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1. Introduction

Monounary algebras are algebras with one unary operation. Monounary and partial mo-
nounary algebras play a significant role in the study of algebraic structures. Moreover,
there exists a close connection between monounary algebras and some types of automata.
The advantage of monounary algebras is their relatively simple visualization. They can be
represented by a graph, which is always planar, hence easy to draw. There are several mono-
graphs in which unary and monounary algebras are intensively studied, cf., e.g., [6,8] or an
expository paper [7].

In this paper, we deal with congruence lattices of monounary algebras. Congruences
of monounary algebras were investigated by Berman [1], Egorova and Skornyakov [2,
3], Jakubı́ková-Studenovská [4, 5]. Egorova [2] has characterized all monounary algebras
which are congruence modular and congruence distributive, in term of their graphs.

Let A be a finite set with the cardinality more than one and let Im f = { f (a) | a ∈ A}
be the image of a unary operation f on A. The least non-negative integer m such that
Im f m = Im f m+1 is called the stabilizer of f . Ratanaprasert and Denecke [9] described
all congruence relations on monounary algebra (A; f ) in the cases that stabilizers of f are
|A|−1 and |A|−2, thus we can describe their congruence lattices.

In this paper, we are interested in describing all modular and distributive lattices which
are isomorphic to the congruence lattice of monounary algebras.

2. Preliminaries

In this section we introduce several notions (cf. also [6]) due to present basic results from
[2], which will be applied below.
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Let (A; f ) be a monounary algebra. An element c ∈ A is called cyclic if f k(c) = c for
some positive integer k. The set of all cyclic elements of some connected component of
(A; f ) is called a cycle of (A; f ). A length of a cycle is its number of elements. A cycle with
one element is called a loop. If (A; f ) is connected and contains no cycle, then it is said to
be a line if for each a ∈ A there exists a unique b ∈ A with f (b) = a. A proper subalgebra
of a line is called a ray.

A connected monounary algebra (A; f ) is said to be a cycle C with a tail T, if C is a
cycle, A = C∪T , C∩T = /0 and there is c ∈ C such that f (x) ∈ T ∪{c} for every x ∈ T .
We say that T is branched if | f−1(t) \C| ≤ 2 for each t ∈ T ∪{c}, and there is a unique
b ∈ T ∪{c} with | f−1(b)\C|= 2. If b 6= c, then T is properly branched. If T is branched,
then it will be called shortly branched whenever f−1(x)\C = /0 for x ∈ f−1(b). In the case
when | f−1(t)\C| ≤ 1 for each t ∈ T ∪{c}, the tail T is non-branched.

Next, if (A; f ) consists of a ray C and an element b ∈ A\C such that f−2( f (b)) = /0, then
is said to be a shortly branched ray.

Egorova [2] has characterized all monounary algebras which are congruence modular and
congruence distributive, in term of their graphs. We will state those results in the following
two theorems.

Theorem 2.1. [2] Let (A; f ) be a monounary algebra. Then Con(A; f ) is distributive if and
only if (A; f ) belongs to one of the following types:

(a) a cycle, possibly with a non-branched tail;
(b) a line or a ray;
(c) the union of a line or a ray and a loop;
(d) the union of two cycles of relatively prime lengths;
(e) the union of a cycle and a cycle with a non-branched tail such that the lengths of

the cycles are relatively prime.

Theorem 2.2. [2] Let (A; f ) be a monounary algebra. Then Con(A; f ) is modular if and
only if (A; f ) belongs to one of the following types:

(a) a cycle, possibly with a non-branched or a shortly branched tail;
(b) a loop with a properly branched tail;
(c) a line;
(d) a ray, possibly shortly branched;
(e) the union of one or two loops with a connected component satisfying one of the

conditions (a)–(d);
(f) the union of at most three cycles of relatively prime lengths, while at most one can

have a tail, either non-branched or shortly branched;
(g) the union of at most three cycles of relatively prime lengths, and, if one of them is a

loop, it can have a properly branched tail.

3. All lattices which are isomorphic to congruence distributive monounary algebras

In this section we will describe all distributive lattices which are isomorphic to the con-
gruence lattices of monounary algebras (A; f ) of all types stated in Theorem 2.1 via the
following propositions.

Recall that the notation θ(B) stands for the least congruence on an algebra A for which
B⊆ A is contained in one congruence class.
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Let (B; f |B) be a subalgebra of a monounary algebra (A; f ). We will denote the restriction
θ |B of θ ⊆ A×A on B by θB; and if θ ⊆ B×B, we will denote the relation θ ∪{(x,x)|x ∈
A} by θ A. Then θB ∈ Con(B; f |B) for all θ ∈ Con(A; f ) and θ A ∈ Con(A; f ) for all θ ∈
Con(B; f |B).

In the sequel of this paper, we will shortly write ’a product of finitely many finite chains’
by ’a product of chains’; denote n as an n-element chain for a positive integer n; and also
denote N and Z as the chains of all natural numbers and of all integers with the dual usual
order, respectively.

Proposition 3.1. If a monounary algebra (A; f ) is of the type (a)-(b) of Theorem 2.1, then
Con(A; f ) is a product of chains P, N×P, N×2N or Z×2N .

Proof. Let (A; f ) be a cycle with |A|= n and let denote ↓ n the lattice of all factors of n or-
dered by the division of integers. For each m∈↓ n, let f [ j]m(a) = { f s(a)≡ j(mod m)}. Then
℘m= { f [ j]m(a)| j = 0,1,2, . . . ,m−1} is a partition of A which corresponds to the congruence
θm modulo m restriction to A; that is, θm = {(x,y)|x,y∈ f [ j]m(a) for j ∈ {0,1,2, . . . ,m−1}}.
Hence, the map α :↓ n −→ Con(A; f ) defined by α(m) = θm for all m ∈↓ n is clearly an
order-isomorphism; so, Con(A; f ) is dually isomorphic to ↓n which is a product of chains.

Now, let (A; f ) be a cycle C with a non-branched tail T . Then either T = { f− j(c)| j =
1, . . . ,n−1} for some n ∈ N or T = { f− j(c)| j ∈ N}. Hence, the mapping α : θ 7−→ ( j,θC)
for all θ ∈ Con(A; f ) and j ∈ N is clearly an order-isomorphism. Also, the result in the case
(a) shows that Con(C; f |C) is a product of chains. Therefore, either Con(A; f ) ∼= n×P for
some product of chains P which is also a product of chains; or Con(A; f )∼= N×P.

Let (A; f ) be a ray. We may assume that {0,1,2, . . .} with f (i) = i+1 for all i ∈ N. One
can prove similarly as above that there exists a sublattice A0 of Con(A; f ) which is dually
isomorphic to the lattice of all natural numbers ordered by the division of integers which is
dually isomorphic to the lattice of the power set of all primes; therefore, A0 is isomorphic to
the product 2N . But also for each k ∈ N, we can apply the same proof that the congruence
lattice of the ray {k,k + 1,k + 2, . . .} is a sublattice Ak of Con(A; f ) which is 2N ; hence,
Con(A; f ) is isomorphic to the product N×2N .

Since a ray {a, f (a), f 2(a), . . . , f k(a) . . .} is a subalgebra of a line for each element a in
the line, the congruence lattice of a line is isomorphic to the product Z×2N .

Remark 3.1. Let (A; f ) be a monounary algebra and assume that a,b ∈ A belong to cycles
of length p and q, respectively. Let θ ∈ Con(A; f ).

(i) If (a, f r(a)) ∈ θ for some 0 < r≤ p−1, then (a, f kr(a)) ∈ θ for each non-negative
integer k.

(ii) If r and p are relatively prime and (a, f r(a)) ∈ θ then {a, f (a), . . . , f p−1(a)} is
contained in a block of the quotient algebra A/θ .

(iii) If (p,q) = 1 and (a,b)∈ θ , then {a, f (a), . . . , f p−1(a),b, f (b), . . . , f q−1(b)} is con-
tained in a block of A/θ .

Recall that a linear sum of an ordered set P with a one-element chain 1 is an ordered set
P⊕1 which represents P with a new top element added.

Proposition 3.2. If a monounary algebra (A; f ) is of the type (d) or (e) in Theorem 2.1,
then Con(A; f ) is either P⊕1 or (N×P)⊕1 for some product of chains P.

Proof. Let (A; f ) be a monounary algebra of the type (d) or (e) in Theorem 2.1. Then A is
the disjoint union B1 ∪B2 where (Bi; f |Bi) is a cycle on the set Bi for each i ∈ {1,2} and
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one of them can be a cycle with a non-branched tail such that the lengths of the cycles are
relatively prime. By the results of Proposition 3.1, Con(Bi; f |Bi) is a product of chains for
i ∈ {1,2}. Since {B1,B2} is a partition on A, θ A

1 ∪θ A
2 is an element in Con(A; f ) for all θi ∈

Con(Bi; f |Bi) and i ∈ {1,2}; hence, Con(A; f ) is a sublattice of the power set of A×A; so,
the map β : (θ1,θ2)−→ θ A

1 ∨θ A
2 is an order embedding from Con(B1; f |B1)×Con(B2; f |B2)

into Con(A; f ).
Let θi ∈ Con(Bi; f |Bi) for i ∈ {1,2}. Then (x,y) /∈ θ A

1 ∨θ A
2 whenever x ∈ B1 and y ∈ B2;

so, θ A
1 ∨θ A

2 6= A×A; hence, A×A /∈ Imβ . Now, if θ ∈Con(A; f )\{A×A} then θ A
B1
∪θ A

B2
∈

Con(A; f ) where θ A
B1
∪ θ A

B2
⊆ θ . If (a,b) ∈ θ with a ∈ B1 and b ∈ B2, the result (iii) in

Remark 3.1 implies that A = B1 ∪B2 is a subset of a block of A/θ since the lengths of
f |B1 and f |B2 are relatively prime; so, θ = A×A, a contradiction. So, if (a,b) ∈ θ then
{a,b} ⊆ Bi for some i ∈ {1,2}; hence, (a,b) ∈ θBi ⊆ θ A

B1
∪θ A

B2
. Thus, θ ∈ Imβ . Therefore,

Con(A; f ) \ {A×A} = Imβ ∼= Con(B1; f |B1)×Con(B2; f |B2). Hence, Con(A; f ) is either
P⊕1 or (N×P)⊕1 for some product of chains P.

Proposition 3.3. If a monounary algebra (A; f ) is the union of a line or a ray and a loop,
then Con(A; f ) is Z× (2N⊕1) or N× (2N⊕1).

Proof. Let (A; f ) be the union of a line or a ray and a loop, then A = B∪{c} is a disjoint
union of a line or a ray (B; f |B) and a loop {c}. Hence, Con(B; f |B) is the product Z× 2N

or N×2N . If c is joined with an element d ∈ B, then the set {c,d, f (d), . . .} is the block of
a congruence which contains D×D ∈ Con(D; f |D) where D is the ray {d, f (d), f 2(d), . . .}.
Hence, Con(A; f ) is Z× (2N⊕1) or N× (2N⊕1).

Corollary 3.1. A distributive lattice is (up to isomorphism) a congruence lattice of some
monounary algebra if and only if it is one of the lattices from Propositions 3.1–3.3.

Proof. From the characterization of the congruence lattices of monounary algebras fulfilling
the conditions (a)-(e) of Theorem 2.1 it is easy to show that to each lattice L of the mentioned
lattices there exists an algebra (A, f ) with Con(A, f )∼= L.

4. All lattices which are isomorphic to congruence modular monounary algebras

In this section we will describe all modular lattices which are isomorphic to the congru-
ence lattices of monounary algebras (A; f ) of all types stated in Theorem 2.2. Since all
distributive lattices are modular, it is enough to deal only with the cases in the following
propositions.

Proposition 4.1. If a monounary algebra (A; f ) is a cycle with a shortly branched tail, then
Con(A; f ) is M3×P for some product of chains P.

Proof. Let C = {c, f (c), . . . f k−1(c)} for some positive integer k be the cycle of (A; f ) and
let A = {a,b}∪C with f (a) = f (b) = f k(c) = c. Then the set

M̄3 =
{

∆A,θ(a,b),θ
(

a, f k−1(c)
)

,θ
(

b, f k−1(c)
)

,θ
({

a,b, f k−1(c)
})}

forms a sublattice of Con(A; f ) which is isomorphic to M3. Note that for each θ ∈Con(C; fC)
the relation θ̄ = θ∪{(x,x)|x∈{a,b}}∈Con(A; f ). Now, let define α : M̄3×Con(C; fC)−→
Con(A; f ) and β : Con(A; f ) −→ M̄3×Con(C; fC) respectively by α(φ ,θ) = φ ∨ θ̄ for all
(φ ,θ) ∈ M̄3×Con(C; fC) and β (θ) = (θ |{a,b, f k−1(c)},θ |C) for all θ ∈ Con(A; f ). One can
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prove that α and β are embeddings which α ◦ β = idCon(A; f ) and β ◦α = idM̄3×Con(C; fC).
Therefore, Con(A; f ) ∼= M̄3×Con(C; fC). By Proposition 3.1, Con(C; fC) is a product of
chains; so, Con(A; f ) is M3×P where P is a product of chains.

A lattice L is called an M3-rectangle if
(i) there is a sublattice B of L which is either n× k, N× k, n×N or N×N for some

positive integers n and k,
(ii) for each i, j ∈ N, there exists an element ci, j ∈ L\B such that {ai, j = ai+1, j ∧ ci, j ∧

ai, j+1, ai+1, j, ci, j, ai, j+1, ai+1, j+1 = ai+1, j ∨ ci, j ∨ai, j+1} forms an M3-sublattice of
L, and

(iii) no other comparabilities in L other than in (i) and (ii).
If the lattice B of L is 2×N, then L is called a simple M3-rectangle. A lattice L is called

an M3-Flag if there are m1,m2,m3 ∈ L such that L =↓m1∪ ↑m2∪ ↑m3, ↓m1 = 2× k for
some positive integer k and ↑mi is an M3-rectangle for each i ∈ {2,3}. If ↓m1 = 2×N×2N

and ↑m2∪ ↑m3 = K×N×2N where K is a simple M3-rectangle, we will call L, an M3-Flag
power.

Proposition 4.2. If a monounary algebra (A; f ) is a loop with a properly branched tail or
a shortly branched ray, then Con(A; f ) is an M3-Flag or an M3-Flag power.

Proof. Let A = {a0,a1, . . . ,ak, . . . ,bk+1,bk+2, . . .} where f (ai) = ai−1, f (b j) = b j−1 for all
i ∈ N and j ∈ N\{1, . . . ,k + 1}, f (bk+1) = ak and f (a0) = a0. Let denote for each t ∈ N
and s > k, ↓ at = {a0, . . . ,at} and ↓ bs = {a0, . . . ,ak,bk+1, . . . ,bs}. Then A1 =↓ ak,A2 =
A1∪{ak+1,ak+2 . . .} and A3 = A1∪{bk+1,bk+2 . . .} are subalgebras of (A; f ) each of which
is a loop with a non-branched tail. By applying Proposition 3.1 or the result from [9], each
Con(Ai; f |Ai) is a chain Ci for all i ∈ {1,2,3} where

C1 = {∆A ⊆ θ(↓a1)} ⊆ ·· · ⊆ θ(↓ak)},
C2 = {∆A ⊆ θ(↓a1)⊆ ·· · ⊆ θ(↓ak)⊆ θ(↓ak+1)⊆ . . .}, and

C3 = {∆A ⊆ θ(↓a1)⊆ ·· · ⊆ θ(↓ak)⊆ θ(↓bk+1)⊆ . . .}.

Since θ ∪θ(ak+1,bk+1) ∈Con(A; f ) for all θ ∈C1, the product 2×C1 is a sublattice of
Con(A; f ). Now, let m1 be the greatest element of 2×C1,m2 := θ(↓ak+1) and m3 := θ(↓
bk+1). Then ↓m1 = 2× k. Since θ(↓ at)∪ θ(bk+1,at+1) ∈ Con(A; f ) for all t ≥ k + 1, it
is clear that {θ(↓at), θ(bk+1, at+1), θ(↓at+1), θ(↓at∪ ↓bk+1), θ(↓at+1∪ ↓bk+1)} forms
a sublattice of Con(A; f ) which is isomorphic to M3. Besides for each t ≥ k and s ≥ k,
the sublattice {θ(↓at∪ ↓bs), θ(↓at∪ ↓bs)∪ θ(at+1,bs), θ(↓at∪ ↓bs+1), θ(↓at+1∪ ↓bs),
θ(↓at+1∪ ↓bs+1)} of Con(A; f ) is isomorphic to M3. Therefore, ↑m2 is an M3-rectangle. A
similarly proof shows that ↑m3 is also an M3-rectangle. Hence, Con(A; f ) =↓m1∪ ↑m2∪ ↑
m3 is an M3-Flag.

Now, let (A; f ) be a shortly branched ray. Then, A = {a1, . . . ,ak, . . . ,bk+1}where f (ai) =
ai+1 for all i ∈ N and f (bk+1) = ak. Let A1 = {ak,ak+1, . . .} and A2 = {bk−1,ak,ak+1, . . .}.
Then A1 and A2 are ray subalgebras of A. By applying Proposition 3.1 and the above proof,
↓m1 = 2×Con(A1; f ) ∼= 2×N × 2N and ↑m2∪ ↑m3 is L×N × 2N where L is a simple
M3-rectangle. Therefore, Con(A; f ) is an M3-Flag power.

We note that a cycle in Proposition 3.1 and 3.2 can be a loop and if the element c of a
loop is joined with an element a of the connected component then the set {c,a, f (a), . . .} is
contained in the same block of each congruence relation. We have the following corollary.
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Corollary 4.1. If a monounary algebra (A; f ) is the union of a loop and a connected com-
ponent satisfying of the condition (a) in Theorem 2.1, then Con(A; f ) is P⊕1, n× (P⊕1)
or N× (P⊕1).

Proposition 4.3. If a monounary algebra (A; f ) is the union of a loop and a connected
component satisfying one of the conditions (a)–(d) in Theorem 2.2, then Con(A; f ) is either
P⊕1, n× (P⊕1), N× (P⊕1), M3× (P⊕1), 2×L, N× (2N⊕1), Z× (2N⊕1), where P is
a product of chains and L is an M3-Flag power.

Proof. By the results from Section 3 and Corollary 4.1, it is enough to prove only the
following cases.

Let (A; f ) be the union of a loop {d} and a cycle B with a shortly branched tail. Then
Con(B; f |B) is M3×P where P is a product of chains. If d is related to an element of B with
respect to a θ ∈Con(A; f ), then A/θ is either {{a},{b},C∪{d}},{{b},C∪{a,d}},{{a},C∪
{b,d}},{{a,b},C∪{d}} or {A}; hence, Con(A; f ) is M3× (P⊕1)

Next, let (A; f ) be the union of a loop d and a loop with a properly branched tail B. Then
Proposition 4.2 shows that Con(B; f |B) is an M3-Flag and the result from [9] shows that
each θ ∈ Con(B; f |B) either contains only one block whose cardinality is more than one, or
contains only two blocks whose cardinality is more than one. Hence, each θ ∈ Con(A; f ) is
either θB∪{(d,d)} or add d in a block whose cardinality is more than one for each element
in Con(B; f |B). So Con(A; f ) is 2×Con(B; f |B). Therefore Con(A; f ) is 2×L where L is
an M3-Flag.

By the same arguing as in the above paragraph, one can see that if (A; f ) is the union
of a loop and a line or a ray with a shortly branched tail, then Con(A; f ) is N× (2N ⊕ 1),
Z× (2N⊕1) or 2×L where L is an M3-Flag power.

A lattice L with the greatest element 1 is said to be an M3-head lattice if
(i) L contains exactly three co-atoms m1,m2 and m3 where ↓m1 is P, or P⊕1 and ↓m2

and ↓m3 are either P, P⊕1, n× (P⊕1), N× (P⊕1), N× (2N ⊕1), Z× (2N ⊕1),
M3× (P⊕1), 2×L, L× (P⊕1) or L× (N×2N) where P is a product of chains and
L is an M3-Flag, and

(ii) the set {m,m1,m2,m3,1} forms a sublattice of L which is isomorphic to M3 where
m is the greatest element of

⋂3
i=1 ↓mi.

Proposition 4.4. If a monounary algebra (A; f ) is the union of at most three cycles of
relatively prime lengths, while at most one can have a tail, either non-branched or shortly
branched or a loop with a properly branched tail, then Con(A; f ) is L, N×L, n×N×L, or
N×N×L where L is an M3-head lattice.

Proof. Let A be the disjoint union B1∪B2∪B3 where (Bi; f |Bi) is a cycle for each i ∈ {1,2}
and the cardinalities of B1,B2 and the cycle in B3 are relatively prime lengths (each of the
three cycles can be a loop). Then, Con(Bi; f |Bi) is a chain or a product of chains for each
i∈{1,2}. By Proposition 3.2, Con(B1∪B2; f |B1∪B2) is P or P⊕1 for some product of chains
P. A similar proof of Proposition 3.2 shows that Con(Bi ∪B3; f |Bi∪B3) is (Con(Bi; fBi)×
Con(B3; fB3))⊕1 for each i ∈ {1,2}. And also, Con(Bi∪B j; fBi∪B j)×Con(Bk; fBk) can be
embedded as a sublattice of Con(A; f ) for each 1≤ i 6= j ≤ 3 and k /∈ {i, j}.

Let σ = (123) be a permutation on {1,2,3} and for each i ∈ {1,2,3}, let Ci := Con(Bi∪
Bσ(i); f |Bi∪Bσ(i))×Con(Bk; f |Bk) and let mi be the greatest element of Ci. We can see that
(x,y) /∈ mi for all x ∈ Bi and y ∈ Bσ2(i) which implies that mi 6= A×A for all i. Now, let
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i ∈ {1,2,3} and mi ⊂ θ ∈ Con(A; f ). Then there exists (a,b) ∈ θ and (a,b) /∈ mi. So,
{a,b}* Bi∪Bσ(i) and {a,b}* Bσ2(i). Let x,y ∈ A. If {x,y} ⊆ Bi∪Bσ(i) or {x,y} ⊆ Bσ2(i)
then (x,y) ∈ mi ⊂ θ . If not, we may assume that a,x ∈ Bi ∪ Bσ(i) and y,b ∈ Bσ2(i); so
x,a ∈ Bi ∪Bσ(i) implies that (x,a) ∈ mi ⊂ θ and (b,y) ∈ mi ⊂ θ ; hence, (x,y) ∈ mi ⊂ θ .
Therefore, θ = A×A. Altogether, mi is a co-atom of Con(A; f ). A similar argument implies
that m1,m2 and m3 are the only co-atoms of Con(A; f ). So, mi ∨mσ(i) = A× A for all
i = {1,2,3}.

Let m = θB1∪θB2∪θB3 . The relatively prime of the cardinalities of B1,B2 and the cycle in
B3 implies that m is the greatest lower bound of {m1,m2,m3} and has no other congruences
between m and mi for each i∈ {1,2,3}. Therefore, {m,m1,m2,m3,A×A} forms a sublattice
of Con(A; f ) which is isomorphic to M3 where m is the greatest element of

⋂3
i=1 ↓mi.

Assume that Bi is a cycle for each i ∈ {1,2}. We first assume that B3 is a cycle with
a shortly branched tail. As we stated above that Con(Bi ∪B3; f |Bi∪B3) is [Con(Bi; f |Bi)×
Con(B3; f |B3)]⊕1 and since a product of two product of chains is a product of chains, one
can see that ↓ m2 and ↓ m3 are M3× (P⊕ 1) where P is a product of chains. Therefore,
Con(A; f ) is an M3-head lattice. Now, assume that B3 is a cycle with a non-branched tail.
For each a ∈ B3\C, ↓a is a cycle with a non-branched tail; so, the above proof shows that
Con(B1 ∪B2∪ ↓ a; f |B1∪B2∪↓a) is an M3-head lattice. Therefore, Con(A; f ) is either L or
N×L where L is an M3-head lattice.

Finally, if B3 is a loop with a properly branched tail then Con(B
′
3; f |B′3) is an M3-Flag for

each subset B
′
3 of B3; so, Con(B1 ∪B2 ∪B

′
3; f |B1∪B2∪B′3

) is an M3-head lattice. Therefore,

Con(A; f ) is either L, N×L, N× k×L or N×N×L where L is an M3-head lattice.

Arguing similarly as in Corollary 3.1 we obtain

Corollary 4.2. A modular lattice is (up to isomorphism) a congrunce lattice of some mo-
nounary algebra if and only if it is one of the lattices from Proposition 3.1–3.3 and Propo-
sition 4.1–4.4.
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