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Abstract. The linear arboricity la(G) of a graph G is the minimum number of linear forests
which partition the edges of G. In this paper, it is proved that for a planar graph G with
maximum degree ∆(G)≥ 7, la(G) = d(∆(G))/2e if G has no 5-cycles with chords.
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1. Introduction

In this paper, all graphs are finite, simple and undirected. For a real number x, dxe is the
least integer not less than x and bxc is the largest integer not larger than x. Let G be a graph.
We use V (G) and E(G) to denote the vertex set and the edge set, respectively. If uv ∈ E(G),
then u is said to be a neighbor of v, and NG(v) is the set of neighbors of v. The degree d(v)
of a vertex v is |NG(v)|, δ (G) is the minimum degree of G and ∆(G) is the maximum degree
of G. A k-, k+- or k−- vertex is a vertex of degree k, at least k, or at most k, respectively. A
k- cycle is a cycle of length k. Two cycles are said to be adjacent if they are incident with a
common edge. All undefined notations and definitions follow that of Bondy and Murty [3].

A linear f orest is a graph in which each component is a path. A map ϕ from E(G) to
{1,2, . . . , t} is called a t-linear coloring if the induced subgraph of edges having the same
color α is a linear forest for 1 ≤ α ≤ t. The linear arboricity la(G) of a graph G defined
by Harary [7] is the minimum number t for which G has a t-linear coloring.

Akiyama, Exoo and Harary [1] conjectured that la(G) = d(∆(G)+1)/2e for any regular
graph G. The conjecture is equivalent to the following conjecture.

Conjecture 1.1. For any graph G, d(∆(G))/2e ≤ la(G)≤ d(∆(G)+1)/2e.

The linear arboricity has been determined for complete bipartite graphs [1], complete
regular multipartite graphs [13], Halin graphs [9], series-parallel graphs [11] and regular
graphs with ∆ = 3,4 [1, 2], 5,6,8 [5], and 10 [6]. For planar graphs, more results are
obtained. Conjecture 1.1 has already been proved to be true for all planar graphs, see [10]
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and [14]. Wu [10] proved that for a planar graph G with girth g and maximum degree
∆, la(G) = d(∆(G))/2e if ∆(G) ≥ 13, or ∆(G) ≥ 7 and g ≥ 4, or ∆(G) ≥ 5 and g ≥ 5,
or ∆(G) ≥ 3 and g ≥ 6. In [12], it is proved that if G is a planar graph with ∆(G) ≥ 7
and without i-cycles for some i ∈ {4,5}, then la(G) = d(∆(G))/2e. Tan [8] proved that
for a planar graph G with ∆(G) ≥ 5 and any 4-cycle is not adjacent to an i-cycle for any
i ∈ {3,4,5} or G has no intersecting 4-cycles and intersecting i-cycles for some i ∈ {3,6},
la(G) = d(∆(G))/2e. In this paper, we’ll prove that for a planar graph G with maximum
degree ∆(G)≥ 7, la(G) = d(∆(G))/2e if G has no 5-cycles with chords.

2. Main results and their proofs

In the section, we always assume that a planar graph G has been embedded in the plane. Let
G be a planar graph and F(G) be the face set of G. For f ∈ F(G), the degree of f , denoted
by d( f ), is the number of edges incident with it, where each cut-edge is counted twice. A
k-, k+- or k−- face is a face of degree k, at least k, or at most k, respectively.

Given a t-linear coloring ϕ and a vertex v of G, we denote by Ci
ϕ(v) the set of colors

appears i times at v, where i = 0,1,2. Then |C0
ϕ(v)|+ |C1

ϕ(v)|+ |C2
ϕ(v)| = t and |C1

ϕ(v)|+
2|C2

ϕ(v)|= d(v). Let x be a vertex of G, denote ϕ(x) = (ϕ(xy1), . . . ,ϕ(xyk)), where vertices
y1, . . . ,yk are distinct neighbors of x. For any two vertices u and v, let Cϕ(u,v) = C2

ϕ(u)∪
C2

ϕ(v)∪ (C1
ϕ(u)∩C1

ϕ(v)), that is , Cϕ(u,v) is the set of colors that appear at least two times
at u and v. A monochromatic path is a path of whose edges receive the same color. For two
different edges e1 and e2 of G, they are said to be in the same color component, denoted
by e1 ↔ e2 if there is a monochromatic path of G connecting them. Furthermore, if two
ends of ei are known, that is, ei = xiyi (i = 1,2), then x1y1↔ x2y2 denotes more accurately
that there is a monochromatic path from x1 to y2 passing through the edges x1y1 and x2y2
in G ( that is, y1 and x2 are internal vertices in the path). Otherwise, we use x1y1 6↔ x2y2
(or e1 6↔ e2) to denote that such monochromatic path passing through them does not exist.
Note that x1y1 ↔ x2y2 and x1y1 ↔ y2x2 are different. Let xy be an edge of G. Denote
by xy↔ (v, i) that x and v have a monochromatic path of color i between them through y.
Denote by (u, i)↔ (v, i) that u and v have a monochromatic path of color i between them.

Theorem 2.1. Let G be a planar graph with ∆(G) ≥ 7 and without 5-cycles with chords.
Then la(G) = d(∆(G))/2e.

Proof. It suffices to prove that for an integer m≥ 4, a planar graph G without 5-cycles with
chords has an m-linear coloring if ∆(G)≤ 2m. Let G = (V,E) be a minimal counterexample
to the theorem and uv be an edge of G. Then G− uv has an m-linear coloring ϕ . We have
the two fundamental properties.

Property 2.1. |Cϕ(u,v)|= m.

Proof. Suppose that |Cϕ(u,v)| < m. We may modify ϕ to an m-linear coloring of G by
setting ϕ(uv) ∈ {1,2, . . . ,m}\Cϕ(u,v), a contradiction.

Property 2.2. If there is a color i such that i ∈C1
ϕ(u)∩C1

ϕ(v), then (u, i)↔ (v, i).

Proof. Suppose (u, i) 6↔ (v, i). We may modify ϕ to an m-linear coloring of G by setting
ϕ(uv) = i, a contradiction.

First, we prove some Lemmas for G.
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Lemma 2.1. For any uv ∈ E(G), dG(u)+dG(v)≥ 2m+2.

Proof. Suppose that G has an edge uv with dG(u)+dG(v)≤ 2m+1. Then G′ = G−uv has
an m-linear coloring ϕ by the minimality of G. Since dG′(u)+dG′(v) = dG(u)+dG(v)−2≤
2m− 1, |Cϕ(u,v)| = |C2

ϕ(u)∪C2
ϕ(v)∪ (C1

ϕ(u)∩C1
ϕ(v))| < m. Let ϕ(u,v) ∈ {1,2, . . . ,m} \

Cϕ(u,v). Thus ϕ is extendable to an m-linear coloring of G, a contradiction. Hence the
Lemma holds.

By Lemma 2.1, we have
(a) δ (G)≥ 2, and
(b) any two 4−-vertices are not adjacent, and
(c) any 3-face is incident with three 5+-vertices, or at least two 6+-vertices, and
(d) any 7-vertex has no neighbors of degree 2.

Lemma 2.2. Every vertex is adjacent to at most two 2-vertices. Moreover, suppose that
a vertex v is adjacent to two 2-vertices x,y, let x′ and y′ be the other neighbors of x,y,
respectively. Then x′v,y′v 6∈ E(G).

The proof of Lemma 2.2 can be found in [4].
A k-face with consecutive vertices v1,v2, . . . ,vk along its boundary in some direction will

be said to be a (d(v1),d(v2), . . . ,d(vk))-face.

Lemma 2.3. G has no (4,6,6)-face.

Proof. Suppose that G has a (4,6,6)-face f = u1u2u3 with d(u1) = 4, d(u2) = d(u3) = 6.
By the minimality of G, G′ = G−u1u2 has an m-linear coloring ϕ .

Suppose C2
ϕ(u1) = /0. Without loss of generality, let ϕ(u1) = (1,2,3) and ϕ(u1u3) = 3.

Then, by properties 1 and 2, ϕ(u2) = (1,2,3,4,4) and (u1, i)↔ (u2, i) for i = 1,2,3. If
1 6∈C2

ϕ(u3), then recolor u1u3 with 1, and color u1u2 with 3. Thus G is m-linear colorable,
a contradiction. So we can assume 1 ∈ C2

ϕ(u3). Similarly, 2 ∈ C2
ϕ(u3). Since ϕ(u1u3) =

3, (u1,3)↔ (u2,3), we have 3 ∈ C2
ϕ(u3). That is, ϕ(u3) = (1,1,2,2,3,3). Then we can

recolor u1u3 with 4, and color u1u2 with 3. So ϕ is extendable to an m-linear coloring of G,
a contradiction.

Suppose C2
ϕ(u1) 6= /0. Without loss of generality, let ϕ(u1) = (1,1,2). Then ϕ(u2) =

(2,3,3,4,4) and (u1,2)↔ (u2,2) by properties 1 and 2. We consider two cases.

Case 1: ϕ(u1u3) = 2. Then 2 ∈C2
ϕ(u3). If 3 6∈C2

ϕ(u3), then recolor u1u3 with 3, and color
u1u2 with 2. So 3 ∈C2

ϕ(u3). Similarly, 4 ∈C2
ϕ(u3). Thus ϕ(u3) = (2,2,3,3,4,4). Then we

can recolor u2u3 with 1, and color u1u2 with ϕ(u2u3). So ϕ is extendable to an m-linear
coloring of G, a contradiction.

Case 2: ϕ(u1u3) = 1. If 2 6∈C2
ϕ(u3), then recolor u1u3 with 2, and color u1u2 with 1. So

2 ∈C2
ϕ(u3). Similarly, 3 ∈C2

ϕ(u3), 4 ∈C2
ϕ(u3). But it is impossible since d(u3) = 6.

Hence G has no (4,6,6)-face.

Lemma 2.4. Suppose that a planar graph G contains no 5-cycles with chords and δ (G)≥ 2.
Then all of the following results hold.

(a) Any vertex v is incident with at most b(2d(v))/3c 3-faces.
(b) A 3-face is adjacent to a 4-face if and only if the two faces are incident with a

common 2-vertex.
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(c) If a face is adjacent to two nonadjacent 3-faces, then the face must be 5+-face.
(d) If a d(≥ 7)-vertex v is incident with a 3-face, then v is incident with at least two

5+-faces.

Proof. Since if there are three 3-faces f1, f2, f3 such that they are incident with a common
vertex and f2 is adjacent to f1 and f3, then vertices incident with them form a 5-cycle with
chords, so (a) holds. If a 3-face f is adjacent to a 4-face, then all three vertices incident
with the 3-face f must be incident with the 4-face, too. So there is a vertex just incident
with these two faces and it follows that the vertex is a 2-vertex. Hence (b) holds. For (c),
suppose that a face f is adjacent to two nonadjacent 3-faces. As in part (a), f is not a 3-face,
for otherwise a 5-cycle with chords exists. By (b), f is not a 4-face. So f must be a 5+-face
and (c) holds.

For (d), suppose that a d(≥ 7)-vertex v is incident with a 3-face. If v is a cut vertex, then
(d) is obvious. So assume that v is not a cut vertex. Then all the faces incident with v are
distinct. Let f1, f2, . . . , fd be faces incident with v clockwise, and let v1,v2, . . . ,vd be vertices
adjacent to v clockwise, let vi be incident with fi, i = 1,2, . . . ,d and let vd be incident with
fd and f1. Assume that f1 is the 3-face. Then by (a), f2 or fd is not a 3-face. Without loss
of generality, assume that fd is not a 3-face.

If fd is a 4-face, then d(vd) = 2 by (b). Thus f2 must be a 3-face or a 5+-face. If f2 is a
3-face, then f3 or f4 must be a 5+-face. So one of f2, f3, f4 is a 5+-face. Similarly, if fd−1
is a 4-face, then d(vd−1) = 2. Thus one of fd−1 or fd−2, giving two 5+-faces since d ≥ 7.

Suppose that fd is a 5+-face. If f2 is a 3-face, then f3 must be a 4-face or 5+-face. If f3
is a 4-face, then f4 or f5 must be a 5+-face. So one of the faces in { f3, f4, f5} is a 5+-face.
If f2 is a 4-face, then f3 or f4 must be a 5+-face. Thus we prove (d).

By Euler’s formula |V |− |E|+ |F |= 2, we have

∑
v∈V

(2d(v)−6)+ ∑
f∈F

(d( f )−6) =−6(|V |− |E|+ |F |) =−12 < 0.

We define h to be the initial charge. Let h(v) = 2d(v)−6 for each v ∈V (G) and h( f ) =
d( f )− 6 for each f ∈ F(G). In the following, we will reassign a new charge denoted by
h′(x) to each x∈V (G)∪F(G) according to the discharging rules. Since our rules only move
charges around, and do not affect the sum, we have

(2.1) ∑
x∈V (G)∪F(G)

h′(x) = ∑
x∈V (G)∪F(G)

h(x) =−12

In the following, we will show that h′(x)≥ 0 for each x ∈V (G)∪F(G), a contradiction
to (2.1), completing the proof.

Now, let us introduce the needed discharging rules as follows:
R1. Each 8+-vertex sends 1 to each of its adjacent 2-vertices.
R2. Each 7+-vertex sends 3/2 to each of its incident 3-faces;

1 to each of its incident 4-faces;
1/3 to each of its incident 5-faces.

R3. Each 6-vertex sends 1 to each of its incident faces.
R4. Each 5-vertex sends 1 to each of its incident 3-faces;

1/2 to each of its incident 4-faces;
1/4 to each of its incident 5-faces.

R5. Each 4-vertex sends 1/2 to each of its incident faces.
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Note that our discharging rules are just designed such that charge only flows from vertices
to faces apart from the 8+-vertices giving charge to 2-vertices.

Let f be a face of G. Throughout we will use Lemma 2.1 given the vertices around
f are necessarily adjacent to their neighbors around f . If d( f ) ≥ 6, then h′( f ) ≥ h( f ) =
d( f )−6≥ 0.

Suppose d( f ) = 5. Then f is incident with at most two 3−-vertices by Lemma 2.1. If f
is incident with two 3−-vertices, then the other three vertices must be 7+-vertices. It follows
that h′( f )≥ h( f )+1/3×3 = 0 by R2. If f is incident with one 3−-vertex, then f is incident
with at least two 7+-vertices. It follows that h′( f ) ≥ h( f )+ 1/3× 2 + 1/4× 2 = 1/6 > 0
by R2, R3, R4 and R5. If f is not incident with any 3−-vertices, then f receives at least 1/4
from each of its incident vertices by R2, R3, R4 and R5. Hence h′( f ) ≥ h( f )+ 1/4×5 =
1/4 > 0.

Suppose d( f ) = 4. Then f is incident with at most two 3−-vertices by Lemma 2.1. If f
is incident with at least one 3−-vertex, then f is incident with at least two 7+-vertices, and
it follows that h′( f ) ≥ h( f )+ 1× 2 = 0 by R2. If f is not incident with any 3−-vertices,
then f receives at least 1/2 from each of its incident vertices by R2, R3, R4 and R5. Hence
h′( f )≥ h( f )+1/2×4 = 0.

Suppose d( f ) = 3. Then f is incident with at most one 3−-vertex by Lemma 2.1. If f is
incident with one 3−-vertex, then the other two vertices must be 7+-vertices. It follows that
h′( f )≥ h( f )+3/2×2 = 0 by R2. Otherwise, f is incident with at most one 4-vertex. If f
is incident with one 4-vertex, then f is incident with at least one 7+-vertex by Lemma 2.3
and the other vertex must be a 6+-vertex. Hence h′( f )≥ h( f )+ 1/2 + 3/2 + 1 = 0 by R5,
R2 and R3. If f is not incident with any 4-vertices, then f receives at least 1 from each of
its incident vertices by R2, R3 and R4. Hence h′( f )≥ h( f )+1×3 = 0.

Let v be a vertex of G. If d(v) = 2, then h′(v) = h(v)+ 2 = 0 by R1. If d(v) = 3, then
h′(v) = h(v) = 0. If d(v) = 4, then h′(v)≥ h(v)−1/2×4 = 0 by R5. If d(v) = 5, then by
Lemma 2.4(a), v is incident with at most three 3-faces, so h′(v)≥ h(v)−1×3−1/2×2 = 0
by R4. If d(v) = 6, then h′(v)≥ h(v)−1×6 = 0 by R3.

Suppose d(v) = 7. By Lemma 2.4(a), v is incident with at most four 3-faces. If v is
incident with four 3-faces, then the other three faces incident with v must be 5+-faces by
Lemma 2.1(d) and Lemma 2.4(b). So h′(v) ≥ h(v)− 3/2× 4− 1/3× 3 = 1 by R2. If v is
incident with three 3-faces, then v is incident with at most one 4-face by Lemma 2.1(d) and
Lemma 2.4(b). It follows that h′(v) ≥ h(v)−3/2×3−1−1/3×3 = 3/2. If v is incident
with at most two 3-faces, then h′(v)≥ h(v)−3/2×2−1×5 = 0.

Suppose d(v) = 8. By Lemma 2.2, v is adjacent to at most two 2-vertices. Let t be the
number of 3-faces incident with v.

If v is adjacent to two 2-vertices, then t ≤ 4 by Lemma 2.2 and Lemma 2.4(a). If t = 0,
then h′(v) ≥ h(v)− 2− 8× 1 = 0. So we can assume 1 ≤ t ≤ 4. If 1 ≤ t ≤ 2, then v is
incident with at least two 5+-faces by Lemma 2.4(d). So we have h′(v) ≥ h(v)− 2− 2×
1/3−(6−t)×1−3/2×t = 4/3−t/2 > 0. If 3≤ t ≤ 4, then v is incident with at least three
5+-faces by Lemma 2.2 and Lemma 2.4(b). It follows that h′(v)≥ h(v)−2−3×1/3−(5−
t)×1−3/2× t = 2− t/2≥ 0.

Suppose v is adjacent to at most one 2-vertex.
Clearly, t ≤ 5 by Lemma 2.4(a). If t ≤ 2, then h′(v)≥ h(v)−1− (8− t)×1−3/2× t =

1− t/2 ≥ 0. If t ≥ 3, then v is incident with at least three 5+-faces by Lemma 2.4(b)(c).
Therefore, h′(v)≥ h(v)−1−3×1/3− (5− t)×1−3/2× t = 3− t/2 > 0.
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Suppose d(v)≥ 9. By Lemma 2.2, v is adjacent to at most two 2-vertices. Similarly, let
t be the number of 3-faces incident with v.

If v is adjacent to two 2-vertices, then t ≤ b(2(d(v)−2))/3c by Lemma 2.2 and the proof
of Lemma 2.4(a). If t ≥ 1, then v is incident with at least two 5+-faces by Lemma 2.4(d).
Hence, h′(v) ≥ h(v)− 2− 2× 1/3− 3/2× t− (d(v)− 2− t)× 1 = d(v)− t/2− 20/3 ≥ 0
by R1 and R2. If t = 0, then h′(v)≥ h(v)−2−d(v)×1 = d(v)−8 > 0 by R1 and R2.

If v is adjacent to at most one 2-vertex, then t ≤ b(2d(v))/3c by Lemma 2.4(a). If
t ≥ 1, then v is incident with at least two 5+-faces by Lemma 2.4(d). Hence, h′(v) ≥
h(v)−1−2×1/3−3/2× t− (d(v)−2− t)×1 = d(v)− t/2−17/3≥ 0 by R1 and R2. If
t = 0, then h′(v)≥ h(v)−1−d(v)×1 = d(v)−7 > 0 by R1 and R2.

Hence we complete the proof of the theorem.

3. Conclusions

For any planar graph G with maximum degree ∆, it is known that la(G) = d∆/2e, if one of
the following conditions holds.

(a) ∆≥ 13;
(b) ∆≥ 7 and g≥ 4 or ∆≥ 5 and g≥ 5 or ∆≥ 3 and g≥ 6, where g is the girth of G;
(c) ∆≥ 7 and without 4- or 5-cycles;
(d) ∆≥ 7 and without 5-cycles with chords

The case when ∆≥ 7 and any two cycles of length i and j (3≤ i≤ j ≤ 5), respectively, are
not adjacent is proved to be true in the author’s another paper [4]. Combining all the above
results, we conjecture that for any planar graph G with ∆≥ 5, la(G) = d∆/2e.
Acknowledgement. This work was supported by the NSFC Tianyuan Mathematics Youth
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