The Linear Arboricity of Planar Graphs without 5-Cycles with Chords

¹Hong-Yu Chen, ²Xiang Tan and ³Jian-Liang Wu

¹School of Sciences, Shanghai Institute of Technology, Shanghai, 201418, China

²School of Statistics and Mathematics, Shandong University of Finance, Jinan, Shandong, 250014, China

³School of Mathematics, Shandong University, Jinan, Shandong, 250100, China

¹hongyuchen86@126.com, ²xtandw@126.com, ³jlwu@sdu.edu.cn

Abstract. The linear arboricity la(G) of a graph *G* is the minimum number of linear forests which partition the edges of *G*. In this paper, it is proved that for a planar graph *G* with maximum degree $\Delta(G) \ge 7$, $la(G) = \lceil (\Delta(G))/2 \rceil$ if *G* has no 5-cycles with chords.

2010 Mathematics Subject Classification: 05C15

Keywords and phrases: Planar graph, linear arboricity, cycle.

1. Introduction

In this paper, all graphs are finite, simple and undirected. For a real number x, $\lceil x \rceil$ is the least integer not less than x and $\lfloor x \rfloor$ is the largest integer not larger than x. Let G be a graph. We use V(G) and E(G) to denote the vertex set and the edge set, respectively. If $uv \in E(G)$, then u is said to be a *neighbor* of v, and $N_G(v)$ is the set of neighbors of v. The *degree* d(v) of a vertex v is $|N_G(v)|$, $\delta(G)$ is the minimum degree of G and $\Delta(G)$ is the maximum degree of G. A k-, k^+ - or k^- - vertex is a vertex of degree k, at least k, or at most k, respectively. A k- cycle is a cycle of length k. Two cycles are said to be *adjacent* if they are incident with a common edge. All undefined notations and definitions follow that of Bondy and Murty [3].

A *linear forest* is a graph in which each component is a path. A map φ from E(G) to $\{1, 2, \dots, t\}$ is called a *t-linear coloring* if the induced subgraph of edges having the same color α is a linear forest for $1 \le \alpha \le t$. The *linear arboricity* la(G) of a graph G defined by Harary [7] is the minimum number t for which G has a t-linear coloring.

Akiyama, Exoo and Harary [1] conjectured that $la(G) = \lceil (\Delta(G) + 1)/2 \rceil$ for any regular graph *G*. The conjecture is equivalent to the following conjecture.

Conjecture 1.1. *For any graph G,* $\lceil (\Delta(G))/2 \rceil \leq la(G) \leq \lceil (\Delta(G)+1)/2 \rceil$.

The linear arboricity has been determined for complete bipartite graphs [1], complete regular multipartite graphs [13], Halin graphs [9], series-parallel graphs [11] and regular graphs with $\Delta = 3,4$ [1, 2], 5,6,8 [5], and 10 [6]. For planar graphs, more results are obtained. Conjecture 1.1 has already been proved to be true for all planar graphs, see [10]

Communicated by Ang Miin Huey.

Received: December 23, 2011; Revised: July 13, 2012.

and [14]. Wu [10] proved that for a planar graph *G* with girth *g* and maximum degree Δ , $la(G) = \lceil (\Delta(G))/2 \rceil$ if $\Delta(G) \ge 13$, or $\Delta(G) \ge 7$ and $g \ge 4$, or $\Delta(G) \ge 5$ and $g \ge 5$, or $\Delta(G) \ge 3$ and $g \ge 6$. In [12], it is proved that if *G* is a planar graph with $\Delta(G) \ge 7$ and without *i*-cycles for some $i \in \{4,5\}$, then $la(G) = \lceil (\Delta(G))/2 \rceil$. Tan [8] proved that for a planar graph *G* with $\Delta(G) \ge 5$ and any 4-cycle is not adjacent to an *i*-cycle for any $i \in \{3,4,5\}$ or *G* has no intersecting 4-cycles and intersecting *i*-cycles for some $i \in \{3,6\}$, $la(G) = \lceil (\Delta(G))/2 \rceil$. In this paper, we'll prove that for a planar graph *G* with maximum degree $\Delta(G) \ge 7$, $la(G) = \lceil (\Delta(G))/2 \rceil$ if *G* has no 5-cycles with chords.

2. Main results and their proofs

In the section, we always assume that a planar graph *G* has been embedded in the plane. Let *G* be a planar graph and F(G) be the face set of *G*. For $f \in F(G)$, the *degree* of *f*, denoted by d(f), is the number of edges incident with it, where each cut-edge is counted twice. A k-, k^+ - or k^- - face is a face of degree *k*, at least *k*, or at most *k*, respectively.

Given a *t*-linear coloring φ and a vertex *v* of *G*, we denote by $C_{\varphi}^{i}(v)$ the set of colors appears *i* times at *v*, where i = 0, 1, 2. Then $|C_{\varphi}^{0}(v)| + |C_{\varphi}^{1}(v)| + |C_{\varphi}^{2}(v)| = t$ and $|C_{\varphi}^{1}(v)| + 2|C_{\varphi}^{2}(v)| = d(v)$. Let *x* be a vertex of *G*, denote $\varphi(x) = (\varphi(xy_1), \dots, \varphi(xy_k))$, where vertices y_1, \dots, y_k are distinct neighbors of *x*. For any two vertices *u* and *v*, let $C_{\varphi}(u, v) = C_{\varphi}^{2}(u) \cup C_{\varphi}^{1}(u) \cap C_{\varphi}^{1}(v))$, that is , $C_{\varphi}(u, v)$ is the set of colors that appear at least two times at *u* and *v*. A monochromatic path is a path of whose edges receive the same color. For two different edges e_1 and e_2 of *G*, they are said to be in the same color component, denoted by $e_1 \leftrightarrow e_2$ if there is a monochromatic path of *G* connecting them. Furthermore, if two ends of e_i are known, that is, $e_i = x_i y_i$ (i = 1, 2), then $x_1 y_1 \leftrightarrow x_2 y_2$ denotes more accurately that there is a monochromatic path from x_1 to y_2 passing through the edges $x_1 y_1$ and $x_2 y_2$ in *G* (that is, y_1 and x_2 are internal vertices in the path). Otherwise, we use $x_1 y_1 \nleftrightarrow x_2 y_2$ (or $e_1 \nleftrightarrow e_2$) to denote that such monochromatic path passing through them does not exist. Note that $x_1 y_1 \leftrightarrow x_2 y_2$ and $x_1 y_1 \leftrightarrow y_2 x_2$ are different. Let xy be an edge of *G*. Denote by $xy \leftrightarrow (v, i)$ that *x* and *v* have a monochromatic path of color *i* between them through *y*.

Theorem 2.1. Let G be a planar graph with $\Delta(G) \ge 7$ and without 5-cycles with chords. Then $la(G) = \lceil (\Delta(G))/2 \rceil$.

Proof. It suffices to prove that for an integer $m \ge 4$, a planar graph *G* without 5-cycles with chords has an *m*-linear coloring if $\Delta(G) \le 2m$. Let G = (V, E) be a minimal counterexample to the theorem and uv be an edge of *G*. Then G - uv has an *m*-linear coloring φ . We have the two fundamental properties.

Property 2.1. $|C_{\phi}(u,v)| = m$.

Proof. Suppose that $|C_{\varphi}(u,v)| < m$. We may modify φ to an *m*-linear coloring of *G* by setting $\varphi(uv) \in \{1,2,\ldots,m\} \setminus C_{\varphi}(u,v)$, a contradiction.

Property 2.2. If there is a color *i* such that $i \in C^1_{\varphi}(u) \cap C^1_{\varphi}(v)$, then $(u, i) \leftrightarrow (v, i)$.

Proof. Suppose $(u,i) \nleftrightarrow (v,i)$. We may modify φ to an *m*-linear coloring of *G* by setting $\varphi(uv) = i$, a contradiction.

First, we prove some Lemmas for G.

Lemma 2.1. For any $uv \in E(G)$, $d_G(u) + d_G(v) \ge 2m + 2$.

Proof. Suppose that *G* has an edge *uv* with $d_G(u) + d_G(v) \le 2m + 1$. Then G' = G - uv has an *m*-linear coloring φ by the minimality of *G*. Since $d_{G'}(u) + d_{G'}(v) = d_G(u) + d_G(v) - 2 \le 2m - 1$, $|C_{\varphi}(u,v)| = |C_{\varphi}^2(u) \cup C_{\varphi}^2(v) \cup (C_{\varphi}^1(u) \cap C_{\varphi}^1(v))| < m$. Let $\varphi(u,v) \in \{1,2,\ldots,m\} \setminus C_{\varphi}(u,v)$. Thus φ is extendable to an *m*-linear coloring of *G*, a contradiction. Hence the Lemma holds.

By Lemma 2.1, we have

- (a) $\delta(G) \geq 2$, and
- (b) any two 4⁻-vertices are not adjacent, and
- (c) any 3-face is incident with three 5^+ -vertices, or at least two 6^+ -vertices, and
- (d) any 7-vertex has no neighbors of degree 2.

Lemma 2.2. Every vertex is adjacent to at most two 2-vertices. Moreover, suppose that a vertex v is adjacent to two 2-vertices x, y, let x' and y' be the other neighbors of x, y, respectively. Then $x'v, y'v \notin E(G)$.

The proof of Lemma 2.2 can be found in [4].

A *k*-face with consecutive vertices $v_1, v_2, ..., v_k$ along its boundary in some direction will be said to be a $(d(v_1), d(v_2), ..., d(v_k))$ -face.

Lemma 2.3. *G* has no (4,6,6)-face.

Proof. Suppose that *G* has a (4,6,6)-face $f = u_1u_2u_3$ with $d(u_1) = 4$, $d(u_2) = d(u_3) = 6$. By the minimality of *G*, $G' = G - u_1u_2$ has an *m*-linear coloring φ .

Suppose $C_{\varphi}^2(u_1) = \emptyset$. Without loss of generality, let $\varphi(u_1) = (1,2,3)$ and $\varphi(u_1u_3) = 3$. Then, by properties 1 and 2, $\varphi(u_2) = (1,2,3,4,4)$ and $(u_1,i) \leftrightarrow (u_2,i)$ for i = 1,2,3. If $1 \notin C_{\varphi}^2(u_3)$, then recolor u_1u_3 with 1, and color u_1u_2 with 3. Thus *G* is *m*-linear colorable, a contradiction. So we can assume $1 \in C_{\varphi}^2(u_3)$. Similarly, $2 \in C_{\varphi}^2(u_3)$. Since $\varphi(u_1u_3) = 3$, $(u_1,3) \leftrightarrow (u_2,3)$, we have $3 \in C_{\varphi}^2(u_3)$. That is, $\varphi(u_3) = (1,1,2,2,3,3)$. Then we can recolor u_1u_3 with 4, and color u_1u_2 with 3. So φ is extendable to an *m*-linear coloring of *G*, a contradiction.

Suppose $C^2_{\varphi}(u_1) \neq \emptyset$. Without loss of generality, let $\varphi(u_1) = (1, 1, 2)$. Then $\varphi(u_2) = (2, 3, 3, 4, 4)$ and $(u_1, 2) \leftrightarrow (u_2, 2)$ by properties 1 and 2. We consider two cases.

Case 1: $\varphi(u_1u_3) = 2$. Then $2 \in C^2_{\varphi}(u_3)$. If $3 \notin C^2_{\varphi}(u_3)$, then recolor u_1u_3 with 3, and color u_1u_2 with 2. So $3 \in C^2_{\varphi}(u_3)$. Similarly, $4 \in C^2_{\varphi}(u_3)$. Thus $\varphi(u_3) = (2, 2, 3, 3, 4, 4)$. Then we can recolor u_2u_3 with 1, and color u_1u_2 with $\varphi(u_2u_3)$. So φ is extendable to an *m*-linear coloring of *G*, a contradiction.

Case 2: $\varphi(u_1u_3) = 1$. If $2 \notin C_{\varphi}^2(u_3)$, then recolor u_1u_3 with 2, and color u_1u_2 with 1. So $2 \in C_{\varphi}^2(u_3)$. Similarly, $3 \in C_{\varphi}^2(u_3)$, $4 \in C_{\varphi}^2(u_3)$. But it is impossible since $d(u_3) = 6$.

Hence G has no (4, 6, 6)-face.

Lemma 2.4. Suppose that a planar graph *G* contains no 5-cycles with chords and $\delta(G) \ge 2$. Then all of the following results hold.

- (a) Any vertex v is incident with at most |(2d(v))/3| 3-faces.
- (b) A 3-face is adjacent to a 4-face if and only if the two faces are incident with a common 2-vertex.

- (c) If a face is adjacent to two nonadjacent 3-faces, then the face must be 5^+ -face.
- (d) If a $d(\geq 7)$ -vertex v is incident with a 3-face, then v is incident with at least two 5^+ -faces.

Proof. Since if there are three 3-faces f_1, f_2, f_3 such that they are incident with a common vertex and f_2 is adjacent to f_1 and f_3 , then vertices incident with them form a 5-cycle with chords, so (a) holds. If a 3-face f is adjacent to a 4-face, then all three vertices incident with the 3-face f must be incident with the 4-face, too. So there is a vertex just incident with these two faces and it follows that the vertex is a 2-vertex. Hence (b) holds. For (c), suppose that a face f is adjacent to two nonadjacent 3-faces. As in part (a), f is not a 3-face, for otherwise a 5-cycle with chords exists. By (b), f is not a 4-face. So f must be a 5⁺-face and (c) holds.

For (d), suppose that a $d \ge 7$ -vertex v is incident with a 3-face. If v is a cut vertex, then (d) is obvious. So assume that v is not a cut vertex. Then all the faces incident with v are distinct. Let f_1, f_2, \ldots, f_d be faces incident with v clockwise, and let v_1, v_2, \ldots, v_d be vertices adjacent to v clockwise, let v_i be incident with $f_i, i = 1, 2, \ldots, d$ and let v_d be incident with f_d and f_1 . Assume that f_1 is the 3-face. Then by (a), f_2 or f_d is not a 3-face. Without loss of generality, assume that f_d is not a 3-face.

If f_d is a 4-face, then $d(v_d) = 2$ by (b). Thus f_2 must be a 3-face or a 5⁺-face. If f_2 is a 3-face, then f_3 or f_4 must be a 5⁺-face. So one of f_2 , f_3 , f_4 is a 5⁺-face. Similarly, if f_{d-1} is a 4-face, then $d(v_{d-1}) = 2$. Thus one of f_{d-1} or f_{d-2} , giving two 5⁺-faces since $d \ge 7$.

Suppose that f_d is a 5⁺-face. If f_2 is a 3-face, then f_3 must be a 4-face or 5⁺-face. If f_3 is a 4-face, then f_4 or f_5 must be a 5⁺-face. So one of the faces in $\{f_3, f_4, f_5\}$ is a 5⁺-face. If f_2 is a 4-face, then f_3 or f_4 must be a 5⁺-face. Thus we prove (d).

By Euler's formula |V| - |E| + |F| = 2, we have

$$\sum_{v \in V} (2d(v) - 6) + \sum_{f \in F} (d(f) - 6) = -6(|V| - |E| + |F|) = -12 < 0.$$

We define *h* to be the initial charge. Let h(v) = 2d(v) - 6 for each $v \in V(G)$ and h(f) = d(f) - 6 for each $f \in F(G)$. In the following, we will reassign a new charge denoted by h'(x) to each $x \in V(G) \cup F(G)$ according to the discharging rules. Since our rules only move charges around, and do not affect the sum, we have

(2.1)
$$\sum_{x \in V(G) \cup F(G)} h'(x) = \sum_{x \in V(G) \cup F(G)} h(x) = -12$$

In the following, we will show that $h'(x) \ge 0$ for each $x \in V(G) \cup F(G)$, a contradiction to (2.1), completing the proof.

Now, let us introduce the needed discharging rules as follows:

- **R1**. Each 8⁺-vertex sends 1 to each of its adjacent 2-vertices.
- **R2.** Each 7^+ -vertex sends 3/2 to each of its incident 3-faces;
 - 1 to each of its incident 4-faces;

1/3 to each of its incident 5-faces.

R3. Each 6-vertex sends 1 to each of its incident faces.

R4. Each 5-vertex sends 1 to each of its incident 3-faces;

1/2 to each of its incident 4-faces;

1/4 to each of its incident 5-faces.

R5. Each 4-vertex sends 1/2 to each of its incident faces.

288

Note that our discharging rules are just designed such that charge only flows from vertices to faces apart from the 8⁺-vertices giving charge to 2-vertices.

Let f be a face of G. Throughout we will use Lemma 2.1 given the vertices around f are necessarily adjacent to their neighbors around f. If $d(f) \ge 6$, then $h'(f) \ge h(f) = d(f) - 6 \ge 0$.

Suppose d(f) = 5. Then f is incident with at most two 3⁻-vertices by Lemma 2.1. If f is incident with two 3⁻-vertices, then the other three vertices must be 7⁺-vertices. It follows that $h'(f) \ge h(f) + 1/3 \times 3 = 0$ by R2. If f is incident with one 3⁻-vertex, then f is incident with at least two 7⁺-vertices. It follows that $h'(f) \ge h(f) + 1/3 \times 2 + 1/4 \times 2 = 1/6 > 0$ by R2, R3, R4 and R5. If f is not incident with any 3⁻-vertices, then f receives at least 1/4 from each of its incident vertices by R2, R3, R4 and R5. Hence $h'(f) \ge h(f) + 1/4 \times 5 = 1/4 > 0$.

Suppose d(f) = 4. Then f is incident with at most two 3⁻-vertices by Lemma 2.1. If f is incident with at least one 3⁻-vertex, then f is incident with at least two 7⁺-vertices, and it follows that $h'(f) \ge h(f) + 1 \times 2 = 0$ by R2. If f is not incident with any 3⁻-vertices, then f receives at least 1/2 from each of its incident vertices by R2, R3, R4 and R5. Hence $h'(f) \ge h(f) + 1/2 \times 4 = 0$.

Suppose d(f) = 3. Then f is incident with at most one 3⁻-vertex by Lemma 2.1. If f is incident with one 3⁻-vertex, then the other two vertices must be 7⁺-vertices. It follows that $h'(f) \ge h(f) + 3/2 \times 2 = 0$ by R2. Otherwise, f is incident with at most one 4-vertex. If f is incident with one 4-vertex, then f is incident with at least one 7⁺-vertex by Lemma 2.3 and the other vertex must be a 6⁺-vertex. Hence $h'(f) \ge h(f) + 1/2 + 3/2 + 1 = 0$ by R5, R2 and R3. If f is not incident with any 4-vertices, then f receives at least 1 from each of its incident vertices by R2, R3 and R4. Hence $h'(f) \ge h(f) + 1 \times 3 = 0$.

Let v be a vertex of G. If d(v) = 2, then h'(v) = h(v) + 2 = 0 by R1. If d(v) = 3, then h'(v) = h(v) = 0. If d(v) = 4, then $h'(v) \ge h(v) - 1/2 \times 4 = 0$ by R5. If d(v) = 5, then by Lemma 2.4(a), v is incident with at most three 3-faces, so $h'(v) \ge h(v) - 1 \times 3 - 1/2 \times 2 = 0$ by R4. If d(v) = 6, then $h'(v) \ge h(v) - 1 \times 6 = 0$ by R3.

Suppose d(v) = 7. By Lemma 2.4(a), v is incident with at most four 3-faces. If v is incident with four 3-faces, then the other three faces incident with v must be 5⁺-faces by Lemma 2.1(d) and Lemma 2.4(b). So $h'(v) \ge h(v) - 3/2 \times 4 - 1/3 \times 3 = 1$ by R2. If v is incident with three 3-faces, then v is incident with at most one 4-face by Lemma 2.1(d) and Lemma 2.4(b). It follows that $h'(v) \ge h(v) - 3/2 \times 3 - 1 - 1/3 \times 3 = 3/2$. If v is incident with at most two 3-faces, then $h'(v) \ge h(v) - 3/2 \times 2 - 1 \times 5 = 0$.

Suppose d(v) = 8. By Lemma 2.2, v is adjacent to at most two 2-vertices. Let t be the number of 3-faces incident with v.

If *v* is adjacent to two 2-vertices, then $t \le 4$ by Lemma 2.2 and Lemma 2.4(a). If t = 0, then $h'(v) \ge h(v) - 2 - 8 \times 1 = 0$. So we can assume $1 \le t \le 4$. If $1 \le t \le 2$, then *v* is incident with at least two 5⁺-faces by Lemma 2.4(d). So we have $h'(v) \ge h(v) - 2 - 2 \times 1/3 - (6-t) \times 1 - 3/2 \times t = 4/3 - t/2 > 0$. If $3 \le t \le 4$, then *v* is incident with at least three 5⁺-faces by Lemma 2.4(b). It follows that $h'(v) \ge h(v) - 2 - 3 \times 1/3 - (5 - t) \times 1 - 3/2 \times t = 2 - t/2 \ge 0$.

Suppose *v* is adjacent to at most one 2-vertex.

Clearly, $t \le 5$ by Lemma 2.4(a). If $t \le 2$, then $h'(v) \ge h(v) - 1 - (8-t) \times 1 - 3/2 \times t = 1 - t/2 \ge 0$. If $t \ge 3$, then v is incident with at least three 5⁺-faces by Lemma 2.4(b)(c). Therefore, $h'(v) \ge h(v) - 1 - 3 \times 1/3 - (5-t) \times 1 - 3/2 \times t = 3 - t/2 > 0$.

Suppose $d(v) \ge 9$. By Lemma 2.2, *v* is adjacent to at most two 2-vertices. Similarly, let *t* be the number of 3-faces incident with *v*.

If *v* is adjacent to two 2-vertices, then $t \leq \lfloor (2(d(v)-2))/3 \rfloor$ by Lemma 2.2 and the proof of Lemma 2.4(a). If $t \geq 1$, then *v* is incident with at least two 5⁺-faces by Lemma 2.4(d). Hence, $h'(v) \geq h(v) - 2 - 2 \times 1/3 - 3/2 \times t - (d(v) - 2 - t) \times 1 = d(v) - t/2 - 20/3 \geq 0$ by R1 and R2. If t = 0, then $h'(v) \geq h(v) - 2 - d(v) \times 1 = d(v) - 8 > 0$ by R1 and R2.

If v is adjacent to at most one 2-vertex, then $t \leq \lfloor (2d(v))/3 \rfloor$ by Lemma 2.4(a). If $t \geq 1$, then v is incident with at least two 5⁺-faces by Lemma 2.4(d). Hence, $h'(v) \geq h(v) - 1 - 2 \times 1/3 - 3/2 \times t - (d(v) - 2 - t) \times 1 = d(v) - t/2 - 17/3 \geq 0$ by R1 and R2. If t = 0, then $h'(v) \geq h(v) - 1 - d(v) \times 1 = d(v) - 7 > 0$ by R1 and R2.

Hence we complete the proof of the theorem.

3. Conclusions

For any planar graph *G* with maximum degree Δ , it is known that $la(G) = \lceil \Delta/2 \rceil$, if one of the following conditions holds.

- (a) $\Delta \ge 13$;
- (b) $\Delta \ge 7$ and $g \ge 4$ or $\Delta \ge 5$ and $g \ge 5$ or $\Delta \ge 3$ and $g \ge 6$, where g is the girth of G;
- (c) $\Delta \ge 7$ and without 4- or 5-cycles;
- (d) $\Delta \ge 7$ and without 5-cycles with chords

The case when $\Delta \ge 7$ and any two cycles of length *i* and *j* ($3 \le i \le j \le 5$), respectively, are not adjacent is proved to be true in the author's another paper [4]. Combining all the above results, we conjecture that for any planar graph *G* with $\Delta \ge 5$, $la(G) = \lceil \Delta/2 \rceil$.

Acknowledgement. This work was supported by the NSFC Tianyuan Mathematics Youth Fund (No. 11226291) and the NSFC (No. 10971121).

References

- J. Akiyama, G. Exoo and F. Harary, Covering and packing in graphs. III. Cyclic and acyclic invariants, *Math. Slovaca* 30 (1980), no. 4, 405–417.
- [2] J. Akiyama, G. Exoo and F. Harary, Covering and packing in graphs. IV. Linear arboricity, *Networks* 11 (1981), no. 1, 69–72.
- [3] J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, American Elsevier Publishing Co., Inc., New York, 1976.
- [4] H. Y. Chen, X. Tan and J. L. Wu, The linear arboricity of planar graphs with maximum degree at least 7, Utilitas Mathematica, to appear.
- [5] H. Enomoto and B. Péroche, The linear arboricity of some regular graphs, J. Graph Theory 8 (1984), no. 2, 309–324.
- [6] F. Guldan, The linear arboricity of 10-regular graphs, Math. Slovaca 36 (1986), no. 3, 225–228.
- [7] F. Harary, Covering and packing in graphs. I, Ann. New York Acad. Sci. 175 (1970), 198–205.
- [8] X. Tan, H. Chen and J. Wu, The linear arboricity of planar graphs with maximum degree at least five, Bull. Malays. Math. Sci. Soc. (2) 34 (2011), no. 3, 541–552.
- [9] J. L. Wu, Some path decompositions of Halin graphs, *Shandong Kuangye Xueyuan Xuebao* 17 (1998), no. 1, 92–96.
- [10] J.-L. Wu, On the linear arboricity of planar graphs, J. Graph Theory 31 (1999), no. 2, 129–134.
- [11] J. Wu, The linear arboricity of series-parallel graphs, Graphs Combin. 16 (2000), no. 3, 367–372.
- [12] J.-L. Wu, J.-F. Hou and G.-Z. Liu, The linear arboricity of planar graphs with no short cycles, *Theoret. Comput. Sci.* 381 (2007), no. 1–3, 230–233.
- [13] J. Wu, G. Liu and Y. Wu, The linear arboricity of composition graphs, J. Syst. Sci. Complex. 15 (2002), no. 4, 372–375.
- [14] J.-L. Wu and Y.-W. Wu, The linear arboricity of planar graphs of maximum degree seven is four, *J. Graph Theory* **58** (2008), no. 3, 210–220.

290