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Abstract. Let B(2m,m) be the set of all bicyclic graphs on 2m(m ≥ 2) vertices with per-
fect matchings. In this paper, we characterize the bicyclic graphs with minimal number of
matchings and maximal number of independent sets in B(2m,m).
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1. Introduction

Let G = (V,E) be a simple connected graph. Two edges of G are said to be independent
if they are not adjacent in G. A k-matching of G is a set of k mutually independent edges.
Denote by z(G) the total number of matchings in a graph G, that is, z(G) = ∑

b n
2 c

k=0 z(G,k),
where z(G,k) is the number of k-matchings of G for k ≥ 1 and z(G,0) = 1. Two vertices of
G are said to be independent if they are not adjacent in G. An independent k-set is a set of
k vertices, no two of which are adjacent. Let i(G) be the total number of independent sets
of G, then i(G) = ∑n

k=0 i(G,k), where i(G,k) is the number of k-independent sets of G for
k ≥ 1 and i(G,0) = 1.

The index z(G) (resp. i(G)) is also called Hosoya index(resp. Merrifield-Simmons index)
in graphic chemistry. It turned out to be applicable to several questions of molecular chem-
istry, for example, the connections with physico-chemical properties such as boiling point,
entropy or heat of vaporization are well studied [8, 20]. Up to now, many researchers have
investigated these graphic invariants. An important direction is to determine the graphs with
maximal or minimal number of matchings ( or independent sets, resp.) in a given class of
graphs. For instance, it was observed in [9, 15] that the star Sn has the minimal number of
matchings (or the maximal number of independent sets, resp.) and the path Pn has the max-
imal number of matchings (or the minimal number of independent sets, resp.) amongst all
trees with n vertices, respectively. In [17], Liu et al. studied trees with a prescribed diam-
eter with respect to the number of matchings and independent sets, respectively. Hou [12]
characterized the trees with a given size of matching and having minimal and second mini-
mal number of matchings, respectively. In [3], Deng and Chen gave the sharp lower bound
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on the number of matchings of unicyclic graphs. Ou [16] characterized extremal unicyclic
molecular graphs with maximal number of matchings. In [14], Li and one of the present
authors studied the number of independent sets in unicyclic graphs with a given diameter.
Wang and Hua [22] characterized the extremal (maximal and minimal ) number of indepen-
dent sets of unicyclic graphs with a given girth. Xu and Xu [27] determined all the unicyclic
graphs of order n and with given maximum degree maximizing the number of matchings
and minimizing the number of independent sets, respectively. Also n-vertex bicyclic graphs
have been the object of study of a series of articles by Deng and coauthors [4, 5, 6, 7].
In particular, Yu and Tian [28] characterized the extremal graphs with minimal number of
matchings and maximal number of independent sets, respectively, among all the connected
graphs of order n and size n + t− 1 with 0 ≤ t ≤ m− 1, where m is the matching number.
For further details, we refer readers to survey papers [10, 11, 19, 21, 23, 25, 26, 29, 30],
especially, a recent paper by S. Wagner and I. Gutman [24], which is a wonderful survey on
this topic, and the cited references therein.

Let B(2m,m) be the set of all bicyclic graphs on 2m(m≥ 2) vertices with perfect match-
ings. In this paper, we consider the bicyclic graphs with minimal number of matchings and
maximal number of independent sets, respectively, in B(2m,m).

In order to state our results, we introduce some notation and terminology. For other
undefined notation we refer to Bollobás [1]. For a vertex v of G, denote the degree of v
by dG(v). Set NG(v) = {u|uv ∈ E(G)}, NG[v] = NG(v)∪{v}. If W ⊂ V (G), we denote by
G−W the subgraph of G obtained by deleting the vertices of W and the edges incident
with them. Similarly, if E ⊂ E(G), we denote by G−E the subgraph of G obtained by
deleting the edges of E. If W = {v} and E = {xy}, we write G− v and G− xy instead of
G−{v} and G−{xy}, respectively. Denote by Fn the nth Fibonacci number. Recall that
Fn = Fn−1 +Fn−2,n≥ 2 with initial conditions F0 = F1 = 1. Then i(Pn) = Fn+1,z(Pn) = Fn.

Now we give some lemmas that will be used in the proof of our main results.

Lemma 1.1. [9] Let G = (V,E) be a graph.
(i) If uv ∈ E(G), then z(G) = z(G−uv)+ z(G−{u,v});

(ii) If v ∈V (G), then z(G) = z(G− v)+∑u∈NG(v) z(G−{u,v});
(iii) If G1,G2, . . . ,Gt are the components of the graph G, then z(G) = ∏t

j=1 z(G j).

Lemma 1.2. [9] Let G = (V,E) be a graph.
(i) If uv ∈ E(G), then i(G) = i(G−uv)− i(G−NG[u]∪NG[v]);

(ii) If v ∈V (G), then i(G) = i(G− v)+ i(G−NG[v]);
(iii) If G1,G2, . . . ,Gt are the components of the graph G, then i(G) = ∏t

j=1 i(G j).

Lemma 1.3. [18] Let H,X ,Y be three connected graphs disjoint in pair. Suppose that u,v
are two vertices of H, v′ is a vertex of X, u′ is a vertex of Y . Let G be the graph obtained from
H,X ,Y by identifying v with v′ and u with u′, respectively. Let G∗

1 be the graph obtained
from H,X ,Y by identifying vertices v,v′,u′ and G∗

2 be the graph obtained from H,X ,Y by
identifying vertices u,v′,u′. Then

(i) z(G∗
1) < z(G) or z(G∗

2) < z(G);
(ii) i(G∗

1) > i(G) or i(G∗
2) > i(G).

Let G consist of connected graph G1 and a pendent tree T , where G1 ∩T = r. Vertex r
is called the root of T on G1 and T is named the attaching tree to G1 rooted at r. Denote by
|V (T )| the order of T not including the root r of T.
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Lemma 1.4. [2] Let G be a connected graph with perfect matchings which consists of a
connected subgraph H and a tree T such that T is attached to a root-vertex r of H. If
|V (T )| ≥ 2 and v ∈V (T ) is a vertex furthest from the root r. Then v is a pendent vertex and
adjacent to a vertex u of degree 2.

2. Preliminaries

Hoffman and Smith [13] define an internal path of G as a walk u0u1 . . .us(s ≥ 1) such
that the vertices u0,u1, . . . ,us−1 are distinct, d(u0) > 2,d(us) > 2, and d(ui) = 2, whenever
0 < i < s. An internal path is closed if u0 = us.

Transformation A Let G ∈B(2m,m), P = v0v1 . . .vs be an internal path of G. If s = 2
and v0v2 /∈ E(G), joining v0 and v2 by an edge in G− v1, the resulting graph is denoted by
H ′; Then, attaching a pendent edge v0v1 to v0 in H ′ if v0v1 belongs to the perfect matchings
of G, and a pendent edge v2v1 to v2 if v1v2 belongs to the perfect matchings of G. The
resulting graph is denoted by H

′′
. If s≥ 3, v0 6= v3 and v0v3 /∈ E(G), joining v0 and v3 by an

edge in G−{v1,v2}, the resulting graph is denoted by G′; Then, attaching a path of length
2 to v0 in G′, denote the path by v0v1v2. The resulting graph is denoted by G

′′
.

Lemma 2.1. Let G ∈B(2m,m), P = v0v1 . . .vs be an internal path of G. H
′′
,G

′′
be graphs

as described in Transformation A.
(i) If s = 2 and v0v2 /∈ E(G), z(G) > z(H

′′
) and i(G) < i(H

′′
);

(ii) If s≥ 3, v0 6= v3 and v0v3 /∈ E(G), z(G) > z(G
′′
) and i(G) < i(G

′′
).

Proof. (i) Without loss of generality, let v0v1 belong to the perfect matchings of G. By
Lemma 1.1 and Lemma 1.2, we have

z(G) = z(G− v1v2)+ z(G−{v1,v2}),
z(H

′′
) = z(H

′′ − v0v2)+ z(H
′′ − v0− v2) = z(H

′′ − v0v2)+ z(H
′′ −{v0,v1,v2});

i(G) = i(G− v0)+ i(G−NG[v0]),

i(H
′′
) = i(H

′′ − v0)+ i(H
′′ −NH ′′ [v0]).

Note that

G− v1v2 ∼= H
′′ − v0v2, H

′′ −{v0,v1,v2} ⊂ G−{v1,v2},
G− v0 ∼= H

′′ − v0, H
′′ −NH ′′ [v0]⊂ G−NG[v0].

Note that H
′′ −NH ′′ [v0] and G−NG[v0] have the same order. Then

z(G− v1v2) = z(H
′′ − v0v2), z(G−{v1,v2}) > z(H

′′ −{v0,v1,v2}),
i(G− v0) = i(H

′′ − v0), i(G−NG[v0]) < i(H
′′ −NH ′′ [v0]).

Hence z(G) > z(H
′′
) and i(G) < i(H

′′
).

(ii) By Lemma 1.1 and Lemma 1.2, we have

z(G) = z(G− v2v3)+ z(G−{v2,v3}) = z(G− v2v3)+ z(G−{v1,v2,v3})
+ z(G−{v0,v1,v2,v3}),

z(G
′′
) = z(G

′′ − v0v3)+ z(G
′′ − v0− v3) = z(G

′′ − v0v3)+2z(G
′′ −{v0,v1,v2,v3});

i(G) = i(G− v3)+ i(G−NG[v3]) = i(G− v3)+ i(G−NG[v3]∪NG[v0])
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+2i(G−NG[v3]∪{v0,v1})
i(G

′′
) = i(G

′′ − v3)+ i(G
′′ −NG′′ [v3]) = i(G

′′ − v3)+3i(G
′′ −NG′′ [v3]∪{v1,v2}).

Note that

G− v2v3 ∼= G
′′ − v0v3,G−{v0,v1,v2,v3} ∼= G

′′ −{v0,v1,v2,v3},
G
′′ −{v0,v1,v2,v3} ⊂ G−{v1,v2,v3};

G− v3 ∼= G
′′ − v3,G−NG[v3]∪{v0,v1} ∼= G

′′ −NG′′ [v3]∪{v1,v2},
G−NG[v3]∪NG[v0]⊂ G

′′ −NG′′ [v3]∪{v1,v2}
Hence z(G) > z(G

′′
), i(G) < i(G

′′
).

Let Ĝ be a graph on m vertices, attach a pendent edge at each vertex of Ĝ, denote the
resulted graph by C(Ĝ). Obviously, C(Ĝ) has an unique perfect matchings which consists
of all pendent edges. Contracting each edge of the matching in C(Ĝ) yields the graph Ĝ on
m vertices. We call the graph Ĝ the contracted graph of the graph C(Ĝ).

Lemma 2.2. Let Ĝ be the contracted graph of G, if there exists either an internal path of
length no less than 2 or a closed internal path of length no less than 4 in Ĝ, then there exists
a connected graph G′ with a path of length 2 attached such that G′ = C(Ĝ′) for some Ĝ′
and z(G) > z(G′), i(G) < i(G′).

Proof. Let P = v0v1 . . .vs be an internal path of length no less than 2 or a closed internal
path of length no less than 4 in Ĝ, and v′0,v

′
1, . . . ,v

′
s the pendent vertices corresponding to

v0,v1, . . . ,vs in G, respectively. Denote by H the graph obtained from G− v1v2 by joining
v0,v2 with an edge.

Case 1. If P = v0v1 . . .vs is a closed internal path of length no less than 4 in Ĝ. By
Lemma 1.1, we have

z(G) = z(G− v1v2)+ z(G−{v1,v2})
= z(G− v1v2)+ z(G−{v′0,v1,v2})+ z(G−{v0,v′0,v1,v2})
= z(G− v1v2)+ z((G−{v′0,v1,v′1,v2,v′2})∪2P1)+ z((G−{v0,v′0,v1,v′1,v2,v′2})∪2P1)

= z(G− v1v2)+ z(G−{v′0,v1,v′1,v2,v′2})+ z(G−{v0,v′0,v1,v′1,v2,v′2}),
z(H) = z(H− v0v2)+ z(H−{v0,v2})

= z(H− v0v2)+ z(H−{v0,v′0,v1,v′1,v2,v′2}∪2P1∪P2)

= z(H− v0v2)+2z(H−{v0,v′0,v1,v′1,v2,v′2}),
and

G− v1v2 ∼= H− v0v2,G−{v0,v′0,v1,v′1,v2,v′2} ∼= H−{v0,v′0,v1,v′1,v2,v′2},
H−{v0,v′0,v1,v′1,v2,v′2} ⊂ G−{v′0,v1,v′1,v2,v′2},

so

z(G− v1v2) = z(H− v0v2),z(G−{v0,v′0,v1,v′1,v2,v′2}) = z(H−{v0,v′0,v1,v′1,v2,v′2}),
z(G−{v′0,v1,v′1,v2,v′2}) > z(H−{v0,v′0,v1,v′1,v2,v′2}).

Hence z(G) > z(H).
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By Lemma 1.2, we have

i(G) = i(G− v2)+ i(G−NG[v2])

= i(G− v2)+ i((G−{v1,v′1,v2,v′2,v3,v′3})∪2P1)

= i(G− v2)+4i(G−{v1,v′1,v2,v′2,v3,v′3})
= i(G− v2)+4[i(G−{v′0,v1,v′1,v2,v′2,v3,v′3})+ i(G−{v0,v′0,v1,v′1,v2,v′2,v3,v′3})]
= i(G− v2)+4[i(G−{v′0,v1,v′1,v2,v′2,v3,v′3}∪NG[v0])

+2i(G−{v0,v′0,v1,v′1,v2,v′2,v3,v′3})],
i(H) = i(H− v2)+ i(H−NH [v2])

= i(H− v2)+ i((H−{v0,v′0,v1,v′1,v2,v′2,v3,v′3})∪2P1∪P2)

= i(H− v2)+12i(H−{v0,v′0,v1,v′1,v2,v′2,v3,v′3}).
Note that

G− v2 ∼= H− v2,G−{v0,v′0,v1,v′1,v2,v′2,v3,v′3} ∼= H−{v0,v′0,v1,v′1,v2,v′2,v3,v′3},
G−{v′0,v1,v′1,v2,v′2,v3,v′3}∪NG[v0]⊂ H−{v0,v′0,v1,v′1,v2,v′2,v3,v′3},

then

i(G− v2 ∼= H− v2, i(G−{v0,v′0,v1,v′1,v2,v′2,v3,v′3}) = i(H−{v0,v′0,v1,v′1,v2,v′2,v3,v′3}),
i(G−{v′0,v1,v′1,v2,v′2,v3,v′3}∪NG[v0]) < i(H−{v0,v′0,v1,v′1,v2,v′2,v3,v′3}.
Hence i(G) < i(H).

Case 2. If P = v0v1 . . .vs is an internal path of length no less than 2 in Ĝ. By Lemma 1.1
and Lemma 1.2, we have

z(G) = z(G− v1v2)+ z(G−{v1,v2}) = z(G− v1v2)+ z(G−{v1,v′1,v2,v′2})
= z(G− v1v2)+ z(G−{v′0,v1,v′1,v2,v′2})+ z(G−{v0,v′0,v1,v′1,v2,v′2}),

z(H) = z(H− v0v2)+ z(H−{v0,v2}) = z(H− v0v2)+2z(H−{v0,v′0,v1,v′1,v2,v′2});
i(G) = i(G− v2)+ i(G−NG[v2]) = i(G− v2)+2i(G−NG[v2]∪{v′1})

= i(G− v2)+2i(G−NG[v2]∪{v′0,v
′
1})+2i(G−NG[v2]∪{v0,v′0,v

′
1})

= i(G− v2)+2i(G−NG[v2]∪NG[v0]∪{v′1})+4i(G−NG[v2]∪{v0,v′0,v
′
1}),

i(H) = i(H− v2)+ i(H−NH [v2]) = i(H− v2)+6i(H−NH [v2]∪{v′0,v1,v′1}).
Note that

G− v1v2 ∼= H− v0v2,G−{v′0,v1,v′1,v2,v′2} ∼= H−{v0,v′0,v1,v′1,v2,v′2},
H−{v0,v′0,v1,v′1,v2,v′2} ⊂ G−{v′0,v1,v′1,v2,v′2};

G− v2 ∼= H− v2,G−NG[v2]∪{v0,v′0,v
′
1} ∼= H−NH [v2]∪{v′0,v1,v′1},

G−NG[v2]∪NG[v0]∪{v′1} ⊂ H−NH [v2]∪{v′0,v1,v′1}.
Then z(G) > z(H), i(G) < i(H).

Select H = G′, then we obtain our desirable results.



738 S. Duan and Z. Zhu

3. Main results

Let G be a bicyclic graph. The base of G, denoted by B(G), is the minimal bicyclic subgraph
of G. Obviously, B(G) is the unique bicyclic subgraph of G containing no pendant vertex,
and G can be obtained from B(G) by planting trees to some vertices of B(G). It is well
known that bicyclic graphs have the following two types of bases: B(p, l,q) and P(p,q,r),
where B(p, l,q) is the graph obtained by joining a new path u1u2 . . .ul between two cycles Cp
and Cq with u1 ∈V (Cp),ul ∈ V (Cq), and P(p,q,r) is the bicyclic graph consisting of three
pairwise internal disjoint paths Pp+1,Pq+1,Pr+1 with common endpoints u,v. Let B1(2m) =
{G ∈ B(2m,m)|B(G) = B(p, l,q), p ≤ q};B2(2m) = {G ∈ B(2m,m)|B(G) = P(p,q,r)}.
Then B(2m,m) = B1(2m)∪B2(2m).

u

 
!

3m  

2m
B

'u 'v

Figure 1. The graph B2m.

Lemma 3.1. Let B2m be graph of the form in Figure 1. Then z(B2m) = 4 ·2m−1 +(m−3) ·
2m−2 and i(B2m) = 2 ·3m−1 +2m−3.

Proof. By Lemma 1.1 and Lemma 1.2, we have

z(B2m) = z(B2m−u)+ ∑
v∈NB2m (u)

z(B2m−{u,v})

= z((m−1)P2∪P1)+ z((m−1)P2)+4z((m−2)P2∪2P1)+(m−3)z((m−2)P2∪2P1)

= 4 ·2m−1 +(m−3) ·2m−2,

i(B2m) = i(B2m−u)+ i(B2m−NB2m [u]) = i((m−1)P2∪P1)+ i((m−3)P1)

= 2 ·3m−1 +2m−3.

Let G1,G2, . . . ,G14 be graphs of the form in Figure 2, by direct calculation, we have

z(G1) = 20,z(G2) = 16,z(G3) = 38,z(G4) = 52,z(G5) = 20;

z(G6) = 45,z(G7) = 46,z(G8) = 42,z(G9) = 250,z(G10) = 40;

z(G11) = 94,z(G12) = 99,z(G13) = 142,z(G14) = 143.(3.1)

And

i(G1) = 17, i(G2) = 19, i(G3) = 52, i(G4) = 48, i(G5) = 15;

i(G6) = 45, i(G7) = 44, i(G8) = 47, i(G9) = 384, i(G10) = 48;

i(G11) = 136, i(G12) = 132, i(G13) = 128, i(G14) = 132.(3.2)
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G
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G
7
G
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G

9
G
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G

11
G 12

G

13
G

14
G

Figure 2. The graphs G1,G2, . . . ,G14.

Theorem 3.1. Let G be a graph in B1(2m),m≥ 3. Then z(G)≥ z(B2m) and i(G)≤ i(B2m),
the equalities hold if and only if G∼= B2m.

Proof. When m = 3, B1(2m)= {G1,G2,G5, B̂(3,1,4)}. By direct calculation, z(B̂(3,1,4))=
20, i(B̂(3,1,4)) = 17, combining (3.1) and (3.2), we have z(G) ≥ z(G2) = z(B2m), i(G) ≤
i(G2) = i(B2m).

Now we suppose m≥ 4. Let G ∈ B1(2m).
Case 1. If G has a pendent vertex v′ with its adjacent vertex u′ of degree 2. Let NG(u′) =

{v′,r}. By Lemmas 1.1 and 1.2, we have

z(G) = z(G− v′)+ z(G−{v′,u′}) = z(G−{v′,u′,r})+2z(G−{v′,u′}),
z(B2m) = z(B2m− v′)+ z(B2m−{v′,u′}) = z(B2m−{v′,u′,u})+2z(B2m−{v′,u′})

= z(K1∪ (m−2)K2)+2z(B2m−{v′,u′});
i(G) = i(G− v′)+ i(G−{v′,u′}) = i(G−{v′,u′,r})+2i(G−{v′,u′}),

i(B2m) = i(B2m− v′)+ i(B2m−{v′,u′}) = i(B2m−{v′,u′,u})+2i(B2m−{v′,u′})
= i(K1∪ (m−2)K2)+2i(B2m−{v′,u′}).

Since G−{v′,u′,r} is a graph on 2m−3 vertices with (m−2)-matching, K1∪(m−2)K2
is a spanning subgraph of G−{v′,u′,r} when G � B2m, then z(G−{v′,u′,r}) > z(K1 ∪
(m− 2)K2), i(G−{v′,u′,r}) < i(K1 ∪ (m− 2)K2). Since G−{v′,u′} is a graph on 2m− 2
vertices with perfect matching, by induction hypothesis, we have z(G−{v′,u′}) > z(B2m−
{v′,u′}), i(G−{v′,u′}) < i(B2m−{v′,u′}).

Then z(G)≥ z(B2m), i(G)≤ i(B2m).
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Case 2. If G has not a pendent vertex v′ with its adjacent vertex u′ of degree 2. Then
G can be obtained from B(p, l,q) by attaching some pendent edges at some vertices of
B(p, l,q). In fact, if there is a vertex u ∈ V (B(p, l,q)) attaching a tree T with |V (T )| ≥ 2,
by Lemma 1.4, it is contradict to the choice of G. Let P = v0v1 . . .vs be the longest internal
path in G.

Subcase 2.1. s = 1.
When d(u1) ≥ 4, then G ∼= C(B(p, l,q)). If there exists either an internal path of length

no less than 2 or a closed internal path of length no less than 4 in B(p, l,q), by Lemma 2.2
and Case 1, we have the desired results. Otherwise, B(p, l,q)∼= B(3,1,3) or B(3,2,3), then

G ∈ {C(B(3,1,3)),C(B(3,2,3))}.
By direct calculation, we have

z(C(B(3,1,3))) = 90,z(C(B(3,2,3))) = 221; i(C(B(3,1,3))) = 144, i(C(B(3,2,3))) = 224.

By Lemma 3.1,

z(B10) = 52,z(B12) = 76; i(B10) = 166, i(B12) = 494.(3.3)

Hence, we also have the desired results.
When d(u1) = 3, then l = 2 and d(u) = 3 for any u ∈ V (B(G)). Let G′ be the graph

obtained form G− u1u2 by identifying u1 with u2 and adding a pendent edge at u1, obvi-
ously, G′ ∈ B1(2m) and G′ ∼= C(B(p, l−1,q)). By Lemma 1.3, we have z(G) > z(G′) and
i(G) < i(G′), as above discussion, we have z(G′) > z(B2m) and i(G′) < i(B2m). Then we
obtain the desired results.

Subcase 2.2. s = 2, then at least one of v0,v2 must be in {u1,ul}. Otherwise, v1 must be
an unmatched vertex, a contradiction. Then there are at most two internal paths of length 2.

Subcase 2.2.1. G has only one internal path of length 2.
When v0v2 /∈ E(G), by Lemma 2.1, we can obtain a connected graph G′ such that G′ ∼=

C(B(p, l′,q)), where l′ ≤ l. By Subcase 2.1., we have the desired results.
When v0v2 ∈ E(G), then B(G) ∼= B(3, l,q). Without loss of generality, let v0 = u1. If

l ≥ 3, let G′ be the graph obtained from G by deleting u2u3 and adding u1u3. Set G−u2u3 =
A∪D, where u2 ∈V (A),u3 ∈V (D). By Lemmas 1.1 and 1.2, we have

z(G) = z(G−u2u3)+ z(G−{u2,u3}) = z(A∪D)+ z((A−u2)∪ (D−u3))

= z(A∪D)+6z(D−u3),

z(G′) = z(G′−u1u3)+ z(G′−{u1,u3}) = z(A∪D)+ z((A−u1)∪ (D−u3))

= z(A∪D)+3z(D−u3);

i(G) = i(G−u3)+ i(G−NG[u3]) = i(A∪ (D−u3))+ i((A−u2)∪ (D−ND[u3]))

= i(A∪ (D−u3))+14i(D−ND[u3]),

i(G′) = i(A∪ (D−u3))+15i(D−ND[u3]).(3.4)

Then z(G) > z(G′) and i(G) < i(G′) and there is a pendent vertex v′ with its adjacent
vertex u2 of degree 2 in G′. Similarly, if q ≥ 4, we also can find a graph G′ which satisfy
z(G) > z(G′) and i(G) < i(G′) and there is a pendent vertex v′ with its adjacent vertex u′ of
degree 2 in G′. By Case 1, z(G′) > z(B2m) and i(G′) < i(B2m). Then we obtain the desired
results. If l ≤ 2 and q = 3, then G ∈ {G4,G12}. By (3.1), (3.2) and Lemma 3.1, we have the
desired results.
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Subcase 2.2.2. G have two internal paths of length 2, let P = v0v1v2 and P′ = v′0v′1v′2 be
the two paths.

When at least one of v0v2,v′0v′2 /∈ E(G), by Lemma 2.1, we can obtain a graph G′ such
that z(G) > z(G′) and i(G) < i(G′), and G′ has one internal path of length 2, by Subcase
2.2.1., we have the desired results.

When all of v0v2,v′0v′2 ∈ E(G), then B(G)∼= B(3, l,3). If l ≥ 3, similar to Subcase 2.2.1.,
we can obtain the desired results. If l ≤ 2, then G∼= G6. By (3.1), (3.2) and Lemma 3.1, we
have the desired results.

Subcase 2.3. s = 3.
If there exists an internal path P = v0v1v2v3 with v0v3 /∈ E(G),v0 6= v3. By Transforma-

tion A and Lemma 2.1, we can find a graph G′ such that z(G) > z(G′), i(G) < i(G′), and
there is a pendent vertex v′ with its adjacent vertex u′ of degree 2 in G′. By Case 1, we have
z(G′)≥ z(B2m), i(G′)≤ i(B2m), as desired. Otherwise, any internal path P = v0v1v2v3 in G,
it has either v0v3 ∈ E(G) or v0 = v3.

Subcase 2.3.1. Any internal path P = v0v1v2v3 in G, it has v0v3 ∈ E(G). Obviously,
there are at most two such internal paths.

When there are two such internal paths in G, then B(G) ∼= B(4, l,4). Further l ≥ 2,
otherwise G /∈ B1(2m). If d(u1) = 3, then u1u2 must be an matching edge and d(u2) =
2,d(u3)≥ 3. Let G′ be the graph obtained from G by deleting u2u3 and adding u1u3. Similar
to the procedure of (3.4), we have z(G) > z(G′) and i(G) < i(G′). To find the extremal graph,
we can set d(u1),d(ul)≥ 4. Then we have d(ui) = 3 for i = 2, . . . , l−1, otherwise, it must
have another internal path P′ = v′0v′1v′2v′3 with v′0v′3 /∈ E(G), a contradiction. If l ≥ 3, similar
to the discussion of Subcase 2.2.1., we have the desired results. For l = 2, G ∼= G9, by
(3.1-3.3), we have the desired results.

When there is only one such internal path in G, then B(G)∼= B(4, l,q). If l ≥ 3 or q≥ 4,
similar to the discussion of Subcase 2.2.1., we have the desired results. If l ≤ 2 and q = 3,
G ∈ {G13,G14}, by (3.1-3.3), we have the desired results.

Subcase 2.3.2. Any internal path P = v0v1v2v3 in G, it has v0 = v3. Obviously, there are
at most two such internal paths.

When there are two such internal paths in G, then B(G) ∼= B(3, l,3). If l ≥ 3, similar to
the discussion of Subcase 2.2.1., we have the desired results. If l ≤ 2, G ∈ {G2,G5,G10},
by (3.1–3.3), we have the desired results.

When there is only one such internal path in G, then B(G)∼= B(3, l,q). If l ≥ 3 or q≥ 4,
similar to the discussion of Subcase 2.2.1., we have the desired results. If l ≤ 2 and q = 3,
G ∈ {G1,G3,G7,G8,G11}, by (3.1–3.3), we have the desired results.

Subcase 2.4. s ≥ 4. By Translation A, Lemma 2.1 and Case 1, we have the desired
results.

This completes the proof.
Let W1,W2, . . . ,W12 be graphs of the form in Figure 3, by direct calculation, we have

z(W1) = 22,z(W2) = 20,z(W3) = 20,z(W4) = 19,z(W5) = 24,z(W6) = 18,

z(W7) = 19,z(W8) = 26,z(W9) = 21,z(W10) = 46,z(W11) = 108,z(W12) = 44.(3.5)

And

i(W1) = 17, i(W2) = 18, i(W3) = 16, i(W4) = 12, i(W5) = 17, i(W6) = 18,

i(W7) = 17, i(W8) = 17, i(W9) = 16, i(W10) = 52, i(W11) = 136, i(W12) = 48.(3.6)
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Figure 3. The graphs W1,W2, . . . ,W12.

Theorem 3.2. Let G be a graph in B2(2m),m≥ 3. Then z(G) > z(B2m) and i(G) < i(B2m).

Proof. When m = 3, B1(2m) = {G1,G2,G5, B̂(3,1,4)}, B2(2m) = {W1,W2, . . . ,W9}. By
(3.5), (3.6), Lemma 3.1 and Theorem 3.2, we have z(G) > z(B2m), i(G) < i(B2m).

We now suppose m≥ 4. For any graph G ∈ B2(2m), B(G)∼= P(p,q,r). For convenience,
let q≤ r ≤ p.

Case 1. G has a pendent vertex v′ with its adjacent vertex u′ of degree 2. Similar to the
proof of Case 1 in Theorem 3.2, we have the desired results.

Case 2. G hasn’t a pendent vertex v′ with its adjacent vertex u′ of degree 2 and (p,q,r) 6=
(2,1,2). Then G can be obtained from P(p,q,r) by attaching some pendent edges at some
vertices of P(p,q,r). Let Pp+1 = uu1u2 . . .up−1v, u′i be the pendent vertex which is adjacent
to ui(i = 1,2, . . . , p−1), respectively, and P = v0v1 . . .vs be the longest internal path in G.

Subcase 2.1. s = 1. If dG(u) = 4, G∼=C(P(p,q,r)). By Lemma 2.2 and Case 1, we have
the desired results. If dG(u) = 3, then dG(v) = 3,q = 1 and p≥ 3.

If p ≥ 4, let G′ be the graph obtained from G by deleting u2u3 and adding u1u3. By
Lemmas 1.1 and 1.2, we have

z(G) = z(G−u2u3)+ z(G−{u2,u3}) = z(G−u2u3)+ z(G−{u2,u′2,u3,u′3})
= z(G−u2u3)+ z(G−{u′1,u2,u′2,u3,u′3})+ z(G−{u1,u′1,u2,u′2,u3,u′3})

z(G′) = z(G′−u1u3)+ z(G′−{u1,u3}) = z(G′−u1u3)+2z(G′−{u1,u′1,u2,u′2,u3,u′3}),
i(G) = i(G−u3)+ i(G−NG[u3]) = i(G−u3)+2i(G−NG[u3]∪{u′2})

= i(G−u3)+2[i(G−NG[u3]∪{u′1,u
′
2})+ i(G−NG[u3]∪{u1,u′1,u

′
2})]

= i(G−u3)+2[i(G−NG[u3]∪NG[u1]∪{u′1,u
′
2})+2i(G−NG[u3]∪{u1,u′1,u

′
2})]

i(G′) = i(G′−u3)+ i(G′−NG′ [u3]) = i(G′−u3)+6i(G′−NG′ [u3]∪{u′1,u2,u′2}).
Note that

G−u2u3 ∼= G′−u1u3,G−{u1,u′1,u2,u′2,u3,u′3} ∼= G′−{u1,u′1,u2,u′2,u3,u′3},
G′−{u1,u′1,u2,u′2,u3,u′3} ⊂ G−{u′1,u2,u′2,u3,u′3};
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G−u3 ∼= G′−u3,G−NG[u3]∪{u1,u′1,u
′
2})∼= G′−NG′ [u3]∪{u′1,u2,u′2},

G−NG[u3]∪NG[u1]∪{u′1,u
′
2} ⊂ G′−NG′ [u3]∪{u′1,u2,u′2}.

Then z(G) > z(G′) and i(G) < i(G′). By Case 1, we have the desired results.
If p = 3, then r ≤ 3, and G ∈ {W11,W12}. By (3.5), (3.6), Lemma 3.1 and Theorem 3.2,

we have z(G) > z(B2m), i(G) < i(B2m).
Subcase 2.2. s = 2, then at least one of v0,v2 must be in {u,v}. Otherwise, v1 must be

an unmatched vertex, a contradiction. Then there are at most two internal paths of length 2.
Subcase 2.2.1. G has only one internal path of length 2.
When v0v2 /∈ E(G), by Lemma 2.1, we can obtain a connected graph G′ such that G′ ∼=

C(P(p′,q′,r′)). By Subcase 2.1., we have the desired results.
When v0v2 ∈ E(G), then B(G)∼= P(p,1,2), where p≥ 3. Without loss of generality, let

v1v2 be a matching edge and u = v0,v = v2, then dG(u) = 4,dG(v) = 3. Set u′ be the pendent
vertex which is adjacent to u. Let G′ be the graph obtained from G by deleting u1u2 and
adding uu2. Obviously, G′ has a pendent vertex which is adjacent to a vertex of degree 2.
By Lemmas 1.1 and 1.2, we have

z(G) = z(G−u1u2)+ z(G−{u1,u2}) = z(G−u1u2)+ z(G−{u1,u′1,u2,u′2})
= z(G−u1u2)+ z(G−{u′,u1,u′1,u2,u′2})+ z(G−{u,u′,u1,u′1,u2,u′2}),

z(G′) = z(G′−uu2)+ z(G′−{u,u2}) = z(G′−uu2)+2z(G′−{u,u′,u1,u′1,u2,u′2}),
i(G) = i(G−u2)+ i(G−NG[u2]) = i(G−u2)+4i(G−{u1,u′1,u2,u′2,u3,u′3})

= i(G−u2)+4i(G−{u′,u1,u′1,u2,u′2,u3,u′3})+4i(G−{u,u′,u1,u′1,u2,u′2,u3,u′3})
= i(G−u2)+4i(G−{u′,u1,u′1,u2,u′2,u3,u′3}∪NG[u])

+8i(G−{u,u′,u1,u′1,u2,u′2,u3,u′3})
i(G′) = i(G′−u2)+ i(G′−NG′ [u2]) = i(G′−u2)+12i(G′−{u,u′,u1,u′1,u2,u′2}).

Note that

G−u1u2 ∼= G′−uu2,G−{u,u′,u1,u′1,u2,u′2} ∼= G′−{u,u′,u1,u′1,u2,u′2},
G′−{u,u′,u1,u′1,u2,u′2} ⊂ G−{u′,u1,u′1,u2,u′2};

G−u2 ∼= G′−u2,G−{u′,u1,u′1,u2,u′2,u3,u′3}∪NG[u]⊂ G′−{u,u′,u1,u′1,u2,u′2}.

Then z(G) > z(G′) and i(G) < i(G′). By Case 1, we have the desired results.
Subcase 2.2.2. G have two internal paths of length 2, let P = v0v1v2 and P′ = v′0v′1v′2 be

the two paths. Then at least one of v0v2,v′0v′2 is not an edge of G, by Lemma 2.1, we can
obtain a graph G′ such that z(G) > z(G′) and i(G) < i(G′), and G′ has one internal path of
length 2, by Subcase 2.2.1., we have the desired results.

Subcase 2.3. s = 3.
If there exists an internal path P = v0v1v2v3 with v0v3 /∈ E(G). By Transformation A,

Lemma 2.1 and Case 1, we have the desired results. Otherwise, any internal path P =
v0v1v2v3 in G, it has v0v3 ∈ E(G). Obviously, there are at most two such internal paths.

When there are two such internal paths in G, then B(G)∼= P(3,1,3). Then G∈{W8,W10}.
By (3.5), (3.6), Lemma 3.1 and Theorem 3.2, we have z(G) > z(B2m), i(G) < i(B2m).
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When there is only one such internal path in G, then B(G) ∼= P(3,1,q). Let G′ be the
graph obtained from G by deleting v1v2 and adding uv2. By Lemmas 1.1 and 1.2, we have

z(G) = z(G− v1v2)+ z(G−{v1,v2}),
z(G′) = z(G′−uv2)+ z(G′−{u,v2}) = z(G′−uv2)+ z(G′−{u,v1,v2}),
i(G) = i(G− v2)+ i(G−NG[v2]) = i(G− v2)+ i(G−{v,v1,v2})

= i(G− v2)+ i(G−{u,v,v1,v2})+ i(G−{v,v1,v2}∪NG[u]),

i(G′) = i(G′− v2)+ i(G′−NG′ [v2]) = i(G′− v2)+2i(G′−{u,v,v1,v2}).
Note that

G− v1v2 ∼= G′−uv2,G′−{u,v1,v2} ⊂ G−{v1,v2};

G− v2 ∼= G′− v2,G−{u,v,v1,v2} ∼= G′−{u,v,v1,v2},
G−{v,v1,v2}∪NG[u]⊂ G′−{u,v,v1,v2}.

Then z(G) > z(G′) and i(G) < i(G′). Hence s = 2 in G′, by Subcase 2.2., we have the
desired results.

Subcase 2.4. s ≥ 4. By Translation A, Lemma 2.1 and Case 1, we have the desired
results.

Case 3. G hasn’t a pendent vertex v′ with its adjacent vertex u′ of degree 2 and (p,q,r) =
(2,1,2). Then G∈{W1,W2,C(P(2,1,2))}. Note that z(C(P(2,1,2)))= 38, i(C(P(2,1,2)))=
52. By (3.5), (3.6), Lemma 3.1 and Theorem 3.2, we have z(G) > z(B2m), i(G) < i(B2m).

This completes the proof.
By Lemma 3.1, Theorem 3.2 and 3.3, we obtain our main results.

Theorem 3.3. Let G be a graph in B(2m,m),m≥ 2.
(i) If m = 2, G∼= P(2,1,2),z(G) = 8, i(G) = 6;

(ii) If m≥ 3, z(G)≥ 4 ·2m−1 +(m−3) ·2m−2 and i(G)≤ 2 ·3m−1 +2m−3, the equalities
hold if and only if G∼= B2m.
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