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Abstract. Let G be a connected graph with maximum degree ∆(G). The irregularity index
t(G) of G is defined as the number of distinct terms in the degree sequence of G. We say
that G is maximally irregular if t(G) = ∆(G). The purpose of this note, apart from pointing
out that every highly irregular graph is maximally irregular, is to establish upper bounds on
the size of maximally irregular graphs and maximally irregular triangle-free graphs.
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1. Introduction

Let G = (V,E) be a finite connected graph with vertex set V and edge set E. The degree
degG(v) of a vertex v of G is the number of vertices adjacent to v. We denote by ∆(G)
the maximum value of the degrees of vertices of G. A graph that is not regular is called
irregular. The irregularity index t(G) of G, introduced by Mukwembi [6], is defined as the
number of distinct terms in the degree sequence of G. Clearly, for any connected graph G,

(1.1) t(G)≤ ∆(G).

This inequality inspires us to propose a new natural class of graphs which we, for lack of
a better term, call “maximally irregular graphs”. More formally, we say that a connected
graph G is maximally irregular if t(G) = ∆(G). In this note we study maximally irregular
graphs. A well-studied [1, 2, 3, 4] class of graphs is that of highly irregular graphs intro-
duced in [2]. The notion of highly irregular graphs was inspired by Chartrand, Erdős and
Oellermann’s question concerning how to define irregularity in graphs. Formally, a graph
G is highly irregular if it is connected and each of its vertices is adjacent only to vertices
with distinct degrees. The existence and enumeration of highly irregular graphs was inves-
tigated in [2] where it was uncovered that this class of highly irregular graphs is sufficiently
numerous and diverse so as to be an appropriate answer to the question concerning how to
define irregularity. We will begin by noting that every highly irregular graph is maximally
irregular implying that the class of maximally irregular graphs is at least as vast as that of
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highly irregular graphs. We will, by construction, show that the class of maximally irregu-
lar graphs is in fact much larger than the class of highly irregular graphs. Further, we will
establish asymptotically tight upper bounds on the size of maximally irregular graphs and
maximally irregular triangle-free graphs in terms of order.

For a vertex u of G we will denote the open neigbourhood of u, i.e., the set of all vertices
adjacent to u, by N(u), and the closed neigbourhood of u, i.e., the set N(u)∪{u}, by N[u].
For a subset S⊆V (G), we will denote by G[S] the subgraph of G induced by S.

2. Results

Theorem 2.1. Every highly irregular graph is maximally irregular.

Proof. Assume that G is a highly irregular graph and let v be a vertex of degree ∆. Since G
is highly irregular, all neighbours of v have distinct degrees. Thus, t(G) ≥ ∆(G). This, in
conjunction with (1.1), yields t(G) = ∆(G), and so G is maximally irregular as desired.

In general, the converse of Theorem 2.1 does not hold. For instance, the path graph,
Pn, n ≥ 3, is maximally irregular but not highly irregular. We now present a construction
which proves that the class of maximally irregular graphs is much larger than that of highly
irregular graphs.

Theorem 2.2. Every highly irregular graph G of order n ≥ 2 and maximum degree ∆ is
an induced subgraph of a maximally irregular graph H of order n + ∆ + 1. Moreover, the
graph H is not highly irregular.

Proof. Assume that G is a highly irregular graph of order n≥ 2. If ∆(G) = 1, then G = K2
and the graph obtained by taking G and attaching one end vertex of G to each of the two
vertices in a disjoint copy of K2 has the desired properties. Now assume that ∆(G)≥ 2. Let
v be a vertex of G with maximum degree ∆. Let H be the graph obtained by joining a single
vertex u, say, of K∆+1 to v. Note that |V (H)| = n + ∆(G) + 1, and since G is maximally
irregular because of Theorem 2.1, t(H) = t(G)+ 1 = ∆(G)+ 1 = ∆(H), showing that H is
maximally irregular. Since ∆(G) ≥ 2, u is adjacent to two vertices in K∆+1 with the same
degree. Therefore, H has the desired properties.

We now turn to the size of maximally irregular graphs. In [2], the maximum size of
a highly irregular graph of order n was proved to be (n(n + 2))/8 with equality possible
for n even. Majcher and Michael [4] improved this bound for odd n. They proved that
if n is odd and G is a highly irregular graph of order n, then the size m of G is at most
((n− 1)(n + 1))/8 + b(n + 1)/10c. For maximally irregular graphs none of these bounds
apply, for example consider the graph in Figure 1.

u u
u u

u u
u

Figure 1. A maximally irregular graph.
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In the next theorem, we establish an asymptotically tight upper bound on the size of
maximally irregular graphs in terms of order. The following simple observation is useful.

Fact 1. Let G be a maximally irregular graph. Then there exists a set S = {v1,v2, . . . ,vt} ⊆
V (G) such that

degG(vi) = i,
for all i = 1,2, . . . , t = ∆.

Theorem 2.3. Let G be a maximally irregular graph of order n. Then the size m of G
satisfies

m≤ (n+2)(n−1)
4

.

Moreover, the coefficient of n2 is best possible.

Proof. Let t = ∆ be the irregularity index of G and for i = 1,2, . . . , t, let
Ai := {x ∈V (G) | deg(x) = i} and |Ai|= ni. By Fact 1,

(2.1) ni ≥ 1 for all i = 1,2, . . . , t.

Furthermore,

(2.2) n1 +n2 + · · ·+nt = n.

Then, subject to (2.1) and (2.2), we have

2m = ∑
v∈A1

deg(v)+ ∑
v∈A2

deg(v)+ · · ·+ ∑
v∈At

deg(v) =
t

∑
i=1

ini

≤ 1+2+ . . .+(t−1)+ [n− (t−1)]t = nt− t2

2
+

t
2
.

It follows that

m≤ nt
2
− t2

4
+

t
4

= f (t),

say. A simple differentiation shows that, subject to 1 ≤ t ≤ n− 1, the function f is maxi-
mized for t = n−1. Therefore,

m≤ f (t)≤ f (n−1) =
(n+2)(n−1)

4
,

as desired.To see that the coefficient of n2 in the bound is best possible, consider the graph
with vertex set {v1,v2, . . . ,vn} in which viv j ∈ E(G) if and only if i + j > n. Then G is
maximally irregular and |E(G)|= (n(n−1))/4+1/2bn/2c.

In 1907 Mantel [5], and subsequently Turán [7] in 1941, showed that the size m of a
general triangle-free graph of order n is at most

m≤
⌊

n2

4

⌋
,

and equality holding iff G is the Turán graph T2(n), i.e., the complete bipartite graph whose
classes are as nearly equal as possible. For n ≥ 4, the extremal graph is not maximally
irregular. In the remainder of this paper, we will prove an upper bound on the size of
triangle-free maximally irregular graphs. First we need a lemma which establishes an upper
bound on the irregularity index of maximally irregular graphs with no triangles.
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Lemma 2.1. Let G be a maximally irregular graph of order n with no triangles. Then the
irregularity index of G satisfies

t(G)≤ 2
3
(n+1).

Proof. Let t = t(G) and, suppose to the contrary that

(2.3) t >
2
3
(n+1).

By Fact 1, let S = {v1,v2, . . . ,vt} ⊆ V (G) be such that degG(vi) = i, for all i = 1,2, . . . , t.
Consider the open neighbourhood N(vt) of vt .
Claim 1. For i ∈ {bt/2c,bt/2c+1, . . . , t−1}, we have that vi /∈ N(vt).
Proof of Claim 1: If the claim were false, then vivt is an edge in G for some i, bt/2c ≤ i ≤
t−1. Since G has no triangles, N(vi)∩N(vt) = /0; hence

n≥ |N(vi)|+ |N(vt)|= i+ t ≥ t +
⌊ t

2

⌋
≥ 3

2
t− 1

2
,

and so t ≤ 2/3(n+1/2), contradicting (2.3). Thus the claim is proven.
We deduce from Claim 1 that {vbt/2c,vbt/2c+1, . . . ,vt−1}∩N[vt ] = /0. Therefore,

n≥ |{vb t
2 c

,vb t
2 c+1, . . . ,vt−1}|+ |N[vt ]|= 2t +1−

⌊ t
2

⌋
≥ 2t +1− t +1

2
,

from which it follows that t ≤ 2/3(n−1/2), contradicting (2.3). This proves the lemma.

Proposition 2.1. Let G be a maximally irregular graph of order n. If G is triangle-free,
then the size m of G satisfies

m≤ 1
18

(n+1)(4n+1).

Proof. As in Theorem 2.3, we have that m ≤ nt/2− t2/4 + t/4. Since G is triangle-free,
by Lemma 2.1, t ≤ 2/3(n + 1). Subject to this constraint, the function nt/2− t2/4 + t/4
is maximized for t = 2/3(n + 1) to give m ≤ 1/18(n + 1)(4n + 1), and the proposition is
proven.

The bound in Proposition 2.1 seems not best possible. It is conceivable that the correct
bound is:

Conjecture 2.1. Let G be a maximally irregular graph of order n. If G is triangle-free, then
the size m of G satisfies

m≤ n(n+1)
6

.

Moreover, the inequality is tight.

It is not hard to construct maximally irregular graphs G with no triangles, of order n,
for which |E(G)| = (n(n + 1))/6. For instance, for n a multiple of 3, let Kn/3,n/3 be the
complete bipartite graph with partite sets V1 and V2. Let V1 = {v1,v2, . . . ,vn/3} and let
W = {w1,w2, . . . ,wn/3} be a set of vertices disjoint from V1∪V2. Form a graph G by taking
Kn/3,n/3 and joining each vertex wi in W to a vertex v j in V1 if and only if i+ j > n/3. Then
G is maximally irregular, triangle-free and

|E(G)|= n
3
· n

3
+1+2+ · · ·+ n

3
=

n(n+1)
6

.
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Conjecture 2.1 seems difficult at present. We conclude this note by giving some support
to the conjecture.

Proposition 2.2. Let G be a maximally irregular graph of order n with no triangles. If
t(G)≤ (1/3)n, then the size m of G satisfies

m≤ n(n+1)
6

.

Proof. As in Theorem 2.3, we have that m ≤ nt/2− t2/4 + t/4. The proposition follows
from maximizing nt/2− t2/4+ t/4 subject to t ≤ (1/3)n.
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