The Linear Arboricity of Planar Graphs without 5-Cycles with Chords

${ }^{1}$ Hong-Yu Chen, ${ }^{2}$ Xiang Tan and ${ }^{3}$ Jian-Liang Wu
${ }^{1}$ School of Sciences, Shanghai Institute of Technology, Shanghai, 201418, China
${ }^{2}$ School of Statistics and Mathematics, Shandong University of Finance, Jinan, Shandong, 250014, China
${ }^{3}$ School of Mathematics, Shandong University, Jinan, Shandong, 250100, China
${ }^{1}$ hongyuchen86@126.com, ${ }^{2}$ xtandw@126.com, ${ }^{3}$ jlwu @ sdu.edu.cn

Abstract

The linear arboricity $l a(G)$ of a graph G is the minimum number of linear forests which partition the edges of G. In this paper, it is proved that for a planar graph G with maximum degree $\Delta(G) \geq 7, \operatorname{la}(G)=\lceil(\Delta(G)) / 2\rceil$ if G has no 5 -cycles with chords.

2010 Mathematics Subject Classification: 05C15
Keywords and phrases: Planar graph, linear arboricity, cycle.

1. Introduction

In this paper, all graphs are finite, simple and undirected. For a real number $x,\lceil x\rceil$ is the least integer not less than x and $\lfloor x\rfloor$ is the largest integer not larger than x. Let G be a graph. We use $V(G)$ and $E(G)$ to denote the vertex set and the edge set, respectively. If $u v \in E(G)$, then u is said to be a neighbor of v, and $N_{G}(v)$ is the set of neighbors of v. The degree $d(v)$ of a vertex v is $\left|N_{G}(v)\right|, \delta(G)$ is the minimum degree of G and $\Delta(G)$ is the maximum degree of G. A k-, k^{+}- or k^{-}- vertex is a vertex of degree k, at least k, or at most k, respectively. A k - cycle is a cycle of length k. Two cycles are said to be adjacent if they are incident with a common edge. All undefined notations and definitions follow that of Bondy and Murty [3].

A linear forest is a graph in which each component is a path. A map φ from $E(G)$ to $\{1,2, \ldots, t\}$ is called a t-linear coloring if the induced subgraph of edges having the same color α is a linear forest for $1 \leq \alpha \leq t$. The linear arboricity la(G) of a graph G defined by Harary [7] is the minimum number t for which G has a t-linear coloring.

Akiyama, Exoo and Harary [1] conjectured that $\operatorname{la}(G)=\lceil(\Delta(G)+1) / 2\rceil$ for any regular graph G. The conjecture is equivalent to the following conjecture.

Conjecture 1.1. For any graph $G,\lceil(\Delta(G)) / 2\rceil \leq l a(G) \leq\lceil(\Delta(G)+1) / 2\rceil$.
The linear arboricity has been determined for complete bipartite graphs [1], complete regular multipartite graphs [13], Halin graphs [9], series-parallel graphs [11] and regular graphs with $\Delta=3,4$ [1, 2], 5,6,8 [5], and 10 [6]. For planar graphs, more results are obtained. Conjecture 1.1 has already been proved to be true for all planar graphs, see [10]
and [14]. Wu [10] proved that for a planar graph G with girth g and maximum degree Δ, $l a(G)=\lceil(\Delta(G)) / 2\rceil$ if $\Delta(G) \geq 13$, or $\Delta(G) \geq 7$ and $g \geq 4$, or $\Delta(G) \geq 5$ and $g \geq 5$, or $\Delta(G) \geq 3$ and $g \geq 6$. In [12], it is proved that if G is a planar graph with $\Delta(G) \geq 7$ and without i-cycles for some $i \in\{4,5\}$, then $\operatorname{la}(G)=\lceil(\Delta(G)) / 2\rceil$. Tan [8] proved that for a planar graph G with $\Delta(G) \geq 5$ and any 4-cycle is not adjacent to an i-cycle for any $i \in\{3,4,5\}$ or G has no intersecting 4 -cycles and intersecting i-cycles for some $i \in\{3,6\}$, $l a(G)=\lceil(\Delta(G)) / 2\rceil$. In this paper, we'll prove that for a planar graph G with maximum degree $\Delta(G) \geq 7, l a(G)=\lceil(\Delta(G)) / 2\rceil$ if G has no 5 -cycles with chords.

2. Main results and their proofs

In the section, we always assume that a planar graph G has been embedded in the plane. Let G be a planar graph and $F(G)$ be the face set of G. For $f \in F(G)$, the degree of f, denoted by $d(f)$, is the number of edges incident with it, where each cut-edge is counted twice. A $k-, k^{+}$- or k^{-}- face is a face of degree k, at least k, or at most k, respectively.

Given a t-linear coloring φ and a vertex v of G, we denote by $C_{\varphi}^{i}(v)$ the set of colors appears i times at v, where $i=0,1,2$. Then $\left|C_{\varphi}^{0}(v)\right|+\left|C_{\varphi}^{1}(v)\right|+\left|C_{\varphi}^{2}(v)\right|=t$ and $\left|C_{\varphi}^{1}(v)\right|+$ $2\left|C_{\varphi}^{2}(v)\right|=d(v)$. Let x be a vertex of G, denote $\varphi(x)=\left(\varphi\left(x y_{1}\right), \ldots, \varphi\left(x y_{k}\right)\right)$, where vertices y_{1}, \ldots, y_{k} are distinct neighbors of x. For any two vertices u and v, let $C_{\varphi}(u, v)=C_{\varphi}^{2}(u) \cup$ $C_{\varphi}^{2}(v) \cup\left(C_{\varphi}^{1}(u) \cap C_{\varphi}^{1}(v)\right)$, that is, $C_{\varphi}(u, v)$ is the set of colors that appear at least two times at u and v. A monochromatic path is a path of whose edges receive the same color. For two different edges e_{1} and e_{2} of G, they are said to be in the same color component, denoted by $e_{1} \leftrightarrow e_{2}$ if there is a monochromatic path of G connecting them. Furthermore, if two ends of e_{i} are known, that is, $e_{i}=x_{i} y_{i}(i=1,2)$, then $x_{1} y_{1} \leftrightarrow x_{2} y_{2}$ denotes more accurately that there is a monochromatic path from x_{1} to y_{2} passing through the edges $x_{1} y_{1}$ and $x_{2} y_{2}$ in G (that is, y_{1} and x_{2} are internal vertices in the path). Otherwise, we use $x_{1} y_{1} \nleftarrow x_{2} y_{2}$ (or $e_{1} \not \leftrightarrow e_{2}$) to denote that such monochromatic path passing through them does not exist. Note that $x_{1} y_{1} \leftrightarrow x_{2} y_{2}$ and $x_{1} y_{1} \leftrightarrow y_{2} x_{2}$ are different. Let $x y$ be an edge of G. Denote by $x y \leftrightarrow(v, i)$ that x and v have a monochromatic path of color i between them through y. Denote by $(u, i) \leftrightarrow(v, i)$ that u and v have a monochromatic path of color i between them.

Theorem 2.1. Let G be a planar graph with $\Delta(G) \geq 7$ and without 5 -cycles with chords. Then la $(G)=\lceil(\Delta(G)) / 2\rceil$.
Proof. It suffices to prove that for an integer $m \geq 4$, a planar graph G without 5 -cycles with chords has an m-linear coloring if $\Delta(G) \leq 2 m$. Let $G=(V, E)$ be a minimal counterexample to the theorem and $u v$ be an edge of G. Then $G-u v$ has an m-linear coloring φ. We have the two fundamental properties.

Property 2.1. $\left|C_{\varphi}(u, v)\right|=m$.
Proof. Suppose that $\left|C_{\varphi}(u, v)\right|<m$. We may modify φ to an m-linear coloring of G by setting $\varphi(u v) \in\{1,2, \ldots, m\} \backslash C_{\varphi}(u, v)$, a contradiction.
Property 2.2. If there is a color i such that $i \in C_{\varphi}^{1}(u) \cap C_{\varphi}^{1}(v)$, then $(u, i) \leftrightarrow(v, i)$.
Proof. Suppose $(u, i) \nleftarrow(v, i)$. We may modify φ to an m-linear coloring of G by setting $\varphi(u v)=i$, a contradiction.

First, we prove some Lemmas for G.

Lemma 2.1. For any $u v \in E(G), d_{G}(u)+d_{G}(v) \geq 2 m+2$.
Proof. Suppose that G has an edge $u v$ with $d_{G}(u)+d_{G}(v) \leq 2 m+1$. Then $G^{\prime}=G-u v$ has an m-linear coloring φ by the minimality of G. Since $d_{G^{\prime}}(u)+d_{G^{\prime}}(v)=d_{G}(u)+d_{G}(v)-2 \leq$ $2 m-1,\left|C_{\varphi}(u, v)\right|=\left|C_{\varphi}^{2}(u) \cup C_{\varphi}^{2}(v) \cup\left(C_{\varphi}^{1}(u) \cap C_{\varphi}^{1}(v)\right)\right|<m$. Let $\varphi(u, v) \in\{1,2, \ldots, m\} \backslash$ $C_{\varphi}(u, v)$. Thus φ is extendable to an m-linear coloring of G, a contradiction. Hence the Lemma holds.

By Lemma 2.1, we have
(a) $\delta(G) \geq 2$, and
(b) any two 4^{-}-vertices are not adjacent, and
(c) any 3 -face is incident with three 5^{+}-vertices, or at least two 6^{+}-vertices, and
(d) any 7 -vertex has no neighbors of degree 2 .

Lemma 2.2. Every vertex is adjacent to at most two 2-vertices. Moreover, suppose that a vertex v is adjacent to two 2-vertices x, y, let x^{\prime} and y^{\prime} be the other neighbors of x, y, respectively. Then $x^{\prime} v, y^{\prime} v \notin E(G)$.

The proof of Lemma 2.2 can be found in [4].
A k-face with consecutive vertices $v_{1}, v_{2}, \ldots, v_{k}$ along its boundary in some direction will be said to be a $\left(d\left(v_{1}\right), d\left(v_{2}\right), \ldots, d\left(v_{k}\right)\right)$-face.
Lemma 2.3. G has no $(4,6,6)$-face.
Proof. Suppose that G has a $(4,6,6)$-face $f=u_{1} u_{2} u_{3}$ with $d\left(u_{1}\right)=4, d\left(u_{2}\right)=d\left(u_{3}\right)=6$. By the minimality of $G, G^{\prime}=G-u_{1} u_{2}$ has an m-linear coloring φ.

Suppose $C_{\varphi}^{2}\left(u_{1}\right)=\emptyset$. Without loss of generality, let $\varphi\left(u_{1}\right)=(1,2,3)$ and $\varphi\left(u_{1} u_{3}\right)=3$. Then, by properties 1 and $2, \varphi\left(u_{2}\right)=(1,2,3,4,4)$ and $\left(u_{1}, i\right) \leftrightarrow\left(u_{2}, i\right)$ for $i=1,2,3$. If $1 \notin C_{\varphi}^{2}\left(u_{3}\right)$, then recolor $u_{1} u_{3}$ with 1 , and color $u_{1} u_{2}$ with 3 . Thus G is m-linear colorable, a contradiction. So we can assume $1 \in C_{\varphi}^{2}\left(u_{3}\right)$. Similarly, $2 \in C_{\varphi}^{2}\left(u_{3}\right)$. Since $\varphi\left(u_{1} u_{3}\right)=$ $3,\left(u_{1}, 3\right) \leftrightarrow\left(u_{2}, 3\right)$, we have $3 \in C_{\varphi}^{2}\left(u_{3}\right)$. That is, $\varphi\left(u_{3}\right)=(1,1,2,2,3,3)$. Then we can recolor $u_{1} u_{3}$ with 4 , and color $u_{1} u_{2}$ with 3 . So φ is extendable to an m-linear coloring of G, a contradiction.

Suppose $C_{\varphi}^{2}\left(u_{1}\right) \neq \emptyset$. Without loss of generality, let $\varphi\left(u_{1}\right)=(1,1,2)$. Then $\varphi\left(u_{2}\right)=$ $(2,3,3,4,4)$ and $\left(u_{1}, 2\right) \leftrightarrow\left(u_{2}, 2\right)$ by properties 1 and 2 . We consider two cases.
Case 1: $\varphi\left(u_{1} u_{3}\right)=2$. Then $2 \in C_{\varphi}^{2}\left(u_{3}\right)$. If $3 \notin C_{\varphi}^{2}\left(u_{3}\right)$, then recolor $u_{1} u_{3}$ with 3 , and color $u_{1} u_{2}$ with 2 . So $3 \in C_{\varphi}^{2}\left(u_{3}\right)$. Similarly, $4 \in C_{\varphi}^{2}\left(u_{3}\right)$. Thus $\varphi\left(u_{3}\right)=(2,2,3,3,4,4)$. Then we can recolor $u_{2} u_{3}$ with 1 , and color $u_{1} u_{2}$ with $\varphi\left(u_{2} u_{3}\right)$. So φ is extendable to an m-linear coloring of G, a contradiction.
Case 2: $\varphi\left(u_{1} u_{3}\right)=1$. If $2 \notin C_{\varphi}^{2}\left(u_{3}\right)$, then recolor $u_{1} u_{3}$ with 2 , and color $u_{1} u_{2}$ with 1 . So $2 \in C_{\varphi}^{2}\left(u_{3}\right)$. Similarly, $3 \in C_{\varphi}^{2}\left(u_{3}\right), 4 \in C_{\varphi}^{2}\left(u_{3}\right)$. But it is impossible since $d\left(u_{3}\right)=6$.

Hence G has no $(4,6,6)$-face.
Lemma 2.4. Suppose that a planar graph G contains no 5-cycles with chords and $\delta(G) \geq 2$. Then all of the following results hold.
(a) Any vertex v is incident with at most $\lfloor(2 d(v)) / 3\rfloor 3$-faces.
(b) A 3-face is adjacent to a 4-face if and only if the two faces are incident with a common 2-vertex.
(c) If a face is adjacent to two nonadjacent 3-faces, then the face must be 5^{+}-face.
(d) If a $d(\geq 7)$-vertex v is incident with a 3 -face, then v is incident with at least two 5^{+}-faces.

Proof. Since if there are three 3 -faces f_{1}, f_{2}, f_{3} such that they are incident with a common vertex and f_{2} is adjacent to f_{1} and f_{3}, then vertices incident with them form a 5-cycle with chords, so (a) holds. If a 3 -face f is adjacent to a 4 -face, then all three vertices incident with the 3 -face f must be incident with the 4 -face, too. So there is a vertex just incident with these two faces and it follows that the vertex is a 2-vertex. Hence (b) holds. For (c), suppose that a face f is adjacent to two nonadjacent 3 -faces. As in part (a), f is not a 3-face, for otherwise a 5 -cycle with chords exists. By (b), f is not a 4 -face. So f must be a 5^{+}-face and (c) holds.

For (d), suppose that a $d(\geq 7)$-vertex v is incident with a 3 -face. If v is a cut vertex, then (d) is obvious. So assume that v is not a cut vertex. Then all the faces incident with v are distinct. Let $f_{1}, f_{2}, \ldots, f_{d}$ be faces incident with v clockwise, and let $v_{1}, v_{2}, \ldots, v_{d}$ be vertices adjacent to v clockwise, let v_{i} be incident with $f_{i}, i=1,2, \ldots, d$ and let v_{d} be incident with f_{d} and f_{1}. Assume that f_{1} is the 3 -face. Then by (a), f_{2} or f_{d} is not a 3 -face. Without loss of generality, assume that f_{d} is not a 3-face.

If f_{d} is a 4 -face, then $d\left(v_{d}\right)=2$ by (b). Thus f_{2} must be a 3 -face or a 5^{+}-face. If f_{2} is a 3 -face, then f_{3} or f_{4} must be a 5^{+}-face. So one of f_{2}, f_{3}, f_{4} is a 5^{+}-face. Similarly, if f_{d-1} is a 4 -face, then $d\left(v_{d-1}\right)=2$. Thus one of f_{d-1} or f_{d-2}, giving two 5^{+}-faces since $d \geq 7$.

Suppose that f_{d} is a 5^{+}-face. If f_{2} is a 3 -face, then f_{3} must be a 4 -face or 5^{+}-face. If f_{3} is a 4 -face, then f_{4} or f_{5} must be a 5^{+}-face. So one of the faces in $\left\{f_{3}, f_{4}, f_{5}\right\}$ is a 5^{+}-face. If f_{2} is a 4 -face, then f_{3} or f_{4} must be a 5^{+}-face. Thus we prove (d).

By Euler's formula $|V|-|E|+|F|=2$, we have

$$
\sum_{v \in V}(2 d(v)-6)+\sum_{f \in F}(d(f)-6)=-6(|V|-|E|+|F|)=-12<0 .
$$

We define h to be the initial charge. Let $h(v)=2 d(v)-6$ for each $v \in V(G)$ and $h(f)=$ $d(f)-6$ for each $f \in F(G)$. In the following, we will reassign a new charge denoted by $h^{\prime}(x)$ to each $x \in V(G) \cup F(G)$ according to the discharging rules. Since our rules only move charges around, and do not affect the sum, we have

$$
\begin{equation*}
\sum_{x \in V(G) \cup F(G)} h^{\prime}(x)=\sum_{x \in V(G) \cup F(G)} h(x)=-12 \tag{2.1}
\end{equation*}
$$

In the following, we will show that $h^{\prime}(x) \geq 0$ for each $x \in V(G) \cup F(G)$, a contradiction to (2.1), completing the proof.

Now, let us introduce the needed discharging rules as follows:
R1. Each 8^{+}-vertex sends 1 to each of its adjacent 2 -vertices.
R2. Each 7^{+}-vertex sends $3 / 2$ to each of its incident 3 -faces;
1 to each of its incident 4 -faces;
$1 / 3$ to each of its incident 5 -faces.
R3. Each 6-vertex sends 1 to each of its incident faces.
R4. Each 5-vertex sends 1 to each of its incident 3-faces;
$1 / 2$ to each of its incident 4 -faces;
$1 / 4$ to each of its incident 5 -faces.
R5. Each 4-vertex sends $1 / 2$ to each of its incident faces.

Note that our discharging rules are just designed such that charge only flows from vertices to faces apart from the 8^{+}-vertices giving charge to 2 -vertices.

Let f be a face of G. Throughout we will use Lemma 2.1 given the vertices around f are necessarily adjacent to their neighbors around f. If $d(f) \geq 6$, then $h^{\prime}(f) \geq h(f)=$ $d(f)-6 \geq 0$.

Suppose $d(f)=5$. Then f is incident with at most two 3^{-}-vertices by Lemma 2.1. If f is incident with two 3^{-}-vertices, then the other three vertices must be 7^{+}-vertices. It follows that $h^{\prime}(f) \geq h(f)+1 / 3 \times 3=0$ by R2. If f is incident with one 3^{-}-vertex, then f is incident with at least two 7^{+}-vertices. It follows that $h^{\prime}(f) \geq h(f)+1 / 3 \times 2+1 / 4 \times 2=1 / 6>0$ by R2, R3, R4 and R5. If f is not incident with any 3^{-}-vertices, then f receives at least $1 / 4$ from each of its incident vertices by R2, R3, R4 and R5. Hence $h^{\prime}(f) \geq h(f)+1 / 4 \times 5=$ $1 / 4>0$.

Suppose $d(f)=4$. Then f is incident with at most two 3^{-}-vertices by Lemma 2.1. If f is incident with at least one 3^{-}-vertex, then f is incident with at least two 7^{+}-vertices, and it follows that $h^{\prime}(f) \geq h(f)+1 \times 2=0$ by R2. If f is not incident with any 3^{-}-vertices, then f receives at least $1 / 2$ from each of its incident vertices by R2, R3, R4 and R5. Hence $h^{\prime}(f) \geq h(f)+1 / 2 \times 4=0$.

Suppose $d(f)=3$. Then f is incident with at most one 3^{-}-vertex by Lemma 2.1. If f is incident with one 3^{-}-vertex, then the other two vertices must be 7^{+}-vertices. It follows that $h^{\prime}(f) \geq h(f)+3 / 2 \times 2=0$ by R2. Otherwise, f is incident with at most one 4 -vertex. If f is incident with one 4 -vertex, then f is incident with at least one 7^{+}-vertex by Lemma 2.3 and the other vertex must be a 6^{+}-vertex. Hence $h^{\prime}(f) \geq h(f)+1 / 2+3 / 2+1=0$ by R5, R 2 and R 3 . If f is not incident with any 4 -vertices, then f receives at least 1 from each of its incident vertices by R2, R3 and R4. Hence $h^{\prime}(f) \geq h(f)+1 \times 3=0$.

Let v be a vertex of G. If $d(v)=2$, then $h^{\prime}(v)=h(v)+2=0$ by R1. If $d(v)=3$, then $h^{\prime}(v)=h(v)=0$. If $d(v)=4$, then $h^{\prime}(v) \geq h(v)-1 / 2 \times 4=0$ by R5. If $d(v)=5$, then by Lemma 2.4(a), v is incident with at most three 3-faces, so $h^{\prime}(v) \geq h(v)-1 \times 3-1 / 2 \times 2=0$ by R4. If $d(v)=6$, then $h^{\prime}(v) \geq h(v)-1 \times 6=0$ by R3.

Suppose $d(v)=7$. By Lemma 2.4(a), v is incident with at most four 3 -faces. If v is incident with four 3 -faces, then the other three faces incident with v must be 5^{+}-faces by Lemma 2.1(d) and Lemma 2.4(b). So $h^{\prime}(v) \geq h(v)-3 / 2 \times 4-1 / 3 \times 3=1$ by R2. If v is incident with three 3 -faces, then v is incident with at most one 4 -face by Lemma 2.1(d) and Lemma 2.4(b). It follows that $h^{\prime}(v) \geq h(v)-3 / 2 \times 3-1-1 / 3 \times 3=3 / 2$. If v is incident with at most two 3-faces, then $h^{\prime}(v) \geq h(v)-3 / 2 \times 2-1 \times 5=0$.

Suppose $d(v)=8$. By Lemma 2.2, v is adjacent to at most two 2 -vertices. Let t be the number of 3 -faces incident with v.

If v is adjacent to two 2 -vertices, then $t \leq 4$ by Lemma 2.2 and Lemma 2.4(a). If $t=0$, then $h^{\prime}(v) \geq h(v)-2-8 \times 1=0$. So we can assume $1 \leq t \leq 4$. If $1 \leq t \leq 2$, then v is incident with at least two 5^{+}-faces by Lemma 2.4(d). So we have $h^{\prime}(v) \geq h(v)-2-2 \times$ $1 / 3-(6-t) \times 1-3 / 2 \times t=4 / 3-t / 2>0$. If $3 \leq t \leq 4$, then v is incident with at least three 5^{+}-faces by Lemma 2.2 and Lemma 2.4(b). It follows that $h^{\prime}(v) \geq h(v)-2-3 \times 1 / 3-(5-$ $t) \times 1-3 / 2 \times t=2-t / 2 \geq 0$.

Suppose v is adjacent to at most one 2 -vertex.
Clearly, $t \leq 5$ by Lemma 2.4(a). If $t \leq 2$, then $h^{\prime}(v) \geq h(v)-1-(8-t) \times 1-3 / 2 \times t=$ $1-t / 2 \geq 0$. If $t \geq 3$, then v is incident with at least three 5^{+}-faces by Lemma 2.4(b)(c). Therefore, $h^{\prime}(v) \geq h(v)-1-3 \times 1 / 3-(5-t) \times 1-3 / 2 \times t=3-t / 2>0$.

Suppose $d(v) \geq 9$. By Lemma 2.2, v is adjacent to at most two 2-vertices. Similarly, let t be the number of 3 -faces incident with v.

If v is adjacent to two 2 -vertices, then $t \leq\lfloor(2(d(v)-2)) / 3\rfloor$ by Lemma 2.2 and the proof of Lemma 2.4(a). If $t \geq 1$, then v is incident with at least two 5^{+}-faces by Lemma 2.4(d). Hence, $h^{\prime}(v) \geq h(v)-2-2 \times 1 / 3-3 / 2 \times t-(d(v)-2-t) \times 1=d(v)-t / 2-20 / 3 \geq 0$ by R1 and R2. If $t=0$, then $h^{\prime}(v) \geq h(v)-2-d(v) \times 1=d(v)-8>0$ by R1 and R2.

If v is adjacent to at most one 2-vertex, then $t \leq\lfloor(2 d(v)) / 3\rfloor$ by Lemma 2.4(a). If $t \geq 1$, then v is incident with at least two 5^{+}-faces by Lemma 2.4(d). Hence, $h^{\prime}(v) \geq$ $h(v)-1-2 \times 1 / 3-3 / 2 \times t-(d(v)-2-t) \times 1=d(v)-t / 2-17 / 3 \geq 0$ by R1 and R2. If $t=0$, then $h^{\prime}(v) \geq h(v)-1-d(v) \times 1=d(v)-7>0$ by R1 and R2.

Hence we complete the proof of the theorem.

3. Conclusions

For any planar graph G with maximum degree Δ, it is known that $l a(G)=\lceil\Delta / 2\rceil$, if one of the following conditions holds.
(a) $\Delta \geq 13$;
(b) $\Delta \geq 7$ and $g \geq 4$ or $\Delta \geq 5$ and $g \geq 5$ or $\Delta \geq 3$ and $g \geq 6$, where g is the girth of G;
(c) $\Delta \geq 7$ and without 4 - or 5 -cycles;
(d) $\Delta \geq 7$ and without 5-cycles with chords

The case when $\Delta \geq 7$ and any two cycles of length i and $j(3 \leq i \leq j \leq 5)$, respectively, are not adjacent is proved to be true in the author's another paper [4]. Combining all the above results, we conjecture that for any planar graph G with $\Delta \geq 5, l a(G)=\lceil\Delta / 2\rceil$.
Acknowledgement. This work was supported by the NSFC Tianyuan Mathematics Youth Fund (No. 11226291) and the NSFC (No. 10971121).

References

[1] J. Akiyama, G. Exoo and F. Harary, Covering and packing in graphs. III. Cyclic and acyclic invariants, Math. Slovaca 30 (1980), no. 4, 405-417.
[2] J. Akiyama, G. Exoo and F. Harary, Covering and packing in graphs. IV. Linear arboricity, Networks 11 (1981), no. 1, 69-72.
[3] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
[4] H. Y. Chen, X. Tan and J. L. Wu, The linear arboricity of planar graphs with maximum degree at least 7, Utilitas Mathematica, to appear.
[5] H. Enomoto and B. Péroche, The linear arboricity of some regular graphs, J. Graph Theory 8 (1984), no. 2, 309-324.
[6] F. Guldan, The linear arboricity of 10-regular graphs, Math. Slovaca 36 (1986), no. 3, 225-228.
[7] F. Harary, Covering and packing in graphs. I, Ann. New York Acad. Sci. 175 (1970), 198-205.
[8] X. Tan, H. Chen and J. Wu, The linear arboricity of planar graphs with maximum degree at least five, Bull. Malays. Math. Sci. Soc. (2) 34 (2011), no. 3, 541-552.
[9] J. L. Wu, Some path decompositions of Halin graphs, Shandong Kuangye Xueyuan Xuebao 17 (1998), no. 1, 92-96.
[10] J.-L. Wu, On the linear arboricity of planar graphs, J. Graph Theory 31 (1999), no. 2, 129-134.
[11] J. Wu, The linear arboricity of series-parallel graphs, Graphs Combin. 16 (2000), no. 3, 367-372.
[12] J.-L. Wu, J.-F. Hou and G.-Z. Liu, The linear arboricity of planar graphs with no short cycles, Theoret. Comput. Sci. 381 (2007), no. 1-3, 230-233.
[13] J. Wu, G. Liu and Y. Wu, The linear arboricity of composition graphs, J. Syst. Sci. Complex. 15 (2002), no. 4, 372-375.
[14] J.-L. Wu and Y.-W. Wu, The linear arboricity of planar graphs of maximum degree seven is four, J. Graph Theory 58 (2008), no. 3, 210-220.

