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1. Introduction

Consider nonlinear differential equations of fifth order with multiple deviating arguments,
τi, of the form:

x(5)(t)+
n

∑
i=1

ϕi(x(4)(t− τi))x(4)(t)+
n

∑
i=1

fi(x′′′(t− τi))+α3x′′(t)+α4x′(t)+α5x(t)

(1.1) = p(t,x(t),x(t− τ1), ...,x(t− τn), ...,x(4)(t), ...,x(4)(t− τn)).

Writing (1.1) as a system of first order differential equations, we get

x′(t) = y(t), y′(t) = z(t), z′(t) = w(t), w′(t) = u(t),

u′(t) =−
n

∑
i=1

ϕi(u(t− τi))u(t)−
n

∑
i=1

fi(w(t))−α3z(t)−α4y(t)−α5x(t)

+
n

∑
i=1

t∫
t−τi

f ′i (w(s))u(s)ds

+ p(t,x(t),x(t− τ1), ...,x(t− τn), ...,u(t),u(t− τ1), ...,u(t− τn)),(1.2)

where τi, (i = 1, 2,...,n), are positive constants, that is, fixed multiple deviating arguments;
ϕi, fi and p are continuous functions for the arguments displayed explicitly in (1.1); α3,α4

and α5 are some positive constants. It is assumed that fi(0) = 0 and the derivatives ∂

∂w fi(w)
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exist and are continuous for all w, and all solutions considered are also assumed to be real
valued.

The qualitative theory of nonlinear differential equations of higher order has wide appli-
cations in science and technology (see for example the papers of Chlouverakis and Sprott
[8] and Linz [16]). In particular, by now using the Liapunov’s second method [21], the
stability, instability and boundedness of solutions of certain fifth order nonlinear differen-
tial equations with and without delay have received and are still receiving intense attentions
by authors. For a comprehensive treatment of the subject on the topic we refer the reader
to the papers of Abou-El Ela and Sadek [1, 2], Adesina and Ukpera [3–5], Burganskaja
[6], Chukwu [9], Hong [17], Ogundare [23], Sinha [24], Tejumola and Afuwape [25], Tunç
[26–40] and the references cited therein for some works performed on the topic, which
include some nonlinear differential equations of fifth order with and without a deviating ar-
gument. Meanwhile, especially, since 1960s many good books, most of them are in Russian
literature, have also been published on the qualitative theory of differential equations with
deviating arguments (see for example the books of Burton [7], Èl’sgol’ts [10], Èl’sgol’ts and
Norkin [11], Gopalsamy [12], Hale [13], Hale and Verduyn Lunel [15], Kolmanovskii and
Myshkis [18], Kolmanovskii and Nosov [19], Krasovskii [20], Makay [22], Yoshizawa [40]
and the references listed in these books).

It should be noted that some works performed on the stability and boundedness of so-
lutions of nonlinear differential equations of the fifth order with and without a deviating
argument can be summarized in detail as follows:

In 1971, Burganskaja [6] and Sinha [24] considered certain classes of fifth order nonlin-
ear equations without delay using the Liapunov second method. Burganskaja established
sufficient conditions for the stability in the large of the zero solution while Sinha investi-
gated the stability of the critical points.

In 1976, Chukwu [9] also discussed the stability and boundedness of certain class of fifth
order.

Later, in 1990 and 1995, Hong [17] and Abou-El-Ela and Sadek [2] studied the stability
and boundedness of solutions for a class of non-linear differential equations of the fifth
order without delay.

In 1995, 1996, 2002 and 2007, Tunç [26–29] introduced some Liapunov functions to
study certain classes of equations of the fifth order without delay and established conditions
for the asymptotic stability in the large of the trivial solutions as well as boundedness of all
solutions of the corresponding non-homogeneous equations considered.

On equations with delay, Tunç [30–33] used functional Liapunov approach to establish
results on boundedness of solutions for the classes of delay differential equations of the fifth
order. Also recently in [34] and [35] sufficient conditions for the asymptotic stability of the
trivial solutions of certain classes of nonlinear fifth order differential equations with delay
considered were established.

However, it is also worth mentioning that, to the best of our knowledge, up to now, the
stability and boundedness of solutions for nonlinear differential equations of fifth order with
multiple deviating arguments have not been discussed in the literature. The basic reason for
the lack of any paper for these type differential equations is due to the difficulty of construc-
tion or definition of appropriate Liapunov functions or functionals for higher order nonlinear
differential equations. The construction or definition of Liapunov functions and functionals
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also remain as general problem in the literature. Our aim is to define an appropriate Lia-
punov functional for studying the stability and boundedness of solutions of (1.1). Motivated
by the above mentioned papers and books, we establish some sufficient conditions which
guarantee the stability and boundedness of solutions for (1.1). Our work is a continuation of
the stability and boundedness results related to the nonlinear differential equations of fifth
order with and without a deviating argument that were mentioned above. In fact, when we
take into consideration the differential equations of the fifth order discussed in the literature,
it can be seen that all of the equations studied do not include any deviating argument or only
include a deviating argument. Further, the works related to the stability and boundedness
of solutions are also very important in the theory and applications of differential equations,
and the investigation of the stability and boundedness of solutions for nonlinear differential
equations of fifth order with multiple deviating arguments takes an important place for the
researchers working in these areas.

2. Preliminaries

In this work we use the following notions: ℜn is the space of n- vectors. For a given number
r > 0,Cn denotes the space of continuous functions mapping the interval [−r,0] into ℜn and
for φ ∈Cn,‖φ‖= sup−r6φ60 ‖φ(θ)‖. Cn

H will denote the set of φ in Cn for which ‖φ‖< H.

For any continuous function x(u) defined on −r 6 u 6 A,A > 0, any fixed t,0 6 t 6 A,the
symbol xt will denote the function x(t +θ),−r 6 θ 6 0.

If F(φ) is a functional defined for every φ in Cn
H and ẋ(t) is the right side derivative of

x(t), we consider the autonomous functional differential equation:

(2.1) ẋ(t) = F(xt), t > 0.

We say x(φ)is a solution of (2.1) with the initial condition φ in Cn
H at t = 0 if there is an

A > 0 such that x(φ)is a function from [−r, A) into ℜn such that xt(φ)is in Cn
H for 0 6 t <

A, x0(φ) = φ and x(φ)(t) satisfies (2.1) for 0 6 t < A.

Definition 2.1. [14] Let V be a continuous scalar functional in Cn
H . The derivative of V

along the solutions of (2.1) will be defined by

V̇ (φ) = limsup
h→0+

V (xh(φ))−V (φ))
h

.

Lemma 2.1. [14] Suppose F(0) = 0. Let V be a continuous functional defined on Cn
H with

V (0) = 0 and let u(s) be a function, non-negative and continuous for 0 6 s < ∞, u(s)→∞

as s→∞ with u(0) = 0. If for all φ in Cn
H ,u(‖φ(0)‖) 6 V (φ), V̇ (φ) 6 0, then the solution

x(t) = 0 of (2.1) is stable.
Let R⊂Cn

H be a set of all functions φ ∈Cn
H where V̇ (φ) = 0. If {0}is the largest invariant

set in R, then the solution x(t) = 0 of (2.1) is asymptotically stable.

3. Main results

Let p(t,x(t), .x(t− τ1), ...,x(t− τn), ...,u(t),u(t− τ1), ...,u(t− τn))≡ 0.
Our first main result is the following theorem.

Theorem 3.1. We assume that there are continuous functions ϕi, fi and p such that fi(.)
are differentiable and positive constants α1, α2, α3,α4,α5,ε,ε0,δi,λi,Li and τi such that
the following conditions hold for every x,y,z,w and u :
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(i)

α1 > 0, α1α2−α3 > 0, (α1α2−α3)α3− (α1α4−α5)α1 > 0,

δ0 : = (α3α4−α2α5)(α1α2−α3)− (α1α4−α5)2 > 0, α5 > 0,

∆1 : =
(α3α4−α2α5)(α1α2−α3)

α1α4−α5
− (α1α4−α5) > 2εα2,

∆2 : =
α3α4−α2α5

α1α4−α5
− α1α4−α5

α1α2−α3
− ε

α1
> 0.

(ii)

2ε0 6
n

∑
i=1

ϕi(u(t− τi))−α1 6 min
{

εα2(α1α4−α5)2

4α2
4 (α1α2−α3)2 ,

ε

4α2
1
,

εα4

4δ 2

}
.

(iii) fi(0) = 0, fi(w) 6= 0,(w 6= 0), fi(w)
w > δi,

n
∑

i=1
δi = α2 and(

n

∑
i=1

fi(w)
w
−α2

)2

6 min
{

ε2α2(α1α4−α5)2

4α2
4 (α1α2−α3)2 ,

ε2α2

4δ 2

}
,(w 6= 0),

and ∣∣ f ′i (w)
∣∣6 Li,(i = 1,2, ...,n), for allw ∈ℜ.

Then, the zero solution of (1.1) is asymptotically stable provided that

τ < min
{

εα4

δL
,

εα2(α1α4−α5)
α4(α1α2−α3)L

,
ε

2α1L
,

ε0

L+2λ

}
,

where L =
n
∑

i=1
Li, λ =

n
∑

i=1
λi and τ = max{τ1,τ2, ...,τn}.

Proof. We define a Liapunov functional V =V (xt ,yt ,zt ,wt ,ut) by

2V =u2 +2α1uw+
2α4(α1α2−α3)

α1α4−α5
uz+2δuy+2

n

∑
i=1

∫ w

0
fi(ξ )dξ

+
[

α
2
1 −

α4(α1α2−α3)
α1α4−α5

]
w2 +2

[
α3 +

α1α4(α1α2−α3)
α1α4−α5

−δ

]
wz

+2α1δwy+2α4wy+2α5wx+α1α3z2(3.1)

+
[

α2α4(α1α2−α3)
α1α4−α5

−α4−α1δ

]
z2 +2δα2yz+2α1α4zy−2α5zy+2α1α5zx

+
α2

4 (α1α2−α3)
α1α4−α5

y2 +(δα3−α1α5)y2 +
2α4α5(α1α2−α3)

α1α4−α5
yx+δα5x2

+2
n

∑
i=1

λi

0∫
−τi

t∫
t+s

u2(θ)dθds,

where s is a real variable such that the integral
0∫
−τi

t∫
t+s

u2(θ)dθds is non-negative, λi are

some positive constants which will be determined later in the proof and δ is a positive
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constant defined by

(3.2) δ :=
α5(α1α2−α3)

α1α4−α5
+ ε.

It is clear that V (0,0,0,0,0) = 0 and 2
∫ w

0 fi(ξ )dξ = 2
∫ w

0
fi(ξ )

ξ
ξ dξ>2

∫ w
0 δiξ dξ = δiw2.

Hence, 2
n
∑

i=1

∫ w
0 fi(ξ )dξ >

n
∑

i=1
δiw2 = α2w2 since

n
∑

i=1
δi = α2. Then, the Liapunov functional

V = V (xt ,yt ,zt ,wt ,ut) can be revised as follows

2V >

[
u+α1w+

α4(α1α2−α3)
α1α4−α5

z+δy
]2

+
α4δ0

(α1α4−α5)2

(
z+

α5

α4
y
)2

(3.3)

+
α1α4−α5

α1α2−α3

[
α5(α1α2−α3)

α1α4−α5
x+

α4(α1α2−α3)
(α1α4−α5)

y+α1z+w
]2

+∆2(w+α1z)2 +
ε

α1
w2 +

α5δ0

4α4(α1α4−α5)
y2 + εα5x2

+2ε

(
α3α4−α2α5

α1α4−α5

)
yz+2

n

∑
i=1

λi

0∫
−τi

t∫
t+s

u2(θ)dθds

provided that
α5δ0

4α4(α1α4−α5)
> ε

[
ε +

2α5(α1α2−α3)
α1α4−α5

−α3

]
,

which we now assume.
Clearly, it follows from the first seven terms included in (3.3) that there exist sufficiently

small positive constants Di,(i = 1, 2,3, 4, 5), such that

2V > D1x2 +D2y2 +D3z2 +D4w2 +D5u2 +2ε

(
α3α4−α2α5

α1α4−α5

)
yz

+2
n

∑
i=1

λi

0∫
−τi

t∫
t+s

u2(θ)dθds.(3.4)

Consider the terms

V3 =:
D2

2
y2 +2ε

(
α3α4−α2α5

α1α4−α5

)
yz+

D3

2
z2,

which are contained in (3.4).
It can be easily seen that V3 is positive semi-definite provided that

ε
2 6

(
α1α4−α5

α3α4−α2α5

)2 D2D3

4
= D6,D6 > 0.

By using the above estimate, we get from (3.4) that

2V > D1x2 +
D2

2
y2 +

D3

2
z2 +D4w2 +D5u2 +2

n

∑
i=1

λi

0∫
−τi

t∫
t+s

u2(θ)dθds.



676 C. Tunç

On the other hand, since the integral λi
0∫
−τi

t∫
t+s

u2(θ)dθds is non-negative, it is obvious that

there exists a positive constant D7 which satisfies the inequality

x2 + y2 + z2 +w2 +u2 6 D−1
7 V (xt ,yt ,zt ,wt ,ut),

where D7 = 1
2 min{D1,2−1D2,2−1D3,D4,D5}.

The time derivative of V in (3.1) with respect to (1.2) leads that

d
dt

V (xt ,yt ,zt ,wt ,ut) =−

[
n

∑
i=1

ϕi(u(t− τi))−α1

]
u2

−

{
α1

n

∑
i=1

fi(w)
w
−
[

α3 +
α1α4(α1α2−α3)

α1α4−α5
−δ

]}
w2

−
{

α3α4(α1α2−α3)
α1α4−α5

− [δα2 +(α1α4−α5)]
}

z2

−
[

δα4−
α4α5(α1α2−α3)

α1α4−α5

]
y2

−α1

[
n

∑
i=1

ϕi(u(t− τi))−α1

]
wu

− α4(α1α2−α3)
α1α4−α5

[
n

∑
i=1

ϕi(u(t− τi))−α1

]
zu

−δ

[
n

∑
i=1

ϕi(u(t− τi))−α1

]
yu

− α4(α1α2−α3)
α1α4−α5

[
n

∑
i=1

fi(w)
w
−α2

]
wz

−δ

[
n

∑
i=1

fi(w)
w
−α2

]
wy+

n

∑
i=1

u
t∫

t−τi

f ′i (w(s))u(s)ds

+
n

∑
i=1

α1w
t∫

t−τi

f ′i (w(s))u(s)ds+
n

∑
i=1

δy
t∫

t−τi

f ′i (w(s))u(s)ds

+
α4(α1α2−α3)

α1α4−α5

n

∑
i=1

z
t∫

t−τi

f ′i (w(s))u(s)ds

+
n

∑
i=1

(λiτi)u2−
n

∑
i=1

λi

t∫
t−τi

u2(s)ds.(3.5)

In view of the assumptions of Theorem 3.1 and (3.2), we get
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[
n

∑
i=1

ϕi(u(t− τi))−α1

]
> 2ε0,

α1

n

∑
i=1

fi(w)
w
−
[

α3 +
α1α4(α1α2−α3)

α1α4−α5
−δ

]
> ε,

α3α4(α1α2−α3)
α1α4−α5

− [δα2 +(α1α4−α5)] > εα2,

δα4−
α4α5(α1α2−α3)

α1α4−α5
= εα4.

From the assumption | f ′i (w)|6 Li and estimate 2 |ab|6 a2 +b2 we get

n

∑
i=1

u
t∫

t−τi

f ′i (w(s))u(s)ds 6
1
2

n

∑
i=1

(Liτi)u2 +
1
2

n

∑
i=1

Li

∫ t

t−τi

u2(s)ds,

n

∑
i=1

α1w
t∫

t−τi

f ′i (w(s))u(s)ds 6
1
2

n

∑
i=1

(α1Liτi)w2 +
α1

2

n

∑
i=1

Li

∫ t

t−τi

u2(s)ds,

n

∑
i=1

δy
t∫

t−τi

f ′i (w(s))u(s)ds 6
1
2

n

∑
i=1

(δLiτi)y2 +
δ

2

n

∑
i=1

Li

∫ t

t−τi

u2(s)ds,

α4(α1α2−α3)
α1α4−α5

n

∑
i=1

z
t∫

t−τi

f ′i (w(s))u(s)ds 6
α4(α1α2−α3)
2(α1α4−α5)

n

∑
i=1

(Liτi)z2

+
α4(α1α2−α3)
2(α1α4−α5)

n

∑
i=1

Li

∫ t

t−τi

u2(s)ds.

Then we have

d
dt

V (xt ,yt ,zt ,wt ,ut) 6−

[
εα4

2
− δ

2

n

∑
i=1

(Liτi)

]
y2−

[
εα2

2
− α4L(α1α2−α3)

2(α1α4−α5)

n

∑
i=1

(Liτi)

]
z2

−

[
ε

4
− α1

2

n

∑
i=1

(Liτi)

]
w2−

[
ε0

2
− 1

2

n

∑
i=1

(Li +2λi)τi

]
u2

−

[
n

∑
i=1

λi−
(

1
2

+
α1

2
+

δ

2
+

α4(α1α2−α3)
2(α1α4−α5)

) n

∑
i=1

Li

] t∫
t−τi

u2(s)ds

−
8

∑
k=4

Vk,

where

V4 =
1
4

[
n

∑
i=1

ϕi(u(t− τi))−α1

]
u2 +

α4(α1α2−α3)
α1α4−α5

[
n

∑
i=1

ϕi(u(t− τi))−α1

]
uz+

εα2

4
z2,
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V5 =
1
4

[
n

∑
i=1

ϕi(u(t− τi))−α1

]
u2 +α1

[
n

∑
i=1

ϕi(u(t− τi))−α1

]
uw+

ε

4
w2,

V6 =
1
4

[
n

∑
i=1

ϕi(u(t− τi))−α1

]
u2 +δ

[
n

∑
i=1

ϕi(u(t− τi))−α1

]
uy+

εα4

4
y2,

V7 =
ε

4
w2 +

α4(α1α2−α3)
α1α4−α5

[
n

∑
i=1

fi(w)
w
−α2

]
wz+

εα2

4
z2,

V8 =
ε

4
w2 +δ

[
n

∑
i=1

fi(w)
w
−α2

]
wy+

εα4

4
y2.

It is clear that the expressions given by V4,V5,V6,V7 and V8 represent certain specific
quadratic forms, respectively. Making use of the basic information on the positive semi-
definite of a quadratic form, one can easily conclude that V4 > 0,V5 > 0,V6 > 0,V7 > 0 and
V8 > 0 provided that

n

∑
i=1

ϕi(u(t− τi))−α1 6
εα2(α1α4−α5)2

4α2
4 (α1α2−α3)2 ,

n

∑
i=1

ϕi(u(t− τi))−α1 6
ε

4α2
1
,

n

∑
i=1

ϕi(u(t− τi))−α1 6
εα4

4δ 2 ,(
n

∑
i=1

fi(w)
w
−α2

)2

6
ε2α2(α1α4−α5)2

4α2
4 (α1α2−α3)2(

n

∑
i=1

fi(w)
w
−α2

)2

6
ε2α4

4δ 2 .

Thus, in view of the above discussion and the estimate (3.5), it follows that

d
dt

V (xt ,yt ,zt ,wt ,ut) 6−

[
εα4

2
− δ

2

n

∑
i=1

(Liτi)

]
y2−

{
εα2

2
−
[

α4(α1α2−α3)
2(α1α4−α5)

] n

∑
i=1

(Liτi)

}
z2

−

[
ε

4
− α1

2

n

∑
i=1

(Liτi)

]
w2−

{
ε0

2
− 1

2

[
n

∑
i=1

(Li +2λi)τi

]}
u2

−

[
n

∑
i=1

λi−
(

1
2

+
α1

2
+

δ

2
+

α4(α1α2−α3)
2(α1α4−α5)

) n

∑
i=1

Li

] t∫
t−τi

u2(s)ds.

Let
n
∑

i=1
Li = L,

n
∑

i=1
λi = λ and τ = max{τ1,τ2, ...,τn}. Hence, we have

d
dt

V (xt ,yt ,zt ,wt ,ut) 6−
(

εα4

2
− δL

2
τ

)
y2−

{
εα2

2
−
[

α4(α1α2−α3)L
2(α1α4−α5)

]
τ

}
z2

−
(

ε

4
− α1L

2
τ

)
w2−

[
ε0

2
− (L+2λ )

2
τ

]
u2
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−
{

λ −
[

1
2

+
α1

2
+

δ

2
+

α4(α1α2−α3)
2(α1α4−α5)

]
L
} t∫

t−τi

u2(s)ds.

Let

λ =
[

1
2

+
α1

2
+

δ

2
+

α4(α1α2−α3)
2(α1α4−α5)

]
L.

Then we get

d
dt

V (xt ,yt ,zt ,wt ,ut) 6−
(

εα4

2
− δL

2
τ

)
y2−

{
εα2

2
−
[

α4(α1α2−α3)L
2(α1α4−α5)

]
τ

}
z2

−
(

ε

4
− α1L

2
τ

)
w2−

[
ε0

2
− (L+2λ )

2
τ

]
u2.

The above estimate implies
d
dt

V (xt ,yt ,zt ,wt ,ut) 6−D8y2−D9z2−D10w2−D11u2 6 0

for some positive constants Di,(i = 8, 9, 10, 11) provided that

τ < min
{

εα4

δL
,

εα2(α1α4−α5)
α4(α1α2−α3)L

,
ε

2α1L
,

ε0

L+2λ

}
.

In conclusion, we have shown that d
dt V (xt ,yt ,zt ,wt ,ut)6 0. Further, it follows that d

dt V (xt ,yt ,
zt ,wt ,ut) = 0 if and only if y = z = w = u = 0. In view of d

dt V (xt ,yt ,zt ,wt ,ut) ≡ 0 and
system (1.2) together, we can easily obtain x = y = z = w = u = 0 by the assumption
fi(w) 6= 0,(w 6= 0). Thus, all conditions of Lemma 2.1 (see [14]) hold. Therefore, by noting
the above discussion, we arrive at the conclusion that the zero solution of (1.1) is asymptot-
ically stable. This completes the proof of Theorem 3.1.

Let p(t,x(t),x(t− τ1), ...,x(t− τn), ...,u(t),u(t− τ1), ...,u(t− τn)) 6= 0.
Our second main result is the following theorem.

Theorem 3.2. We assume that all the assumptions of Theorem 3.1 and

|p(t,x(t),x(t− τ1), ...,x(t− τn), ...,u(t),u(t− τ1), ...,u(t− τn))|6 |q(t)| ,
t∫

0

|q(s)|ds 6 P0 < ∞

hold.
Then, there exists a finite positive constant M such that the solution x(t) of (1.1) defined

by the initial function

x(t) = φ(t), x′(t) = φ
′(t), x′′(t) = φ

′′(t),x′′′(t) = φ
′′′(t),x(4)(t) = φ

(4)(t)

satisfies

|x(t)|6
√

M,
∣∣x′(t)∣∣6√M,

∣∣x′′(t)∣∣6√M,
∣∣x′′′(t)∣∣6√M,

∣∣∣x(4)(t)
∣∣∣6√M

for all t > t0 > 0, where φ ∈C4([t0− r, t0], ℜ), provided that

τ < min
{

εα4

δL
,

εα2(α1α4−α5)
α4(α1α2−α3)L

,
ε

2α1L
,

ε0

L+2λ

}
.
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Proof. Subject to the assumptions of Theorem 3.2, the result of Theorem 3.1 can be revised
as follows

d
dt

V (xt ,yt ,zt ,wt ,ut) 6−D8y2−D9z2−D10w2−D11u2

+
∣∣∣∣u+α1w+

α4(α1α2−α3)
α1α4−α5

z+δy
∣∣∣∣ |q(t)|

6 D12(|y|+ |z|+ |w|+ |u|) |q(t)| ,

where D12 = max{1, α1, α4(α1α2−α3)(α1α4−α5)−1, δ}.
The estimate |a|< 1+a2 implies

d
dt

V (xt ,yt ,zt ,wt ,ut) 6 D12[4+(y2 + z2 +w2 +u2)] |q(t)| .

Using the estimate

x2 + y2 + z2 +w2 +u2 6 D−1
7 V (xt ,yt ,zt ,wt ,ut)

we obtain
d
dt

V (xt ,yt ,zt ,wt ,ut) 6 4D12 |q(t)|+ D12

D7
V (xt ,yt ,zt ,wt ,ut) |q(t)| .

Integrating this estimate from 0 to t and using the assumption
t∫

0
|q(s)|ds 6 P0 < ∞, we

get

V (xt ,yt ,zt ,wt ,ut) 6 V (x0,y0,z0,w0,u0)+4D12P0 +
D12

D7

t∫
0

V (xs,ys,zs,ws,us) |q(s)|ds.

Hence, using Gronwall inequality, one can easily obtain for some positive constant K1
that

V (xt ,yt ,zt ,wt ,ut) 6 [V (x0,y0,z0,w0,u0)+4D12P0]exp(D12D−1
7 P0) = K1 < ∞

so that
x2 + y2 + z2 +w2 +u2 6 D−1

7 V (xt ,yt ,zt ,wt ,ut) 6 D−1
7 K1 = M.

This completes the proof of Theorem 3.2.
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