)− x∗‖

= (1−αn(1−α))‖xn− x∗‖+αn(1−α)
‖ f (x∗)− x∗‖

1−α
.

By induction, we have

‖xn− x∗‖ ≤max
{
‖x1− x∗‖ , ‖ f (x∗)− x∗‖

1−α

}
, ∀n≥ 2,
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which implies that the sequence{xn} is bounded. By (3.2) and (3.3), we have that {yn} and
{zn} are also bounded.

Step 2: We show that limn→∞ ‖xn+1− xn‖= 0. By Lemma 2.12, we have

‖zn+1− zn‖=
∥∥Θ

Mxn+1−Θ
Mxn
∥∥≤ ‖xn+1− xn‖ ,(3.4)

and

‖yn+1− yn‖= ‖Sn+1zn+1−Snzn‖
≤ ‖Sn+1zn+1−Sn+1zn‖+‖Sn+1zn−Snzn‖
≤ ‖zn+1− zn‖+‖[(1−δn+1)zn +δn+1Tn+1zn]− [(1−δn)zn +δnTnzn]‖
= ‖xn+1− xn‖+‖(δn+1−δn)(Tn+1zn− zn)+δn(Tn+1zn−Tnzn)‖
≤ ‖xn+1− xn‖+ |δn+1−δn|‖Tn+1zn− zn‖+δn ‖Tn+1zn−Tnzn‖
≤ ‖xn+1− xn‖+ |δn+1−δn|M1 +‖Tn+1zn−Tnzn‖ ,(3.5)

where M1 = supn≥1 ‖Tn+1zn− zn‖.
Put ln = (xn+1−βnxn)/(1−βn), for all n≥ 1, that is,

xn+1 = (1−βn)ln +βnxn, ∀n≥ 1.(3.6)

We observe that

ln+1− ln =
αn+1( f (xn+1)− yn+1)+(1−βn+1)yn+1

1−βn+1
− αn( f (xn)− yn)+(1−βn)yn

1−βn

=
αn+1( f (xn+1)− yn+1)

1−βn+1
− αn( f (xn)− yn)

1−βn
+ yn+1− yn.

It follows that

‖ln+1− ln‖ ≤
αn+1

1−βn+1
(‖ f (xn+1)‖+‖yn+1‖)

+
αn

1−βn
(‖ f (xn)‖+‖yn‖)+‖yn+1− yn‖ .

(3.7)

Substituting (3.5) into (3.7), we have

‖ln+1− ln‖−‖xn+1− xn‖ ≤
αn+1

1−βn+1
(‖ f (xn+1)‖+‖yn+1‖)+

αn

1−βn
(‖ f (xn)‖+‖yn‖)

+ |δn+1−δn|M1 +‖Tn+1zn−Tnzn‖ .

By conditions (i)–(iii) and the assumption on {Tn}, we obtain

limsup
n→∞

(‖ln+1− ln‖−‖xn+1− xn‖)≤ 0.

From Lemma 2.2, we have limn→∞ ‖ln− xn‖= 0. It follows from (3.6) that

(3.8) lim
n→∞
‖xn+1− xn‖= lim

n→∞
(1−βn)‖ln− xn‖= 0.

We note that

‖xn− yn‖ ≤ ‖xn− xn+1‖+‖xn+1− yn‖
= ‖xn− xn+1‖+‖αn( f (xn)− yn)+βn(xn− yn)‖
≤ ‖xn− xn+1‖+αn ‖ f (xn)− yn‖+βn ‖xn− yn‖ ,
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which implies

‖xn− yn‖ ≤
1

1−βn
(‖xn− xn+1‖+αn ‖ f (xn)− yn‖).

By (3.8) and conditions (i), (ii), we have

(3.9) lim
n→∞
‖xn− yn‖= 0.

Step 3: We show that limn→∞ ‖xn− zn‖= 0.
From Lemma 2.9 and (3.3), we have

‖xn+1− x∗‖2 = ‖αn( f (xn)− yn)+βn(xn− x∗)+(1−βn)(yn− x∗)‖2

≤ ‖βn(xn− x∗)+(1−βn)(yn− x∗)‖2 +2αn 〈 f (xn)− yn, j(xn+1− x∗)〉

≤ βn ‖xn− x∗‖2 +(1−βn)‖yn− x∗‖2 +2αn ‖ f (xn)− yn‖‖xn+1− x∗‖

≤ βn ‖xn− x∗‖2 +(1−βn)‖zn− x∗‖2 +αnM2

= αnM2 +βn ‖xn− x∗‖2 +(1−βn)
∥∥Θ

Mxn− x∗
∥∥2

,(3.10)

where M2 = supn≥1 {2‖ f (xn)− yn‖‖xn+1− x∗‖}.
On the other hand, it follows from Lemma 2.11 that∥∥Θ

Mxn− x∗
∥∥2

=
∥∥Θ

Mxn−Θ
Mx∗
∥∥2

=
∥∥QC(I−µMAM)ΘM−1xn−QC(I−µMAM)ΘM−1x∗

∥∥2

≤
∥∥(I−µMAM)ΘM−1xn− (I−µMAM)ΘM−1x∗

∥∥2

≤
∥∥Θ

M−1xn−Θ
M−1x∗

∥∥2−2µM(ηM−K2
µM)

∥∥AMΘ
M−1xn−AMΘ

M−1x∗
∥∥2

.

By induction, we have∥∥Θ
Mxn− x∗

∥∥2 ≤
∥∥Θ

0xn−Θ
0x∗
∥∥2−2µ1(η1−K2

µ1)
∥∥A1Θ

0xn−A1Θ
0x∗
∥∥2

− . . .−2µM(ηM−K2
µM)

∥∥AMΘ
M−1xn−AMΘ

M−1x∗
∥∥2

.

= ‖xn− x∗‖2−
M

∑
i=1

2µi(ηi−K2
µi)
∥∥AiΘ

i−1xn−AiΘ
i−1x∗

∥∥2
.(3.11)

Substituting (3.11) into (3.10), we have

‖xn+1− x∗‖2 ≤ αnM2 +βn ‖xn− x∗‖2 +(1−βn)‖xn− x∗‖2

−
M

∑
i=1

2µi(1−βn)(ηi−K2
µi)
∥∥AiΘ

i−1xn−AiΘ
i−1x∗

∥∥2
,

which implies
M

∑
i=1

2µi(1−βn)(ηi−K2
µi)
∥∥AiΘ

i−1xn−AiΘ
i−1x∗

∥∥2

≤ αnM2 +‖xn− x∗‖2−‖xn+1− x∗‖2

≤ αnM2 +‖xn− xn+1‖(‖xn− x∗‖+‖xn+1− x∗‖).
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Since 0 < µi < ηi/K2, liminfn→∞(1−βn) > 0, limn→∞ αn = 0 and (3.8), we have

(3.12) lim
n→∞

∥∥AiΘ
i−1xn−AiΘ

i−1x∗
∥∥= 0, i ∈ {1,2, . . . ,M} .

From Proposition 2.1 and Lemma 2.1, we have∥∥Θ
Mxn− x∗

∥∥2

=
∥∥Θ

Mxn−Θ
Mx∗
∥∥2

=
∥∥QC(I−µMAM)ΘM−1xn−QC(I−µMAM)ΘM−1x∗

∥∥2

≤
〈
Θ

M−1xn−Θ
M−1x∗−µM(AMΘ

M−1xn−AMΘ
M−1x∗), j(ΘMxn−Θ

Mx∗)
〉

=
〈
Θ

M−1xn−Θ
M−1x∗, j(ΘMxn−Θ

Mx∗)
〉
−µM

〈
AMΘ

M−1xn−AMΘ
M−1x∗, j(ΘMxn−Θ

Mx∗)
〉

≤ 1
2
(
∥∥Θ

M−1xn−Θ
M−1x∗

∥∥2
+
∥∥Θ

Mxn−Θ
Mx∗
∥∥2−gM(

∥∥Θ
M−1xn−Θ

Mxn +Θ
Mx∗−Θ

M−1x∗
∥∥))

+ µM
∥∥AMΘ

M−1xn−AMΘ
M−1x∗

∥∥∥∥Θ
Mxn−Θ

Mx∗
∥∥ ,

which implies∥∥Θ
Mxn− x∗

∥∥2 ≤
∥∥Θ

M−1xn−Θ
M−1x∗

∥∥2−gM(
∥∥Θ

M−1xn−Θ
Mxn +Θ

Mx∗−Θ
M−1x∗

∥∥))
+2µM

∥∥AMΘ
M−1xn−AMΘ

M−1x∗
∥∥∥∥Θ

Mxn−Θ
Mx∗
∥∥ .

By induction, we have∥∥Θ
Mxn− x∗

∥∥2 ≤
∥∥Θ

0xn−Θ
0x∗
∥∥2−

M

∑
i=1

gi(
∥∥Θ

i−1xn−Θ
ixn +Θ

ix∗−Θ
i−1x∗

∥∥)
+

M

∑
i=1

2µi
∥∥AiΘ

i−1xn−AiΘ
i−1x∗

∥∥∥∥Θ
ixn−Θ

ix∗
∥∥

= ‖xn− x∗‖2−
M

∑
i=1

gi(
∥∥Θ

i−1xn−Θ
ixn +Θ

ix∗−Θ
i−1x∗

∥∥)
+

M

∑
i=1

2µi
∥∥AiΘ

i−1xn−AiΘ
i−1x∗

∥∥∥∥Θ
ixn−Θ

ix∗
∥∥ .(3.13)

Substituting (3.13) into (3.10), we have

‖xn+1− x∗‖2 ≤ αnM2 +βn ‖xn− x∗‖2 +(1−βn)‖xn− x∗‖2

−
M

∑
i=1

(1−βn)gi(
∥∥Θ

i−1xn−Θ
ixn +Θ

ix∗−Θ
i−1x∗

∥∥)
+

M

∑
i=1

2(1−βn)µi
∥∥AiΘ

i−1xn−AiΘ
i−1x∗

∥∥∥∥Θ
ixn−Θ

ix∗
∥∥ ,

which implies
M

∑
i=1

(1−βn)gi(
∥∥Θ

i−1xn−Θ
ixn +Θ

ix∗−Θ
i−1x∗

∥∥)
≤ αnM2 +‖xn− x∗‖2−‖xn+1− x∗‖2
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+
M

∑
i=1

2(1−βn)µi
∥∥AiΘ

i−1xn−AiΘ
i−1x∗

∥∥∥∥Θ
ixn−Θ

ix∗
∥∥

≤ αnM2 +‖xn− xn+1‖(‖xn− x∗‖+‖xn+1− x∗‖)

+
M

∑
i=1

2(1−βn)µi
∥∥AiΘ

i−1xn−AiΘ
i−1x∗

∥∥∥∥Θ
ixn−Θ

ix∗
∥∥ .

Since liminfn→∞(1−βn) > 0, limn→∞ αn = 0, (3.8) and (3.12), we have

lim
n→∞

gi(
∥∥Θ

i−1xn−Θ
ixn +Θ

ix∗−Θ
i−1x∗

∥∥) = 0, ∀ i ∈ {1,2, . . . ,M} .

It follows from the properties of gi that

(3.14) lim
n→∞

∥∥Θ
i−1xn−Θ

ixn +Θ
ix∗−Θ

i−1x∗
∥∥= 0, ∀ i ∈ {1,2, . . . ,M} .

From (3.14), we have
(3.15)

‖xn− zn‖=
∥∥Θ

0xn−Θ
Mxn
∥∥≤ M

∑
i=1

∥∥Θ
i−1xn−Θ

ixn +Θ
ix∗−Θ

i−1x∗
∥∥→ 0 as n→ ∞.

From (3.9) and (3.15), we obtain

‖yn− zn‖ ≤ ‖yn− xn‖+‖xn− zn‖→ 0 as n→ ∞.(3.16)

We note yn− zn = δn(Tnzn− zn). It follows from (3.16) and δn > a > 0, we have

(3.17) lim
n→∞
‖Tnzn− zn‖= 0.

By (3.15) and (3.17), we get

‖xn−Tnxn‖ ≤ ‖xn− zn‖+‖zn−Tnzn‖+‖Tnzn−Tnxn‖
≤ (1+L)‖xn− zn‖+‖zn−Tnzn‖
→ 0 as n→ ∞.(3.18)

From (3.9) and (3.15), we have

‖xn−Snxn‖ ≤ ‖xn−Snzn‖+‖Snzn−Snxn‖
≤ ‖xn−Snzn‖+‖zn− xn‖
= ‖xn− yn‖+‖zn− xn‖
→ 0 as n→ ∞.(3.19)

Define a mapping Sx = (1−δ )x+δT x, where δ ∈ (0,λ/K2) is a constant. Then by Lemma
2.10, we have F(S) = F(T ) = ∩∞

i=1F(Ti). We note that

‖xn−Sxn‖ ≤ ‖xn−Snxn‖+‖Snxn−Sxn‖
= ‖xn−Snxn‖+‖(1−δn)xn +δnTnxn− (1−δ )xn−δT xn‖
= ‖xn−Snxn‖+‖(δn−δ )(Tnxn− xn)+δ (Tnxn−T xn)‖
≤ ‖xn−Snxn‖+ |δn−δ |‖Tnxn− xn‖+δ ‖Tnxn−T xn‖ .

By (3.18), (3.19) and Lemma 2.5, we have

(3.20) lim
n→∞
‖xn−Sxn‖= 0.
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Define a mapping Wx = (1−θ)Sx+θGx, where G is defined by Lemma 2.12, θ ∈ (0,1) is
a constant. Then by Lemma 2.6, we have that F(W ) = F(S)∩F(G) = F(S)∩Ω = F . We
observe that

‖xn−Wxn‖= ‖(1−θ)(xn−Sxn)+θ(xn−Gxn)‖
≤ (1−θ)‖xn−Sxn‖+θ ‖xn−Gxn‖
= (1−θ)‖xn−Sxn‖+θ ‖xn− zn‖ .

By (3.15) and (3.20), we obtain

(3.21) lim
n→∞
‖xn−Wxn‖= 0.

Step 4: We claim that

(3.22) limsup
n→∞

〈 f (q)−q, j(xn−q)〉 ≤ 0,

where q = limt→0 xt with xt being the fixed point of the contraction

x 7→ t f (x)+(1− t)Wx.
Then xt solves the fixed point equation xt = t f (xt)+(1− t)Wxt . Thus we have

‖xt − xn‖= ‖(1− t)(Wxt − xn)+ t( f (xt)− xn)‖ .
It follows from Lemma 2.9 that

‖xt − xn‖2 = ‖(1− t)(Wxt − xn)+ t( f (xt)− xn)‖2

≤ (1− t)2 ‖Wxt − xn‖2 +2t 〈 f (xt)− xn, j(xt − xn)〉

≤ (1− t)2(‖Wxt −Wxn‖+‖Wxn− xn‖)2 +2t 〈 f (xt)− xn, j(xt − xn)〉

≤ (1− t)2(‖xt − xn‖+‖Wxn− xn‖)2 +2t 〈 f (xt)− xn, j(xt − xn)〉

= (1− t)2
[
‖xt − xn‖2 +2‖xt − xn‖‖Wxn− xn‖+‖Wxn− xn‖2

]
+2t 〈 f (xt)− xt , j(xt − xn)〉+2t 〈xt − xn, j(xt − xn)〉

= (1−2t + t2)‖xt − xn‖2 + fn(t)+2t 〈 f (xt)− xt , j(xt − xn)〉+2t ‖xt − xn‖2 ,(3.23)

where

(3.24) fn(t) = (1− t)2(2‖xt − xn‖+‖xn−Wxn‖)‖xn−Wxn‖→ 0, as n→ ∞.

It follows from (3.23) that

(3.25) 〈xt − f (xt), j(xt − xn)〉 ≤
t
2
‖xt − xn‖2 +

1
2t

fn(t).

Let n→ ∞ in (3.25) and note that (3.24) yields

(3.26) limsup
n→∞

〈xt − f (xt), j(xt − xn)〉 ≤
t
2

M3,

where M3 > 0 is a constant such that M3 ≥ ‖xt − xn‖2 for all t ∈ (0,1) and n ≥ 1. Taking
t→ 0 from (3.26), we have

(3.27) limsup
t→0

limsup
n→∞

〈xt − f (xt), j(xt − xn)〉 ≤ 0.
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On the other hand, we have

〈 f (q)−q, j(xn−q)〉= 〈 f (q)−q, j(xn−q)〉−〈 f (q)−q, j(xn− xt)〉
+ 〈 f (q)−q, j(xn− xt)〉−〈 f (q)− xt , j(xn− xt)〉
+ 〈 f (q)− xt , j(xn− xt)〉−〈 f (xt)− xt , j(xn− xt)〉
+ 〈 f (xt)− xt , j(xn− xt)〉

= 〈 f (q)−q, j(xn−q)− j(xn− xt)〉+ 〈xt −q, j(xn− xt)〉
+ 〈 f (q)− f (xt), j(xn− xt)〉+ 〈 f (xt)− xt , j(xn− xt)〉 .

It follows that

limsup
n→∞

〈 f (q)−q, j(xn−q)〉 ≤ limsup
n→∞

〈 f (q)−q, j(xn−q)− j(xn− xt)〉

+‖xt −q‖ limsup
n→∞

‖xn− xt‖+α ‖q− xt‖ limsup
n→∞

‖xn− xt‖

+ limsup
n→∞

〈 f (xt)− xt , j(xn− xt)〉 .

Noticing that j is norm-to-norm uniformly continuous on bounded subsets of C, it follows
from (3.27), we have

limsup
n→∞

〈 f (q)−q, j(xn−q)〉= limsup
t→0

limsup
n→∞

〈 f (q)−q, j(xn−q)〉 ≤ 0.

Hence, (3.22) holds.

Step 5: Finally we prove that xn→ q as n→ ∞.
From (3.3), we have

‖xn+1−q‖2

= αn 〈 f (xn)−q, j(xn+1−q)〉+βn 〈xn−q, j(xn+1−q)〉
+ 〈(1−βn−αn)(yn−q), j(xn+1−q)〉
≤ (1−βn−αn)‖xn−q‖‖xn+1−q‖+βn ‖xn−q‖‖xn+1−q‖

+αn 〈 f (xn)− f (q), j(xn+1−q)〉+αn 〈 f (q)−q, j(xn+1−q)〉
≤ (1−αn)‖xn−q‖‖xn+1−q‖+αnα ‖xn−q‖‖xn+1−q‖+αn 〈 f (q)−q, j(xn+1−q)〉
= [1−αn(1−α)]‖xn−q‖‖xn+1−q‖+αn 〈 f (q)−q, j(xn+1−q)〉

≤ 1−αn(1−α)
2

(‖xn−q‖2 +‖xn+1−q‖2)+αn 〈 f (q)−q, j(xn+1−q)〉

≤ 1−αn(1−α)
2

‖xn−q‖2 +
1
2
‖xn+1−q‖2 +αn 〈 f (q)−q, j(xn+1−q)〉 ,

which implies

(3.28) ‖xn+1−q‖2 ≤ [1−αn(1−α)]‖xn−q‖2 +αn(1−α)
2〈 f (q)−q, j(xn+1−q)〉

1−α
.

Apply Lemma 2.3 to (3.28), we obtain that xn→ q as n→ ∞. This completes the proof.
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