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Abstract. In this paper we study g-frames on the direct sum of Hilbert spaces. We gen-
eralize some of the results about g-frames on super Hilbert spaces to the direct sum of a
countable number of Hilbert spaces. Also we study the direct sum of g-frames, g-Riesz
bases and g-orthonormal bases for these spaces. Moreover we consider perturbations, duals
and equivalences for the direct sum of g-frames.
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1. Introduction

Frames for Hilbert spaces were first introduced by Duffin and Schaeffer (see [10]) in 1952 to
study some problems in nonharmonic Fourier series, reintroduced in 1986 by Daubechies,
Grossmann and Meyer (see [9]). Frames are very useful in characterization of function
spaces and other fields of applications such as filter bank theory (see [4]), sigma-delta
quantization (see [3]), signal and image processing (see [5]) and wireless communications
(see [11]). First we recall the definition of frames.

Let H be a Hilbert space and let I be a finite or countable subset of Z. A family { f;}c; C
H is a frame for H, if there exist 0 < A < B < o, such that for each f € H,

AlSI < B0 < BIAIP,

e
In this case we say that {f;}ics is an (A, B) frame. A and B are the lower and upper frame
bounds, respectively. If only the right-hand side inequality is required, it is called a Bessel
sequence. A frame is tight, if A= B. If A= B =1, itis called a Parseval frame. A family
{fitier C H is complete if the span of {f;}ics is dense in H. We say that {f;}ics is a Riesz
basis for H, if it is complete in H and there exist two constants 0 < A < B < oo, such that for
each sequence of scalars {c; }ies € £2(I),

AY lef* <

iel

2
S BZ|Ci|27

iel

Y cifi

iel
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or equivalently
2

AY lei? < Y afi| <BY, leil?,
icF ieF i€F
for each sequence of scalars {c;};cr, where F is a finite subset of I. In this case we say that
{fi}ier is an (A, B) Riesz basis. For more results about frames see [8].

Sun in [16] introduced g-frames as a generalization of frames. He showed that oblique
frames, pseudo frames and fusion frames [2, 7] are special cases of g-frames. Let I be
a finite or countable subset of Z and H be a Hilbert space. For each i € I, let H; be a
Hilbert space and L(H, H;) be the set of all bounded, linear operators from H to H;. We call
A={A; € L(H,H;) :i € I} a g-frame for H with respect to {H; : i € I} if there exist two
positive constants A and B such that

AllFIP < Y [|af]]® < BIFI,

icl

for each f € H. In this case we say that A is an (A,B) g-frame. A and B are the lower
and upper g-frame bounds, respectively. We call A an A-tight g-frame if A = B and we
call it a Parseval g-frame if A = B = 1. If only the second inequality is required, we call
it a g-Bessel sequence. If A is an (A, B) g-frame, then the g-frame operator Sy is defined
by Saf = Yies A7 Aif, which is a bounded, positive and invertible operator such that A.J <
Sa < B.I. The canonical dual g-frame for A is defined by {A; € L(H,H;) : i € I}, where
A; = A;Sy ", which is an (1/B,1/A) g-frame for H and for each f € H, we have
=Y AAif =Y AN
icl i€l
If A is a g-Bessel sequence, then the g-Bessel sequence {I'; € L(H,H;) : i € I'} is called an
alternate dual or a dual of A if
=Y TNf=)Y AT,
icl icl
for each f € H. Now define

ity = {{f,»},-e,f,- € Ho | bt 2 = Y 1A < oo}-
iel

@icrH; with pointwise operations and inner product as
{Sfitier{gitier) =Y (fi&i)
il
is a Hilbert space.

Let {H,}ic; be a sequence of Hilbert spaces. Then by considering K = @®;¢H;, we can
assume that each H; is a closed subspace of K, therefore if f;, € H;, and f;, € H;,, for
i1,i» €I, then (f;, fi,) is well-defined.

We say that {A; € L(H,H,;) :i € I} is g-complete if {f : A;f =0,Vi € I} = {0}, and we
call it a g-orthonormal basis for H, if

<A?<1f117A;;flz> = 6i],i2 <fl] 7fi2>3 i17i2 S Iafi| S Hi] aﬁz € Hi27

and

Y |laf|P = IIfI2, vfeH.

iel
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A={A; € L(H,H;) :i € I} is a g-Riesz basis for H, if it is g-complete and there exist two
constants 0 < A < B < oo, such that for each finite subset F C [ and f; € H;,i € F,

Y A

icF

2
<BY |IAl*

icF

AY AP <

i€F

In this case we say that A is an (A, B) g-Riesz basis.

Let H; and H! be Hilbert spaces, for each i € I and let H = @®;c/H; and H' = ®je/H!.
Recall that if 7; € L(H;,H), then T = ®;¢;T; which is defined by T ({h;}ic;) = {T;(hi) }iex
is a bounded operator from H to H' if and only if sup{||T;|| : i € I} < co. In this case
|IT|| = sup{||T;|| : i € I} and T* = ®;;T;*. If H and K are Hilbert spaces, then H ® K is
called a super Hilbert space.

Recently some authors were interested in g-frames on super Hilbert spaces, see [12,
Proposition 2.16], [17] and [1]. In this paper we consider g-frames on the direct sum of a
finite or countable number of Hilbert spaces.

In Section 2 we study g-frames, g-Riesz bases and g-orthonormal bases for the direct
sum of Hilbert spaces. We also construct the direct sum of g-frames (resp. g-Riesz bases,
g-orthonormal bases) for a finite or countable number of g-frames (resp. g-Riesz bases,
g-orthonormal bases). In Section 3 we consider perturbations, duals and equivalences for
the direct sum of g-frames.

2. The direct sum of g-frames

Throughout this note all of the Hilbert spaces are separable. I, J, K;’s, K;;’s are finite or
countable subsets of Z and H, H;’s, H;;’s are Hilbert spaces. We start with the following
proposition which is a generalization of [1, Proposition 2.3]:

Proposition 2.1. Let {A;; € L(H,H;j) : i € I} be a sequence for each j € J and {e;j 1 k €
Kij} be an orthonormal basis for H;j. Suppose that ®; : H — @ jcsH;j which is defined by
©;(f) = {Aijf}jes is a bounded operator for each i € I, and suppose that Wij x = A;(eij k)-
Then {yjjx: j €J,i € 1,k € K;;} is a frame (resp. tight frame, Bessel sequence, Riesz basis,
orthonormal basis) for H if and only if {®; € L(H,® je;H;j) 1 i € I} is a g-frame (resp. tight
g-frame, g-Bessel sequence, g-Riesz basis, g-orthonormal basis).

Proof. For each f € H, we have

@1 YIerP =YY o’ =YY ¥ [(f vl

iel icl jeJ jeJ i€l kek;;

This shows that {y;; : j € J,i € I,k € K;;} is a frame (resp. tight frame, Bessel sequence,
complete set) if and only if {0;};c; is a g-frame (resp. tight g-frame, g-Bessel sequence,
g-complete set).

Let {yij«:j€J,i€lkeK;} be an (A,B) Riesz basis and F be a finite subset of /.
Suppose that f € H and {fi;}jc; € ®jcsH;; for each i € F. We have

(O ({fij}jes) £y = {fijties ANijfYies) = Y (fijs M f) = < ZAZ}fij,f>7

jet jeJ
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therefore ®; ({ fij}jes) = ZjGJAi*jf,-j, SO

Y o ({fij}jej

i€F

|z

ieF jeJ

Suppose that fij = Yiek; Cijkeij thus A} (f,j) Yiek;,; CijkWijk- Hence

2
ZZ Z CijkVijk

JEJi€F keK;;

2.2) Y o ({ﬁj}ja)

ielF

Since f,’j = Zkel(,-j Cij k€ij k> then

vl =X ImlP=Y ¥

jeJ JEJkeEK;;

)

for each i € F, therefore
23) ZH{fu}JeJH =YY Y el =LY ¥ leyl
IGFJGJ/CEK” jGJiGFkEKij

Now by using (2.2) and (2.3), we have

2 2
AZH{fu}feJH =AY Y Y el < | LY X cunviu|| = || L0 ({fisser)| -
JEJIEF keK;; JEJIEF keK;; ieF
similarly
2
Y O ({fidien)| <BY [[{fiibses|
ieF ieF

This means that {®;},cs is an (A, B) g-Riesz basis. The converse is obtained similarly by
choosing a finite sequence of scalars {c;;«}, using (2.2), (2.3) and the fact that {@®;}c; is a
g-Riesz basis.

Now let {y;jx : j € J,i € I,k € K;;} be an orthonormal basis. Suppose that i,/ € I,

{fij}jes € ®jesHij and {gyj}jes € @jesHyj. We have fij = Ykek;, (fiiveijn)eijr 80j =
Xkekfj <gz jsel j,k> eqj k. Then

(O; ({fij}jer) ©i({gej}jer)) <Z/\ (fii), Y. Aii (e >

jeJ =y
=YY Y Y (fijeijk) Wijk{8er-€ra) Vira)
JjeJreJkek;;deky,
= Z Z Z Z (fijseija) eerar&er) (Wijk Wera) -
JeJreJkek;;deky,

Now if i =/, then

Y Y Y Y (iein) (ewago) (Wi Wua) = Y, Y, (fiseijx) (eijuij)

jeJrel kekK;;dek,, JEJ keK;;
=Y (fij.&ij) = {fii}tjes {gij}jes)

jeJ

0 (O7 ({fij}jes), ©; ({8ij}jes)) = ({fisties {8is}jer). i # L, then (Wijx, Wira) = 0.
Therefore (O} ({fi;}jes),0;({g¢;j})) = 0. The second condition of g-orthonormal basis
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follows from (2.1). Conversely let {@;};c; be a g-orthonormal basis. Let i1,i» €1, ji, j» € J,
ki € K j, and ky € K;, j,. Then

<V’i1j1 SR V’izjz-,k2> <A11/1 €iij) k1> A?sz (ei2j27k2)> = <®;'kl (filjl ki )>®?2 (fizjz«,kz)>’
where fi ji iy = {8jy.jeiji ki }jes and fiyjy ko = {8} j€ir jo 1, } jeu- Hence

<V’i1j11<1 ) Wiz/zJQ> =8iiy <fi1/'1~,k1 ’fizjzsk2> 8ir.i0j1.j2 Ok
which shows that {y;;« : j € J,i € I,k € K;;} is an orthonormal basis. 1

Proposition 2.2. Let {®; € L(H,®jcsH;j) : i € I} be a g-frame (resp. tight g-frame, g-
Bessel sequence, g-Riesz basis, g-orthonormal basis). Then there exists a g-frame (resp.
tight g-frame, g-Bessel sequence, g-Riesz basis, g-orthonormal basis) {A;j € L(H,H;j) :i €
I,j € J} such that ©;(f) = {Aijf}jes, foreachi €l and f € H.

Proof. Define m;; : ®¢cjHjy — H;j by m;j({ fie}ees) = fij and A;j = m;j 0 0O;, foreach i € I
and j € J. It is clear that ®;(f) = {A;jf}jes, for each i € I and f € H, so by Proposition
2.1, {yijx = A;‘j(e,'j)k) 1 jeJ,i €l keK;;}is aframe (resp. tight frame, Bessel sequence,
Riesz basis, orthonormal basis) for H, where {e; j,k}kEK,-j is an orthonormal basis for H;;.
Now the result follows from [16, Theorem 3.1]. 1

In the rest of this note, ®; and ¥, are {A;; € L(H;,H;j) :i € I} and {I';; € L(H;,H;;) :
i € I}, respectively, for each j € J. We say that {®;}cs is an (A,B)-bounded family of
g-frames (resp. g-Riesz bases), if ®; is an (A}, B;) g-frame (resp. g-Riesz basis) such that

=inf{Aj:j€J}>0and B=sup{B;: j€J} <co. Also we call {®;};c; a B-bounded
family of g-Bessel sequences, if ®; is a g-Bessel sequence for each j € J with upper bound
Bj such that B=sup{B;: j€J} < oo.

Theorem 2.1. {®;};c; is an (A, B)-bounded (resp. a B-bounded) family of g-frames (resp.
g-Bessel sequences) if and only if ®je;Pj = {D®jesAij € L(®jesH;, ®jesHij) i €1} is an
(A,B) g-frame (resp. a g-Bessel sequence with upper bound B) for @ jcyH . In this case the
g-frame operator of ®jcjPj is DjcjSe;, where S, is the g-frame operator of P, for each
JjEeJ.

Proof. First suppose that {®;} jc; is a B-bounded family of g-Bessel sequences. For each
Jj€J,ieland f; € Hj, we have

2 2 2 2
1A £l < Y 1Ak fillP < Bill£1° < BIfiI* = Ayl < VB
kel

Thus for each i € I, we have sup{||A;;|| : j € J} < oo. This means that for each i € I, ® jesA;j
is a bounded operator from @ jc;H; to ®jc;H;;. Now for each f = {f;}jc; € ®jecsH;, we

have
Y l@jenin) 17 =Y Y 1A ()]

iel i€l jeJ
Hence
LY I8P =X Y IAu()I* < X BillfIP < BY, 14517 = BIAI,
i€l jeJ jediel jel jel
s0 @ ey P is a g-Bessel sequence for @ jcyH; with upper bound B. Conversely suppose that
DjesPj is a g-Bessel sequence with upper bound B. Let jo € J and f;, € Hj,. Then

Yo fiollF = Y (@ jeshis) {8jo.if o Fie)I* < Bll{8jo.i fio }iesll* = Bl fio -

iel iel
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This means that @, is a g-Bessel sequence with upper bound B. Now suppose that {®;} jc;
is an (A, B)-bounded family of g-frames. For each f = {f;};c; € ®csH;, we have

Y l@eni) fIP =Y YA )I1P = X Y 1A )17 > Y Ail£17 > AlFIP,
icl i€l jeJ JETiEl =

0 @ jesP; is an (A, B) g-frame. The converse is also easy to verify.
Note that since S, < B./, then by Theorem 2.2.5 in [14], HSq;j || < B, for each j € J, so
@ jesSo; is a bounded operator. For each f = {f;} je; € ®jesH,, we have

<S@jej¢j(f)7f> <Z(@JEJAU)(@JEJAz])({f]}JEJ {f]}JEJ> ZZ< l]*Al] f] f]>

icl i€l jeJ
S HUIVIAIES » WIS N WDy
i€l jeJ jeJiel jeJ \iel
= Z <S®](f])af]> = <(®j€/s¢j)fvf>a
jeJ
therefore So ., 0; = ©jcsSo;- 1

Recall that a g-frame is called exact if it ceases to be a g-frame whenever any of its
elements is removed. For more results about exact g-frames, see [13]. Now we have the
following result:

Corollary 2.1. Let {®;}jc; be a bounded family of g-frames. If ®;, is an exact g-frame,
for some jo € J, then @ jc;P; is exact.

Proof. Suppose that iy € I such that {& jesA; j}ielf{io} is a g-frame. Then by Theorem 2.1,
{A; jo}iel—{io} is a g-frame, which is a contradiction with the fact that ®;, is exact. 1

Theorem 2.2.
(@) {®,}jes is an (A,B)-bounded family of g-Riesz bases if and only if ®jc;®; is an
(A,B) g-Riesz basis.
(b) ®;isag-orthonormal basis, for each j € J if and only if ® jc P is a g-orthonormal
basis.

Proof. (a) First let {®;} jc; be an (A, B)-bounded family of g-Riesz bases. By [16, Corol-
lary 3.2], each ®; is a g-Bessel sequence with upper bound B and therefore by Theorem
2.1, ®jesP; is a g-Bessel sequence and it is easy to see that @ ;e;P; is g-complete. Let F
be a finite subset of 7 and let {g;;} jc; € ®jcsH;j, for each i € F. For proving that & jc;P;
is an (A, B) g-Riesz basis, we must show that

AY Hsgibie| <

icF

2
<BY |[{gi}jes|s

ieF

;(@ja/\fﬂ({gu}jg)

or equivalently

S BY. Y llsisl*.

i€F jeJ

AZ Z ||gu||2 < Z

i€F jeJ JjeJ

ZAIJ gl}

ieF

Now since each ®; is an (A, B) g-Riesz basis, then we have

AY YllsilP=YAY lgil* <Y | ¥ A(gi7)

ieF jeJ jeJ ieF jeJllieF

2

)
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and
2

BY Y lleiil> =Y. BY lgil* = Y | ¥ A(gi7)

i€eF jeJ jeJ ieF jeJ \lieF
Conversely suppose that @ c;®; is an (A, B) g-Riesz basis and jo € J. It is easy to see that
@;, is g-complete. Now let F be a finite subset of I and f;;, € H;;,, for each i € F. Then

AY il =AY I{8i0.iiies |

a ieF
2
Z(@jeff\?j)({fsjo,jﬁjo}jej =Y AL i)l
ieF i€F
and
2 2
Y AL i)l = || X (@5esN;) {8y jifiso Yie)
i€eF i€F
2 2
<BY |[{Sj5.ifiin}jes|| =BY. | fiill™
icF icF

This means that ®, is an (A, B) g-Riesz basis.

(b) It follows from Theorem 2.1 that ®; is a Parseval g-frame for each j € J if and only
if ®jcyP; is a Parseval g-frame. Now suppose that ®@; is a g-orthonormal basis, for each
jedJ. Letilel, {ﬁj}je] S EBjeJH,‘,‘ and {ggj}jgj S @jnggj Then

<(@jeﬂ\fj)({ﬁj}j61) (@ zeJAzj {géj}zeJ > Z U (fij) A/,(glﬁ»

jeJ
If i # ¢, then ¥ jc; (Afj(fi), Aj;(8¢j)) = 0, and therefore

(@jerN;)){ fij}jen) (®jesni;) {gej}jes)) =0

If i = ¢, then
(@jerniy){fisdien), (@jeaniy)({gei}jen)) = Y (fir8ii) = ({fij}jer {81} jer):
jel
s0 @ jeyP; is a g-orthonormal basis. The converse is easy to verify. 1

Note that [12, Proposition 2.16] and [1, Proposition 2.6] are special cases of Theorems
2.1 and 2.2.

3. Perturbations, duals and equivalences
we recall the following definitions from [6] and [12]:

Definition 3.1. Let A = {A; € L(H,H;):i €I} and I = {I'; € L(H,H;) : i € I} be two
sequences and 0 < Ay, Ap < 1.
(i) Let € > 0. We say that T is a (A1, A, €)-perturbation of A if for each i € I and
f € H, we have
[Af =Tif || < Ml|Aifl| + A2 [[Tif || + €] £1]-

(i) Let {ci}icr be a sequence of positive numbers such that Y ;c; cl-2 < oo, We say that T’
is a (A, A2, {ci}icr)-perturbation of A if for eachi € I and f € H, we have

[Aif =Tif | < Ml Aif || + A2 T 1] +cil £l
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Proposition 3.1. Let {®;}c; and {¥;}jc; be bounded families of g-Bessel sequences.
Then ¥; is a (A1,As, €)-perturbation of ®;, for each j € J if and only if ®c;¥; is a
(A1, A2, €)-perturbation of @ jc;P;.

Proof. First suppose that ¥'; is a (A1, A2, €)-perturbation of ®@;, for each j € J and suppose
that f = {f;}jcs € ®jesH;. Let F be a finite subset of J. Then for each i € I, we have

{(As =Tip)fitjer |, < [{MlAGfill + 20T £l + €l fill} jerll
S IH{MNAGF jerlly + 2200550} jep o+ K ENFT er ]l

<2 ( y ||A,~,-f,~|2) : m( y ||ri,~f,~||2) 2 +s(z IIfJ'IZ) 2

jer jer jer
= || ®jes Aij f|| + A2|| Bjes Tiif|| + €l £1I-
Since the above inequality holds for each finite subset of J, then we have
| ®jes Mijf = @jesliif || = [{(Ay = Tij) £} jes ],
< M| @jes Aijf|| + A2 || ®jes Tijf || + €l £1I-
This means that @ jc;¥; is a (A1, A2, €)-perturbation of & jc;P;.
For the converse it is enough to note that for each i € 1, jo € J and f, € Hj, we can write
1Ajof o = Tijo Lol
= [(®jestif) {8jo.ifio Yies) = (jeslis) {jo.ifio Y
< Ml ®jes Mij({8jo.jfig Yien) Il + 2all ®jes Uij({ 8o ifjo } je) | + €l 8jo i i je |
= Ml Aijo Fio ll + A2 Tijo fig I + €1l fo Il

and the result follows. 1

Corollary 3.1. Let {®;} jc; be a B-bounded (resp. an (A,B)-bounded, with (1 — 4;)VA >
(Yicr¢2)'/?) family of g-Bessel sequences (resp. g-frames) and W¥; be a (A1,22,{ci}icr)-
perturbation of ®j.for each j € J. Then ®jc;¥; and ¥, for each j € J, are g-Bessel
sequences (resp. g-frames) and @ jc;¥j is a (M, Ay, {ci}ier)-perturbation of ® jc;®;.
Conversely if ® jc;¥j is a g-Bessel sequence and a (A1, A2, {c; }tier)-perturbation of & jey
D, then ¥ is a (A, Aa, {ci}ier)-perturbation of ®;, for each j € J.
Proof. First let W be a (41,2, {c;}icr)-perturbation of ®;, for each j € J. Then by [12,
Proposition 4.3], ¥; is a g-Bessel sequence with upper bound (((1+A1)vVB+ (Lic;c?)'/?)/
(1- 12))2, for each j € J. Therefore by Theorem 2.1, ©;c;¥; is a g-Bessel sequence.
If {®;} e, is an (A,B)-bounded family of g-frames with (1 —4;)vA > (L;c;¢?)!/?, then
by [12, Proposition 4.3], (((1 —A1)VA — (Lie;c)/?) /(1 + ),2))2 is a lower bound for ¥,

for each j € J. Hence by Theorem 2.1, ®;c;'¥'; is a g-frame. Now the rest of the proof can
be obtained similar to the proof of Proposition 3.1 by using ¢; instead of €, foreachie 1. 1

It was shown in [12, Definition 2.10] that if {A; € L(H,H;):i €I} and {I; € L(H,H;): i €
I} are g-Bessel sequences with upper bounds B and D, respectively, then Y;c; 'Y A;(f) con-
verges and || ¥;c; TiAi(f)|| < VBD||f]|, for each f € H. Therefore if {®;}jc; and {¥,} je;
are bounded families of g-Bessel sequences, then the operator Y ;c;(® je Jl"fj)(@ jesij) is
bounded on ®jcsH;.
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Proposition 3.2. Let {®;};c; and {¥;} je; be B and D-bounded families of g-Bessel se-
quences, respectively. Then ¥; is a dual of ®;, for each j € J if and only if ®jc;¥; is a
dual of © jcjP;.

Proof. Let ¥, be a dual of ®; for each j € J, f = {fj}jes € DjesHjand j € J. Then

3 3
¥ lsusiCuf)) < (ZInasl) (ZIanl?)” < vaDlsIE,
il il icl
30 Yier | (Aijfj.Tijfj)| converges, for each j € J. Also

Y ¥ [(AiifiTiifid| < VBD Y. |1 £il1> = VBDI|fI,
jeJiel jeJ

therefore ¥ jc; Yier | (Aijf7,Tijf;)| converges. Hence

ZZ<Al]f]7 l]f]> ZZ ljf]) l]f]

jeJiel i€l jeJ

Now we have

< Z(@je]rjj)(@jell\ij)({fj}jEJ)’ {fj}j61>

icl
=Y {TNifitienAfitier) = Y (MiifinTifi) = Y Y (A fi.Tiif)
icl i€l jeJ jeJiel
_Zj<21r;k] t]f]af]> Z<f]af]>:<{fj}j€./7{fj}j€l>,
jeJ \ie

therefore ¥;c; (8 jesL7;) (D jesAij) f = [, for each f € & jesHj, and this means that & ;¥
is a dual of @ ;c;P;. Conversely suppose that @ jc;'¥; is a dual of @ ;c;P;. Let jo € J and
fj, € Hj,. Now we have

< Y TiioAiiofios Fio > = < Y (@jesTh) (@5es Aij) ({80, i) { Bjoifio } jej>

iel icl
= {8j0ifio } jes 18inifin} jes) = (FiorFio)-
therefore };e; 17 Aijo fjy = fjo- This means that ¥ is a dual of ® ;. 1

Now we have the following result for canonical duals.

Proposition 3.3. Let {®;}jc; be an (A, B)-bounded family of g-frames. Then @ jc ‘]5; isa
g-frame and @Te\ﬁj = @je‘]c’f);.

Proof. Since C,EJ isan (1/Bj,1/A)) g-frame, for each j € J and inf{1/B;:jeJ}=1/B>0,
sup{1/A;: j€J} =1/A < o, then @ c;P; is an (1/B,1/A) g-frame, by Theorem 2.1.
Moreover as a consequence of Theorem 2.1, we can see that EB/J-_G\JED = {® je _]A[j(@ jeJ
Scpj)" :i € I}. Now by using the definition of canonical duals, it is clear that @ c;®; =
{EBjEJAijS;} € L(®jesH},®jesH;j) 1 i € I}. Thus it is enough to show that @ jejAij(Djes
So;)”" = ®jesNijSq,. for each i € I. Since A+ Idy; < So, < B-Idy;, for each j € J, then
by [14, Theorem 2.2.5], we have (1/B)-Idy; < S;ll_ < (1/A)-Idy; and therefore ||S;l1_|| <
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1/A, for each j € J. Thus @je ]SE)JI_ is a bounded operator. Now it is easy to see that

(@je]&pj)’l = @jeJS;]l_, so for each {f;}jc; € ®jcsH,, we have

-1 _ _
®jerfij(®jerSa;) " ({(£i}jer) = {NiiSq) (1)} je) = DiesthijSe, ({fi} jer):
which completes the proof. 1

Now we recall some definitions for g-frames from [15].

Definition 3.2. Let A={A;, € L(H,H;):i€l} and T = {T; € L(H,H;) : i € I} be two
g-frames.
(i) We say that A and T are unitarily equivalent if there is a unitary linear operator
T :H — H such that T'; = NiT, for eachi € I.
(i) We say that A is isometrically related to T if there is an isometric linear operator
T :H — H such that T'; = N\iT, for eachi € I.

Proposition 3.4. Let {®;} jc; and {¥;} je; be bounded families of g-frames. Then
(i) If ®; and\¥; are unitarily equivalent, for each j € J, then © jc;P; and @ jc;¥; are
unitarily equivalent.
(i) If ®@; is isometrically related to W, for each j € J, then @ jc;P; is isometrically
related to @ jej'¥Y;.

Proof. (i) Suppose that ®; and ¥, are unitarily equivalent, foreach j€Jand T, : H; — H;
is a unitary operator such that I';; = A;;T;, for each i € I. Define T : @ jejH; — DjesH;
by T = ®esT;. Since ||T|| = sup{||Tj|| : j € J} =1, then T is bounded. Now it is easy to
see that T is unitary and @ je;Iij = (®esAij)T, foreach i € I.

(ii) Suppose that ®; is isometrically related to W;, for each j € Jand 7; : H; — H; is
an isometric operator such that I';; = A;;T;, for each i € I. Define T : @ jejH; — ®jcjH;
by T = ®jesT;. Since ||T| = sup{||Tj|| : j € J} =1, then T is bounded. Now for each
f= {fj}jej € ®jesHj, we have

1

ITr=(EImal’) = SI617) =,
jed

jer

so T is an isometry. It is also easy to see that @ je;I;; = (®esAij)T, foreach i 1. 1
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