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Abstract. In this paper we study g-frames on the direct sum of Hilbert spaces. We gen-
eralize some of the results about g-frames on super Hilbert spaces to the direct sum of a
countable number of Hilbert spaces. Also we study the direct sum of g-frames, g-Riesz
bases and g-orthonormal bases for these spaces. Moreover we consider perturbations, duals
and equivalences for the direct sum of g-frames.

2010 Mathematics Subject Classification: 41A58, 42C15, 42C40

Keywords and phrases: Direct sums, g-frames, g-orthonormal bases, g-Riesz bases.

1. Introduction

Frames for Hilbert spaces were first introduced by Duffin and Schaeffer (see [10]) in 1952 to
study some problems in nonharmonic Fourier series, reintroduced in 1986 by Daubechies,
Grossmann and Meyer (see [9]). Frames are very useful in characterization of function
spaces and other fields of applications such as filter bank theory (see [4]), sigma-delta
quantization (see [3]), signal and image processing (see [5]) and wireless communications
(see [11]). First we recall the definition of frames.

Let H be a Hilbert space and let I be a finite or countable subset of Z. A family { fi}i∈I ⊆
H is a frame for H, if there exist 0 < A≤ B < ∞, such that for each f ∈ H,

A‖ f‖2 ≤∑
i∈I

∣∣〈 f , fi
〉∣∣2 ≤ B‖ f‖2.

In this case we say that { fi}i∈I is an (A,B) frame. A and B are the lower and upper frame
bounds, respectively. If only the right-hand side inequality is required, it is called a Bessel
sequence. A frame is tight, if A = B. If A = B = 1, it is called a Parseval frame. A family
{ fi}i∈I ⊆ H is complete if the span of { fi}i∈I is dense in H. We say that { fi}i∈I is a Riesz
basis for H, if it is complete in H and there exist two constants 0 < A≤ B < ∞, such that for
each sequence of scalars {ci}i∈I ∈ `2(I),

A∑
i∈I
|ci|2 ≤

∥∥∥∥∑
i∈I

ci fi

∥∥∥∥2

≤ B∑
i∈I
|ci|2,
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or equivalently

A ∑
i∈F
|ci|2 ≤

∥∥∥∥∑
i∈F

ci fi

∥∥∥∥2

≤ B ∑
i∈F
|ci|2,

for each sequence of scalars {ci}i∈F , where F is a finite subset of I. In this case we say that
{ fi}i∈I is an (A,B) Riesz basis. For more results about frames see [8].

Sun in [16] introduced g-frames as a generalization of frames. He showed that oblique
frames, pseudo frames and fusion frames [2, 7] are special cases of g-frames. Let I be
a finite or countable subset of Z and H be a Hilbert space. For each i ∈ I, let Hi be a
Hilbert space and L(H,Hi) be the set of all bounded, linear operators from H to Hi. We call
Λ = {Λi ∈ L(H,Hi) : i ∈ I} a g-frame for H with respect to {Hi : i ∈ I} if there exist two
positive constants A and B such that

A‖ f‖2 ≤∑
i∈I

∥∥Λi f
∥∥2 ≤ B‖ f‖2,

for each f ∈ H. In this case we say that Λ is an (A,B) g-frame. A and B are the lower
and upper g-frame bounds, respectively. We call Λ an A-tight g-frame if A = B and we
call it a Parseval g-frame if A = B = 1. If only the second inequality is required, we call
it a g-Bessel sequence. If Λ is an (A,B) g-frame, then the g-frame operator SΛ is defined
by SΛ f = ∑i∈I Λ∗i Λi f , which is a bounded, positive and invertible operator such that A.I ≤
SΛ ≤ B.I. The canonical dual g-frame for Λ is defined by {Λ̃i ∈ L(H,Hi) : i ∈ I}, where
Λ̃i = ΛiS−1

Λ
, which is an (1/B,1/A) g-frame for H and for each f ∈ H, we have

f = ∑
i∈I

Λ
∗
i Λ̃i f = ∑

i∈I
Λ̃i
∗
Λi f .

If Λ is a g-Bessel sequence, then the g-Bessel sequence {Γi ∈ L(H,Hi) : i ∈ I} is called an
alternate dual or a dual of Λ if

f = ∑
i∈I

Γ
∗
i Λi f = ∑

i∈I
Λ
∗
i Γi f ,

for each f ∈ H. Now define

⊕i∈IHi =
{
{ fi}i∈I | fi ∈ Hi,

∥∥{ fi}i∈I
∥∥

2
2 = ∑

i∈I
‖ fi‖2 < ∞

}
.

⊕i∈IHi with pointwise operations and inner product as〈
{ fi}i∈I ,{gi}i∈I

〉
= ∑

i∈I

〈
fi,gi

〉
is a Hilbert space.

Let {Hi}i∈I be a sequence of Hilbert spaces. Then by considering K = ⊕i∈IHi, we can
assume that each Hi is a closed subspace of K, therefore if fi1 ∈ Hi1 and fi2 ∈ Hi2 , for
i1, i2 ∈ I, then 〈 fi1 , fi2〉 is well-defined.

We say that {Λi ∈ L(H,Hi) : i ∈ I} is g-complete if { f : Λi f = 0,∀i ∈ I}= {0}, and we
call it a g-orthonormal basis for H, if〈

Λ
∗
i1 fi1 ,Λ

∗
i2 fi2

〉
= δi1,i2 〈 fi1 , fi2〉 , i1, i2 ∈ I, fi1 ∈ Hi1 , fi2 ∈ Hi2 ,

and
∑
i∈I

∥∥Λi f
∥∥2 = ‖ f‖2, ∀ f ∈ H.
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Λ = {Λi ∈ L(H,Hi) : i ∈ I} is a g-Riesz basis for H, if it is g-complete and there exist two
constants 0 < A≤ B < ∞, such that for each finite subset F ⊆ I and fi ∈ Hi, i ∈ F ,

A ∑
i∈F
‖ fi‖2 ≤

∥∥∥∥∑
i∈F

Λ
∗
i fi

∥∥∥∥2

≤ B ∑
i∈F
‖ fi‖2.

In this case we say that Λ is an (A,B) g-Riesz basis.
Let Hi and H ′i be Hilbert spaces, for each i ∈ I and let H = ⊕i∈IHi and H ′ = ⊕i∈IH ′i .

Recall that if Ti ∈ L(Hi,H ′i ), then T = ⊕i∈ITi which is defined by T ({hi}i∈I) = {Ti(hi)}i∈I
is a bounded operator from H to H ′ if and only if sup{‖Ti‖ : i ∈ I} < ∞. In this case
‖T‖ = sup{‖Ti‖ : i ∈ I} and T ∗ = ⊕i∈ITi

∗. If H and K are Hilbert spaces, then H ⊕K is
called a super Hilbert space.

Recently some authors were interested in g-frames on super Hilbert spaces, see [12,
Proposition 2.16], [17] and [1]. In this paper we consider g-frames on the direct sum of a
finite or countable number of Hilbert spaces.

In Section 2 we study g-frames, g-Riesz bases and g-orthonormal bases for the direct
sum of Hilbert spaces. We also construct the direct sum of g-frames (resp. g-Riesz bases,
g-orthonormal bases) for a finite or countable number of g-frames (resp. g-Riesz bases,
g-orthonormal bases). In Section 3 we consider perturbations, duals and equivalences for
the direct sum of g-frames.

2. The direct sum of g-frames

Throughout this note all of the Hilbert spaces are separable. I, J, Ki’s, Ki j’s are finite or
countable subsets of Z and H, Hi’s, Hi j’s are Hilbert spaces. We start with the following
proposition which is a generalization of [1, Proposition 2.3]:

Proposition 2.1. Let {Λi j ∈ L(H,Hi j) : i ∈ I} be a sequence for each j ∈ J and {ei j,k : k ∈
Ki j} be an orthonormal basis for Hi j. Suppose that Θi : H −→⊕ j∈JHi j which is defined by
Θi( f ) = {Λi j f} j∈J is a bounded operator for each i ∈ I, and suppose that ψi j,k = Λ∗i j(ei j,k).
Then {ψi j,k : j ∈ J, i ∈ I,k ∈ Ki j} is a frame (resp. tight frame, Bessel sequence, Riesz basis,
orthonormal basis) for H if and only if {Θi ∈ L(H,⊕ j∈JHi j) : i ∈ I} is a g-frame (resp. tight
g-frame, g-Bessel sequence, g-Riesz basis, g-orthonormal basis).

Proof. For each f ∈ H, we have

(2.1) ∑
i∈I
‖Θi f‖2 = ∑

i∈I
∑
j∈J

∥∥Λi j f
∥∥2 = ∑

j∈J
∑
i∈I

∑
k∈Ki j

∣∣〈 f ,ψi j,k
〉∣∣2 .

This shows that {ψi j,k : j ∈ J, i ∈ I,k ∈ Ki j} is a frame (resp. tight frame, Bessel sequence,
complete set) if and only if {Θi}i∈I is a g-frame (resp. tight g-frame, g-Bessel sequence,
g-complete set).

Let {ψi j,k : j ∈ J, i ∈ I,k ∈ Ki j} be an (A,B) Riesz basis and F be a finite subset of I.
Suppose that f ∈ H and { fi j} j∈J ∈ ⊕ j∈JHi j for each i ∈ F . We have

〈
Θ
∗
i
(
{ fi j} j∈J

)
, f
〉

=
〈
{ fi j} j∈J ,{Λi j f} j∈J

〉
= ∑

j∈J

〈
fi j,Λi j f

〉
=
〈

∑
j∈J

Λ
∗
i j fi j, f

〉
,
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therefore Θ∗i ({ fi j} j∈J) = ∑ j∈J Λ∗i j fi j, so∥∥∥∥∑
i∈F

Θ
∗
i
(
{ fi j} j∈J

)∥∥∥∥2

=
∥∥∥∥∑

i∈F
∑
j∈J

Λ
∗
i j fi j

∥∥∥∥2

.

Suppose that fi j = ∑k∈Ki j ci j,kei j,k, thus Λ∗i j( fi j) = ∑k∈Ki j ci j,kψi j,k. Hence

(2.2)
∥∥∥∥∑

i∈F
Θ
∗
i
(
{ fi j} j∈J

)∥∥∥∥2

=
∥∥∥∥∑

j∈J
∑
i∈F

∑
k∈Ki j

ci j,kψi j,k

∥∥∥∥2

.

Since fi j = ∑k∈Ki j ci j,kei j,k, then∥∥{ fi j} j∈J
∥∥2 = ∑

j∈J
‖ fi j‖2 = ∑

j∈J
∑

k∈Ki j

|ci j,k|2,

for each i ∈ F , therefore

(2.3) ∑
i∈F

∥∥{ fi j} j∈J
∥∥2 = ∑

i∈F
∑
j∈J

∑
k∈Ki j

∣∣ci j,k
∣∣2 = ∑

j∈J
∑
i∈F

∑
k∈Ki j

|ci j,k|2.

Now by using (2.2) and (2.3), we have

A ∑
i∈F

∥∥{ fi j} j∈J
∥∥2 = A ∑

j∈J
∑
i∈F

∑
k∈Ki j

∣∣ci j,k
∣∣2 ≤ ∥∥∥∥∑

j∈J
∑
i∈F

∑
k∈Ki j

ci j,kψi j,k

∥∥∥∥2

=
∥∥∥∥∑

i∈F
Θ
∗
i
(
{ fi j} j∈J

)∥∥∥∥2

,

similarly ∥∥∥∥∑
i∈F

Θ
∗
i
(
{ fi j} j∈J

)∥∥∥∥2

≤ B ∑
i∈F

∥∥{ fi j} j∈J
∥∥2

.

This means that {Θi}i∈I is an (A,B) g-Riesz basis. The converse is obtained similarly by
choosing a finite sequence of scalars {ci j,k}, using (2.2), (2.3) and the fact that {Θi}i∈I is a
g-Riesz basis.

Now let {ψi j,k : j ∈ J, i ∈ I,k ∈ Ki j} be an orthonormal basis. Suppose that i, ` ∈ I,
{ fi j} j∈J ∈ ⊕ j∈JHi j and {g` j} j∈J ∈ ⊕ j∈JH` j. We have fi j = ∑k∈Ki j

〈
fi j,ei j,k

〉
ei j,k, g` j =

∑k∈K` j

〈
g` j,e` j,k

〉
e` j,k. Then〈

Θ
∗
i ({ fi j} j∈J),Θ∗`({g` j} j∈J)

〉
=
〈

∑
j∈J

Λ
∗
i j( fi j), ∑

j∈J
Λ
∗
` j(g` j)

〉
= ∑

j∈J
∑
r∈J

∑
k∈Ki j

∑
d∈K`r

〈〈
fi j,ei j,k

〉
ψi j,k,

〈
g`r,e`r,d

〉
ψ`r,d

〉
= ∑

j∈J
∑
r∈J

∑
k∈Ki j

∑
d∈K`r

〈
fi j,ei j,k

〉〈
e`r,d ,g`r

〉〈
ψi j,k,ψ`r,d

〉
.

Now if i = `, then

∑
j∈J

∑
r∈J

∑
k∈Ki j

∑
d∈K`r

〈
fi j,ei j,k

〉〈
e`r,d ,g`r

〉〈
ψi j,k,ψ`r,d

〉
= ∑

j∈J
∑

k∈Ki j

〈
fi j,ei j,k

〉〈
ei j,k,gi j

〉
= ∑

j∈J

〈
fi j,gi j

〉
=
〈
{ fi j} j∈J ,{gi j} j∈J

〉
,

so
〈
Θ∗i ({ fi j} j∈J),Θ∗i ({gi j} j∈J)

〉
=
〈
{ fi j} j∈J ,{gi j} j∈J

〉
. If i 6= `, then

〈
ψi j,k,ψ`r,d

〉
= 0.

Therefore
〈
Θ∗i ({ fi j} j∈J),Θ∗`({g` j})

〉
= 0. The second condition of g-orthonormal basis
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follows from (2.1). Conversely let {Θi}i∈I be a g-orthonormal basis. Let i1, i2 ∈ I, j1, j2 ∈ J,
k1 ∈ Ki1 j1 and k2 ∈ Ki2 j2 . Then〈

ψi1 j1,k1 ,ψi2 j2,k2

〉
=
〈
Λ
∗
i1 j1(ei1 j1,k1),Λ

∗
i2 j2(ei2 j2,k2)

〉
=
〈
Θ
∗
i1( fi1 j1,k1),Θ

∗
i2( fi2 j2,k2)

〉
,

where fi1 j1,k1 = {δ j1, jei1 j1,k1} j∈J and fi2 j2,k2 = {δ j2, jei2 j2,k2} j∈J . Hence〈
ψi1 j1,k1 ,ψi2 j2,k2

〉
= δi1,i2

〈
fi1 j1,k1 , fi2 j2,k2

〉
= δi1,i2δ j1, j2δk1,k2 ,

which shows that {ψi j,k : j ∈ J, i ∈ I,k ∈ Ki j} is an orthonormal basis.

Proposition 2.2. Let {Θi ∈ L(H,⊕ j∈JHi j) : i ∈ I} be a g-frame (resp. tight g-frame, g-
Bessel sequence, g-Riesz basis, g-orthonormal basis). Then there exists a g-frame (resp.
tight g-frame, g-Bessel sequence, g-Riesz basis, g-orthonormal basis) {Λi j ∈ L(H,Hi j) : i ∈
I, j ∈ J} such that Θi( f ) = {Λi j f} j∈J , for each i ∈ I and f ∈ H.

Proof. Define πi j :⊕`∈JHi` −→ Hi j by πi j({ fi`}`∈J) = fi j and Λi j = πi j ◦Θi, for each i ∈ I
and j ∈ J. It is clear that Θi( f ) = {Λi j f} j∈J , for each i ∈ I and f ∈ H, so by Proposition
2.1, {ψi j,k = Λ∗i j(ei j,k) : j ∈ J, i ∈ I,k ∈ Ki j} is a frame (resp. tight frame, Bessel sequence,
Riesz basis, orthonormal basis) for H, where {ei j,k}k∈Ki j is an orthonormal basis for Hi j.
Now the result follows from [16, Theorem 3.1].

In the rest of this note, Φ j and Ψ j are {Λi j ∈ L(H j,Hi j) : i ∈ I} and {Γi j ∈ L(H j,Hi j) :
i ∈ I}, respectively, for each j ∈ J. We say that {Φ j} j∈J is an (A,B)-bounded family of
g-frames (resp. g-Riesz bases), if Φ j is an (A j,B j) g-frame (resp. g-Riesz basis) such that
A = in f{A j : j ∈ J}> 0 and B = sup{B j : j ∈ J}< ∞. Also we call {Φ j} j∈J a B-bounded
family of g-Bessel sequences, if Φ j is a g-Bessel sequence for each j ∈ J with upper bound
B j such that B = sup{B j : j ∈ J}< ∞.

Theorem 2.1. {Φ j} j∈J is an (A,B)-bounded (resp. a B-bounded) family of g-frames (resp.
g-Bessel sequences) if and only if ⊕ j∈JΦ j = {⊕ j∈JΛi j ∈ L(⊕ j∈JH j,⊕ j∈JHi j) : i ∈ I} is an
(A,B) g-frame (resp. a g-Bessel sequence with upper bound B) for ⊕ j∈JH j. In this case the
g-frame operator of ⊕ j∈JΦ j is ⊕ j∈JSΦ j , where SΦ j is the g-frame operator of Φ j, for each
j ∈ J.

Proof. First suppose that {Φ j} j∈J is a B-bounded family of g-Bessel sequences. For each
j ∈ J, i ∈ I and f j ∈ H j, we have

‖Λi j f j‖2 ≤∑
k∈I
‖Λk j f j‖2 ≤ B j‖ f j‖2 ≤ B‖ f j‖2 =⇒‖Λi j‖ ≤

√
B.

Thus for each i∈ I, we have sup{‖Λi j‖ : j ∈ J}< ∞. This means that for each i∈ I,⊕ j∈JΛi j
is a bounded operator from ⊕ j∈JH j to ⊕ j∈JHi j. Now for each f = { f j} j∈J ∈ ⊕ j∈JH j, we
have

∑
i∈I
‖(⊕ j∈JΛi j) f‖2 = ∑

i∈I
∑
j∈J
‖Λi j( f j)‖2.

Hence

∑
i∈I

∑
j∈J
‖Λi j( f j)‖2 = ∑

j∈J
∑
i∈I
‖Λi j( f j)‖2 ≤∑

j∈J
B j‖ f j‖2 ≤ B ∑

j∈J
‖ f j‖2 = B‖ f‖2,

so⊕ j∈JΦ j is a g-Bessel sequence for⊕ j∈JH j with upper bound B. Conversely suppose that
⊕ j∈JΦ j is a g-Bessel sequence with upper bound B. Let j0 ∈ J and f j0 ∈ H j0 . Then

∑
i∈I
‖Λi j0 f j0‖

2 = ∑
i∈I
‖(⊕ j∈JΛi j)({δ j0, j f j0} j∈J)‖2 ≤ B‖{δ j0, j f j0} j∈J‖2 = B‖ f j0‖

2.
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This means that Φ j0 is a g-Bessel sequence with upper bound B. Now suppose that {Φ j} j∈J
is an (A,B)-bounded family of g-frames. For each f = { f j} j∈J ∈ ⊕ j∈JH j, we have

∑
i∈I
‖(⊕ j∈JΛi j) f‖2 = ∑

i∈I
∑
j∈J
‖Λi j( f j)‖2 = ∑

j∈J
∑
i∈I
‖Λi j( f j)‖2 ≥∑

j∈J
A j‖ f j‖2 ≥ A‖ f‖2,

so ⊕ j∈JΦ j is an (A,B) g-frame. The converse is also easy to verify.
Note that since SΦ j ≤ B.I, then by Theorem 2.2.5 in [14], ‖SΦ j‖ ≤ B, for each j ∈ J, so

⊕ j∈JSΦ j is a bounded operator. For each f = { f j} j∈J ∈ ⊕ j∈JH j, we have〈
S⊕ j∈JΦ j( f ), f

〉
=
〈

∑
i∈I

(⊕ j∈JΛ
∗
i j)(⊕ j∈JΛi j)({ f j} j∈J),{ f j} j∈J

〉
= ∑

i∈I
∑
j∈J

〈
Λi j
∗
Λi j( f j), f j

〉
= ∑

i∈I
∑
j∈J
‖Λi j( f j)‖2 = ∑

j∈J
∑
i∈I
‖Λi j( f j)‖2 = ∑

j∈J

〈
∑
i∈I

Λi j
∗
Λi j( f j), f j

〉
= ∑

j∈J

〈
SΦ j( f j), f j

〉
=
〈
(⊕ j∈JSΦ j) f , f

〉
,

therefore S⊕ j∈JΦ j =⊕ j∈JSΦ j .
Recall that a g-frame is called exact if it ceases to be a g-frame whenever any of its

elements is removed. For more results about exact g-frames, see [13]. Now we have the
following result:

Corollary 2.1. Let {Φ j} j∈J be a bounded family of g-frames. If Φ j0 is an exact g-frame,
for some j0 ∈ J, then ⊕ j∈JΦ j is exact.

Proof. Suppose that i0 ∈ I such that {⊕ j∈JΛi j}i∈I−{i0} is a g-frame. Then by Theorem 2.1,
{Λi j0}i∈I−{i0} is a g-frame, which is a contradiction with the fact that Φ j0 is exact.

Theorem 2.2.
(a) {Φ j} j∈J is an (A,B)-bounded family of g-Riesz bases if and only if ⊕ j∈JΦ j is an

(A,B) g-Riesz basis.
(b) Φ j is a g-orthonormal basis, for each j∈ J if and only if⊕ j∈JΦ j is a g-orthonormal

basis.

Proof. (a) First let {Φ j} j∈J be an (A,B)-bounded family of g-Riesz bases. By [16, Corol-
lary 3.2], each Φ j is a g-Bessel sequence with upper bound B and therefore by Theorem
2.1, ⊕ j∈JΦ j is a g-Bessel sequence and it is easy to see that ⊕ j∈JΦ j is g-complete. Let F
be a finite subset of I and let {gi j} j∈J ∈ ⊕ j∈JHi j, for each i ∈ F . For proving that ⊕ j∈JΦ j
is an (A,B) g-Riesz basis, we must show that

A ∑
i∈F

∥∥{gi j} j∈J
∥∥2 ≤

∥∥∥∥∑
i∈F

(⊕ j∈JΛ
∗
i j)({gi j} j∈J)

∥∥∥∥2

≤ B ∑
i∈F

∥∥{gi j} j∈J
∥∥2

,

or equivalently

A ∑
i∈F

∑
j∈J
‖gi j‖2 ≤∑

j∈J

∥∥∥∥∑
i∈F

Λ
∗
i j(gi j)

∥∥∥∥2

≤ B ∑
i∈F

∑
j∈J
‖gi j‖2.

Now since each Φ j is an (A,B) g-Riesz basis, then we have

A ∑
i∈F

∑
j∈J
‖gi j‖2 = ∑

j∈J
A ∑

i∈F
‖gi j‖2 ≤∑

j∈J

∥∥∥∥∑
i∈F

Λ
∗
i j(gi j)

∥∥∥∥2

,
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and

B ∑
i∈F

∑
j∈J
‖gi j‖2 = ∑

j∈J
B ∑

i∈F
‖gi j‖2 ≥∑

j∈J

∥∥∥∥∑
i∈F

Λ
∗
i j(gi j)

∥∥∥∥2

.

Conversely suppose that ⊕ j∈JΦ j is an (A,B) g-Riesz basis and j0 ∈ J. It is easy to see that
Φ j0 is g-complete. Now let F be a finite subset of I and fi j0 ∈ Hi j0 , for each i ∈ F . Then

A ∑
i∈F

∥∥ fi j0

∥∥2 = A ∑
i∈F

∥∥{δ j0, j fi j0} j∈J
∥∥2

≤
∥∥∥∥∑

i∈F
(⊕ j∈JΛ

∗
i j)({δ j0, j fi j0} j∈J)

∥∥∥∥2

=
∥∥∥∥∑

i∈F
Λ
∗
i j0( fi j0)

∥∥∥∥2

,

and ∥∥∥∥∑
i∈F

Λ
∗
i j0( fi j0)

∥∥∥∥2

=
∥∥∥∥∑

i∈F
(⊕ j∈JΛ

∗
i j)({δ j0, j fi j0} j∈J)

∥∥∥∥2

≤ B ∑
i∈F

∥∥∥∥{δ j0, j fi j0} j∈J

∥∥∥∥2

= B ∑
i∈F

∥∥ fi j0

∥∥2
.

This means that Φ j0 is an (A,B) g-Riesz basis.
(b) It follows from Theorem 2.1 that Φ j is a Parseval g-frame for each j ∈ J if and only

if ⊕ j∈JΦ j is a Parseval g-frame. Now suppose that Φ j is a g-orthonormal basis, for each
j ∈ J. Let i, ` ∈ I, { fi j} j∈J ∈ ⊕ j∈JHi j and {g` j} j∈J ∈ ⊕ j∈JH` j. Then〈

(⊕ j∈JΛ
∗
i j)({ fi j} j∈J),(⊕ j∈JΛ

∗
` j)({g` j} j∈J)

〉
= ∑

j∈J

〈
Λ
∗
i j( fi j),Λ∗` j(g` j)

〉
.

If i 6= `, then ∑ j∈J
〈
Λ∗i j( fi j),Λ∗` j(g` j)

〉
= 0, and therefore〈

(⊕ j∈JΛ
∗
i j)({ fi j} j∈J),(⊕ j∈JΛ

∗
` j)({g` j} j∈J)

〉
= 0.

If i = `, then〈
(⊕ j∈JΛ

∗
i j)({ fi j} j∈J),(⊕ j∈JΛ

∗
` j)({g` j} j∈J)

〉
= ∑

j∈J

〈
fi j,gi j

〉
=
〈
{ fi j} j∈J ,{gi j} j∈J

〉
,

so ⊕ j∈JΦ j is a g-orthonormal basis. The converse is easy to verify.
Note that [12, Proposition 2.16] and [1, Proposition 2.6] are special cases of Theorems

2.1 and 2.2.

3. Perturbations, duals and equivalences

we recall the following definitions from [6] and [12]:

Definition 3.1. Let Λ = {Λi ∈ L(H,Hi) : i ∈ I} and Γ = {Γi ∈ L(H,Hi) : i ∈ I} be two
sequences and 0≤ λ1,λ2 < 1.

(i) Let ε > 0. We say that Γ is a (λ1,λ2,ε)-perturbation of Λ if for each i ∈ I and
f ∈ H, we have

‖Λi f −Γi f‖ ≤ λ1‖Λi f‖+λ2‖Γi f‖+ ε‖ f‖.
(ii) Let {ci}i∈I be a sequence of positive numbers such that ∑i∈I c2

i < ∞. We say that Γ

is a (λ1,λ2,{ci}i∈I)-perturbation of Λ if for each i ∈ I and f ∈ H, we have

‖Λi f −Γi f‖ ≤ λ1‖Λi f‖+λ2‖Γi f‖+ ci‖ f‖.
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Proposition 3.1. Let {Φ j} j∈J and {Ψ j} j∈J be bounded families of g-Bessel sequences.
Then Ψ j is a (λ1,λ2,ε)-perturbation of Φ j, for each j ∈ J if and only if ⊕ j∈JΨ j is a
(λ1,λ2,ε)-perturbation of ⊕ j∈JΦ j.

Proof. First suppose that Ψ j is a (λ1,λ2,ε)-perturbation of Φ j, for each j ∈ J and suppose
that f = { f j} j∈J ∈ ⊕ j∈JH j. Let F be a finite subset of J. Then for each i ∈ I, we have∥∥{(Λi j−Γi j) f j} j∈F

∥∥
2 ≤

∥∥{λ1‖Λi j f j‖+λ2‖Γi j f j‖+ ε‖ f j‖
}

j∈F

∥∥
2

≤
∥∥{λ1‖Λi j f j‖

}
j∈F

∥∥
2 +
∥∥{λ2‖Γi j f j‖

}
j∈F

∥∥
2 +
∥∥{ε‖ f j‖

}
j∈F

∥∥
2

≤ λ1

(
∑
j∈J
‖Λi j f j‖2

) 1
2
+λ2

(
∑
j∈J
‖Γi j f j‖2

) 1
2
+ ε

(
∑
j∈J
‖ f j‖2

) 1
2

= λ1
∥∥⊕ j∈J Λi j f

∥∥+λ2
∥∥⊕ j∈J Γi j f

∥∥+ ε‖ f‖.
Since the above inequality holds for each finite subset of J, then we have∥∥⊕ j∈J Λi j f −⊕ j∈JΓi j f

∥∥=
∥∥{(Λi j−Γi j) f j} j∈J

∥∥
2

≤ λ1
∥∥⊕ j∈J Λi j f

∥∥+λ2
∥∥⊕ j∈J Γi j f

∥∥+ ε‖ f‖.

This means that ⊕ j∈JΨ j is a (λ1,λ2,ε)-perturbation of ⊕ j∈JΦ j.
For the converse it is enough to note that for each i ∈ I, j0 ∈ J and f j0 ∈H j0 we can write

‖Λi j0 f j0 −Γi j0 f j0‖
= ‖(⊕ j∈JΛi j)({δ j0, j f j0} j∈J)− (⊕ j∈JΓi j)({δ j0, j f j0} j∈J)‖
≤ λ1‖⊕ j∈J Λi j({δ j0, j f j0} j∈J)‖+λ2‖⊕ j∈J Γi j({δ j0, j f j0} j∈J)‖+ ε‖{δ j0, j f j0} j∈J‖
= λ1‖Λi j0 f j0‖+λ2‖Γi j0 f j0‖+ ε‖ f j0‖,

and the result follows.

Corollary 3.1. Let {Φ j} j∈J be a B-bounded (resp. an (A,B)-bounded, with (1−λ1)
√

A >

(∑i∈I c2
i )

1/2) family of g-Bessel sequences (resp. g-frames) and Ψ j be a (λ1,λ2,{ci}i∈I)-
perturbation of Φ j,for each j ∈ J. Then ⊕ j∈JΨ j and Ψ j, for each j ∈ J, are g-Bessel
sequences (resp. g-frames) and ⊕ j∈JΨ j is a (λ1,λ2,{ci}i∈I)-perturbation of ⊕ j∈JΦ j.

Conversely if⊕ j∈JΨ j is a g-Bessel sequence and a (λ1,λ2,{ci}i∈I)-perturbation of⊕ j∈J
Φ j, then Ψ j is a (λ1,λ2,{ci}i∈I)-perturbation of Φ j, for each j ∈ J.

Proof. First let Ψ j be a (λ1,λ2,{ci}i∈I)-perturbation of Φ j, for each j ∈ J. Then by [12,
Proposition 4.3], Ψ j is a g-Bessel sequence with upper bound

(
((1+λ1)

√
B+(∑i∈I c2

i )
1/2)/

(1− λ2)
)2, for each j ∈ J. Therefore by Theorem 2.1, ⊕ j∈JΨ j is a g-Bessel sequence.

If {Φ j} j∈J is an (A,B)-bounded family of g-frames with (1−λ1)
√

A > (∑i∈I c2
i )

1/2, then
by [12, Proposition 4.3],

(
((1−λ1)

√
A− (∑i∈I c2

i )
1/2)/(1+λ2)

)2 is a lower bound for Ψ j,
for each j ∈ J. Hence by Theorem 2.1, ⊕ j∈JΨ j is a g-frame. Now the rest of the proof can
be obtained similar to the proof of Proposition 3.1 by using ci instead of ε , for each i∈ I.

It was shown in [12, Definition 2.10] that if {Λi ∈ L(H,Hi) : i∈ I} and {Γi ∈ L(H,Hi) : i∈
I} are g-Bessel sequences with upper bounds B and D, respectively, then ∑i∈I Γ∗i Λi( f ) con-
verges and ‖∑i∈I Γ∗i Λi( f )‖ ≤

√
BD‖ f‖, for each f ∈H. Therefore if {Φ j} j∈J and {Ψ j} j∈J

are bounded families of g-Bessel sequences, then the operator ∑i∈I(⊕ j∈JΓ∗i j)(⊕ j∈JΛi j) is
bounded on ⊕ j∈JH j.
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Proposition 3.2. Let {Φ j} j∈J and {Ψ j} j∈J be B and D-bounded families of g-Bessel se-
quences, respectively. Then Ψ j is a dual of Φ j, for each j ∈ J if and only if ⊕ j∈JΨ j is a
dual of ⊕ j∈JΦ j.

Proof. Let Ψ j be a dual of Φ j for each j ∈ J, f = { f j} j∈J ∈ ⊕ j∈JH j and j ∈ J. Then

∑
i∈I

∣∣〈Λi j f j,Γi j f j
〉∣∣≤ (∑

i∈I

∥∥Λi j f j
∥∥2
) 1

2
(

∑
i∈I

∥∥Γi j f j
∥∥2
) 1

2
≤
√

BD‖ f j‖2,

so ∑i∈I
∣∣〈Λi j f j,Γi j f j

〉∣∣ converges, for each j ∈ J. Also

∑
j∈J

∑
i∈I

∣∣〈Λi j f j,Γi j f j
〉∣∣≤√BD ∑

j∈J
‖ f j‖2 =

√
BD‖ f‖2,

therefore ∑ j∈J ∑i∈I
∣∣〈Λi j f j,Γi j f j

〉∣∣ converges. Hence

∑
j∈J

∑
i∈I

〈
Λi j f j,Γi j f j

〉
= ∑

i∈I
∑
j∈J

〈
Λi j f j,Γi j f j

〉
.

Now we have〈
∑
i∈I

(⊕ j∈JΓ
∗
i j)(⊕ j∈JΛi j)({ f j} j∈J),{ f j} j∈J

〉
= ∑

i∈I

〈
{Γ∗i jΛi j f j} j∈J ,{ f j} j∈J

〉
= ∑

i∈I
∑
j∈J

〈
Λi j f j,Γi j f j

〉
= ∑

j∈J
∑
i∈I

〈
Λi j f j,Γi j f j

〉
= ∑

j∈J

〈
∑
i∈I

Γ
∗
i jΛi j f j, f j

〉
= ∑

j∈J

〈
f j, f j

〉
=
〈
{ f j} j∈J ,{ f j} j∈J

〉
,

therefore ∑i∈I(⊕ j∈JΓ∗i j)(⊕ j∈JΛi j) f = f , for each f ∈ ⊕ j∈JH j, and this means that ⊕ j∈JΨ j
is a dual of ⊕ j∈JΦ j. Conversely suppose that ⊕ j∈JΨ j is a dual of ⊕ j∈JΦ j. Let j0 ∈ J and
f j0 ∈ H j0 . Now we have〈

∑
i∈I

Γ
∗
i j0Λi j0 f j0 , f j0

〉
=
〈

∑
i∈I

(
⊕ j∈J Γ

∗
i j
)(
⊕ j∈J Λi j

)(
{δ j0, j f j0} j∈J

)
,
{

δ j0, j f j0

}
j∈J

〉
=
〈{

δ j0, j f j0

}
j∈J ,
{

δ j0, j f j0

}
j∈J

〉
=
〈

f j0 , f j0

〉
,

therefore ∑i∈I Γ∗i j0Λi j0 f j0 = f j0 . This means that Ψ j0 is a dual of Φ j0 .
Now we have the following result for canonical duals.

Proposition 3.3. Let {Φ j} j∈J be an (A,B)-bounded family of g-frames. Then ⊕ j∈JΦ̃ j is a

g-frame and ⊕̃ j∈JΦ j =⊕ j∈JΦ̃ j.

Proof. Since Φ̃ j is an (1/B j,1/A j) g-frame, for each j ∈ J and inf{1/B j : j ∈ J}= 1/B > 0,
sup{1/A j : j ∈ J} = 1/A < ∞, then ⊕ j∈JΦ̃ j is an (1/B,1/A) g-frame, by Theorem 2.1.

Moreover as a consequence of Theorem 2.1, we can see that ⊕̃ j∈JΦ j = {⊕ j∈JΛi j(⊕ j∈J

SΦ j)
−1 : i ∈ I}. Now by using the definition of canonical duals, it is clear that ⊕ j∈JΦ̃ j =

{⊕ j∈JΛi jS−1
Φ j
∈ L(⊕ j∈JH j,⊕ j∈JHi j) : i ∈ I}. Thus it is enough to show that ⊕ j∈JΛi j(⊕ j∈J

SΦ j)
−1 = ⊕ j∈JΛi jS−1

Φ j
, for each i ∈ I. Since A · IdH j ≤ SΦ j ≤ B · IdH j , for each j ∈ J, then

by [14, Theorem 2.2.5], we have (1/B) · IdH j ≤ S−1
Φ j
≤ (1/A) · IdH j and therefore ‖S−1

Φ j
‖ ≤
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1/A, for each j ∈ J. Thus ⊕ j∈JS−1
Φ j

is a bounded operator. Now it is easy to see that

(⊕ j∈JSΦ j)
−1 =⊕ j∈JS−1

Φ j
, so for each { f j} j∈J ∈ ⊕ j∈JH j, we have

⊕ j∈JΛi j
(
⊕ j∈J SΦ j

)−1({ f j} j∈J
)

=
{

Λi jS−1
Φ j

( f j)
}

j∈J =⊕ j∈JΛi jS−1
Φ j

(
{ f j} j∈J

)
,

which completes the proof.
Now we recall some definitions for g-frames from [15].

Definition 3.2. Let Λ = {Λi ∈ L(H,Hi) : i ∈ I} and Γ = {Γi ∈ L(H,Hi) : i ∈ I} be two
g-frames.

(i) We say that Λ and Γ are unitarily equivalent if there is a unitary linear operator
T : H −→ H such that Γi = ΛiT , for each i ∈ I.

(ii) We say that Λ is isometrically related to Γ if there is an isometric linear operator
T : H −→ H such that Γi = ΛiT , for each i ∈ I.

Proposition 3.4. Let {Φ j} j∈J and {Ψ j} j∈J be bounded families of g-frames. Then
(i) If Φ j and Ψ j are unitarily equivalent, for each j ∈ J, then⊕ j∈JΦ j and⊕ j∈JΨ j are

unitarily equivalent.
(ii) If Φ j is isometrically related to Ψ j, for each j ∈ J, then ⊕ j∈JΦ j is isometrically

related to ⊕ j∈JΨ j.

Proof. (i) Suppose that Φ j and Ψ j are unitarily equivalent, for each j ∈ J and Tj : H j −→H j
is a unitary operator such that Γi j = Λi jTj, for each i ∈ I. Define T : ⊕ j∈JH j −→⊕ j∈JH j
by T = ⊕ j∈JTj. Since ‖T‖ = sup{‖Tj‖ : j ∈ J} = 1, then T is bounded. Now it is easy to
see that T is unitary and ⊕ j∈JΓi j = (⊕ j∈JΛi j)T , for each i ∈ I.

(ii) Suppose that Φ j is isometrically related to Ψ j, for each j ∈ J and Tj : H j −→ H j is
an isometric operator such that Γi j = Λi jTj, for each i ∈ I. Define T : ⊕ j∈JH j −→⊕ j∈JH j
by T = ⊕ j∈JTj. Since ‖T‖ = sup{‖Tj‖ : j ∈ J} = 1, then T is bounded. Now for each
f = { f j} j∈J ∈ ⊕ j∈JH j, we have

‖T f‖=

(
∑
j∈J

∥∥Tj f j
∥∥2

) 1
2

=

(
∑
j∈J

∥∥ f j
∥∥2

) 1
2

= ‖ f‖,

so T is an isometry. It is also easy to see that ⊕ j∈JΓi j = (⊕ j∈JΛi j)T , for each i ∈ I.
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