Extremal Bicyclic Graph with Perfect Matching for Different Indices

Shan Duan and Zhongxun Zhu
College of Mathematics and Statistics, South Central University for Nationalities, Wuhan 430074, P. R. China jy5699@sina.com, zzxun73@mail.scuec.edu.cn

Abstract

Let $\mathscr{B}(2 m, m)$ be the set of all bicyclic graphs on $2 m(m \geq 2)$ vertices with perfect matchings. In this paper, we characterize the bicyclic graphs with minimal number of matchings and maximal number of independent sets in $\mathscr{B}(2 m, m)$.

2010 Mathematics Subject Classification: 05C69, 05C05
Keywords and phrases: Bicyclic graph, matching, independent set.

1. Introduction

Let $G=(V, E)$ be a simple connected graph. Two edges of G are said to be independent if they are not adjacent in G. A k-matching of G is a set of k mutually independent edges. Denote by $z(G)$ the total number of matchings in a graph G, that is, $z(G)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} z(G, k)$, where $z(G, k)$ is the number of k-matchings of G for $k \geq 1$ and $z(G, 0)=1$. Two vertices of G are said to be independent if they are not adjacent in G. An independent k-set is a set of k vertices, no two of which are adjacent. Let $i(G)$ be the total number of independent sets of G, then $i(G)=\sum_{k=0}^{n} i(G, k)$, where $i(G, k)$ is the number of k-independent sets of G for $k \geq 1$ and $i(G, 0)=1$.

The index $z(G)$ (resp. $i(G)$) is also called Hosoya index(resp. Merrifield-Simmons index) in graphic chemistry. It turned out to be applicable to several questions of molecular chemistry, for example, the connections with physico-chemical properties such as boiling point, entropy or heat of vaporization are well studied [8,20]. Up to now, many researchers have investigated these graphic invariants. An important direction is to determine the graphs with maximal or minimal number of matchings (or independent sets, resp.) in a given class of graphs. For instance, it was observed in $[9,15]$ that the star S_{n} has the minimal number of matchings (or the maximal number of independent sets, resp.) and the path P_{n} has the maximal number of matchings (or the minimal number of independent sets, resp.) amongst all trees with n vertices, respectively. In [17], Liu et al. studied trees with a prescribed diameter with respect to the number of matchings and independent sets, respectively. Hou [12] characterized the trees with a given size of matching and having minimal and second minimal number of matchings, respectively. In [3], Deng and Chen gave the sharp lower bound

[^0]Received: August 8, 2011; Revised: September 30, 2011.
on the number of matchings of unicyclic graphs. Ou [16] characterized extremal unicyclic molecular graphs with maximal number of matchings. In [14], Li and one of the present authors studied the number of independent sets in unicyclic graphs with a given diameter. Wang and Hua [22] characterized the extremal (maximal and minimal) number of independent sets of unicyclic graphs with a given girth. Xu and Xu [27] determined all the unicyclic graphs of order n and with given maximum degree maximizing the number of matchings and minimizing the number of independent sets, respectively. Also n-vertex bicyclic graphs have been the object of study of a series of articles by Deng and coauthors [4, 5, 6, 7]. In particular, Yu and Tian [28] characterized the extremal graphs with minimal number of matchings and maximal number of independent sets, respectively, among all the connected graphs of order n and size $n+t-1$ with $0 \leq t \leq m-1$, where m is the matching number. For further details, we refer readers to survey papers [10, 11, 19, 21, 23, 25, 26, 29, 30], especially, a recent paper by S. Wagner and I. Gutman [24], which is a wonderful survey on this topic, and the cited references therein.

Let $\mathscr{B}(2 m, m)$ be the set of all bicyclic graphs on $2 m(m \geq 2)$ vertices with perfect matchings. In this paper, we consider the bicyclic graphs with minimal number of matchings and maximal number of independent sets, respectively, in $\mathscr{B}(2 m, m)$.

In order to state our results, we introduce some notation and terminology. For other undefined notation we refer to Bollobás [1]. For a vertex v of G, denote the degree of v by $d_{G}(v)$. Set $N_{G}(v)=\{u \mid u v \in E(G)\}, N_{G}[v]=N_{G}(v) \cup\{v\}$. If $W \subset V(G)$, we denote by $G-W$ the subgraph of G obtained by deleting the vertices of W and the edges incident with them. Similarly, if $E \subset E(G)$, we denote by $G-E$ the subgraph of G obtained by deleting the edges of E. If $W=\{v\}$ and $E=\{x y\}$, we write $G-v$ and $G-x y$ instead of $G-\{v\}$ and $G-\{x y\}$, respectively. Denote by F_{n} the nth Fibonacci number. Recall that $F_{n}=F_{n-1}+F_{n-2}, n \geq 2$ with initial conditions $F_{0}=F_{1}=1$. Then $i\left(P_{n}\right)=F_{n+1}, z\left(P_{n}\right)=F_{n}$.

Now we give some lemmas that will be used in the proof of our main results.
Lemma 1.1. [9] Let $G=(V, E)$ be a graph.
(i) If $u v \in E(G)$, then $z(G)=z(G-u v)+z(G-\{u, v\})$;
(ii) If $v \in V(G)$, then $z(G)=z(G-v)+\sum_{u \in N_{G}(v)} z(G-\{u, v\})$;
(iii) If $G_{1}, G_{2}, \ldots, G_{t}$ are the components of the graph G, then $z(G)=\prod_{j=1}^{t} z\left(G_{j}\right)$.

Lemma 1.2. [9] Let $G=(V, E)$ be a graph.
(i) If $u v \in E(G)$, then $i(G)=i(G-u v)-i\left(G-N_{G}[u] \cup N_{G}[v]\right)$;
(ii) If $v \in V(G)$, then $i(G)=i(G-v)+i\left(G-N_{G}[v]\right)$;
(iii) If $G_{1}, G_{2}, \ldots, G_{t}$ are the components of the graph G, then $i(G)=\prod_{j=1}^{t} i\left(G_{j}\right)$.

Lemma 1.3. [18] Let H, X, Y be three connected graphs disjoint in pair. Suppose that u, v are two vertices of H, v^{\prime} is a vertex of X, u^{\prime} is a vertex of Y. Let G be the graph obtained from H, X, Y by identifying v with v^{\prime} and u with u^{\prime}, respectively. Let G_{1}^{*} be the graph obtained from H, X, Y by identifying vertices $v, v^{\prime}, u^{\prime}$ and G_{2}^{*} be the graph obtained from H, X, Y by identifying vertices $u, v^{\prime}, u^{\prime}$. Then
(i) $\quad z\left(G_{1}^{*}\right)<z(G) \quad$ or $\quad z\left(G_{2}^{*}\right)<z(G)$;
(ii) $\quad i\left(G_{1}^{*}\right)>i(G) \quad$ or $\quad i\left(G_{2}^{*}\right)>i(G)$.

Let G consist of connected graph G_{1} and a pendent tree T, where $G_{1} \cap T=r$. Vertex r is called the root of T on G_{1} and T is named the attaching tree to G_{1} rooted at r. Denote by $|V(T)|$ the order of T not including the root r of T.

Lemma 1.4. [2] Let G be a connected graph with perfect matchings which consists of a connected subgraph H and a tree T such that T is attached to a root-vertex r of H. If $|V(T)| \geq 2$ and $v \in V(T)$ is a vertex furthest from the root r. Then v is a pendent vertex and adjacent to a vertex u of degree 2 .

2. Preliminaries

Hoffman and Smith [13] define an internal path of G as a walk $u_{0} u_{1} \ldots u_{s}(s \geq 1)$ such that the vertices $u_{0}, u_{1}, \ldots, u_{s-1}$ are distinct, $d\left(u_{0}\right)>2, d\left(u_{s}\right)>2$, and $d\left(u_{i}\right)=2$, whenever $0<i<s$. An internal path is closed if $u_{0}=u_{s}$.

Transformation A Let $G \in \mathscr{B}(2 m, m), P=v_{0} v_{1} \ldots v_{s}$ be an internal path of G. If $s=2$ and $v_{0} v_{2} \notin E(G)$, joining v_{0} and v_{2} by an edge in $G-v_{1}$, the resulting graph is denoted by H^{\prime}; Then, attaching a pendent edge $v_{0} v_{1}$ to v_{0} in H^{\prime} if $v_{0} v_{1}$ belongs to the perfect matchings of G, and a pendent edge $v_{2} v_{1}$ to v_{2} if $v_{1} v_{2}$ belongs to the perfect matchings of G. The resulting graph is denoted by $H^{\prime \prime}$. If $s \geq 3, v_{0} \neq v_{3}$ and $v_{0} v_{3} \notin E(G)$, joining v_{0} and v_{3} by an edge in $G-\left\{v_{1}, v_{2}\right\}$, the resulting graph is denoted by G^{\prime}; Then, attaching a path of length 2 to v_{0} in G^{\prime}, denote the path by $v_{0} v_{1} v_{2}$. The resulting graph is denoted by $G^{\prime \prime}$.

Lemma 2.1. Let $G \in \mathscr{B}(2 m, m), P=v_{0} v_{1} \ldots v_{s}$ be an internal path of G. $H^{\prime \prime}, G^{\prime \prime}$ be graphs as described in Transformation A.
(i) If $s=2$ and $v_{0} v_{2} \notin E(G), z(G)>z\left(H^{\prime \prime}\right)$ and $i(G)<i\left(H^{\prime \prime}\right)$;
(ii) If $s \geq 3, v_{0} \neq v_{3}$ and $v_{0} v_{3} \notin E(G), z(G)>z\left(G^{\prime \prime}\right)$ and $i(G)<i\left(G^{\prime \prime}\right)$.

Proof. (i) Without loss of generality, let $v_{0} v_{1}$ belong to the perfect matchings of G. By Lemma 1.1 and Lemma 1.2, we have

$$
\begin{aligned}
z(G) & =z\left(G-v_{1} v_{2}\right)+z\left(G-\left\{v_{1}, v_{2}\right\}\right) \\
z\left(H^{\prime \prime}\right) & =z\left(H^{\prime \prime}-v_{0} v_{2}\right)+z\left(H^{\prime \prime}-v_{0}-v_{2}\right)=z\left(H^{\prime \prime}-v_{0} v_{2}\right)+z\left(H^{\prime \prime}-\left\{v_{0}, v_{1}, v_{2}\right\}\right) ; \\
i(G) & =i\left(G-v_{0}\right)+i\left(G-N_{G}\left[v_{0}\right]\right), \\
i\left(H^{\prime \prime}\right) & =i\left(H^{\prime \prime}-v_{0}\right)+i\left(H^{\prime \prime}-N_{H^{\prime \prime}}\left[v_{0}\right]\right) .
\end{aligned}
$$

Note that

$$
\begin{array}{ll}
G-v_{1} v_{2} \cong H^{\prime \prime}-v_{0} v_{2}, & H^{\prime \prime}-\left\{v_{0}, v_{1}, v_{2}\right\} \subset G-\left\{v_{1}, v_{2}\right\}, \\
G-v_{0} \cong H^{\prime \prime}-v_{0}, & H^{\prime \prime}-N_{H^{\prime \prime}}\left[v_{0}\right] \subset G-N_{G}\left[v_{0}\right] .
\end{array}
$$

Note that $H^{\prime \prime}-N_{H^{\prime \prime}}\left[v_{0}\right]$ and $G-N_{G}\left[v_{0}\right]$ have the same order. Then

$$
\begin{array}{ll}
z\left(G-v_{1} v_{2}\right)=z\left(H^{\prime \prime}-v_{0} v_{2}\right), & z\left(G-\left\{v_{1}, v_{2}\right\}\right)>z\left(H^{\prime \prime}-\left\{v_{0}, v_{1}, v_{2}\right\}\right), \\
i\left(G-v_{0}\right)=i\left(H^{\prime \prime}-v_{0}\right), & i\left(G-N_{G}\left[v_{0}\right]\right)<i\left(H^{\prime \prime}-N_{H^{\prime \prime}}\left[v_{0}\right]\right) .
\end{array}
$$

Hence $z(G)>z\left(H^{\prime \prime}\right)$ and $i(G)<i\left(H^{\prime \prime}\right)$.
(ii) By Lemma 1.1 and Lemma 1.2, we have

$$
\begin{aligned}
z(G)= & z\left(G-v_{2} v_{3}\right)+z\left(G-\left\{v_{2}, v_{3}\right\}\right)=z\left(G-v_{2} v_{3}\right)+z\left(G-\left\{v_{1}, v_{2}, v_{3}\right\}\right) \\
& +z\left(G-\left\{v_{0}, v_{1}, v_{2}, v_{3}\right\}\right), \\
z\left(G^{\prime \prime}\right)= & z\left(G^{\prime \prime}-v_{0} v_{3}\right)+z\left(G^{\prime \prime}-v_{0}-v_{3}\right)=z\left(G^{\prime \prime}-v_{0} v_{3}\right)+2 z\left(G^{\prime \prime}-\left\{v_{0}, v_{1}, v_{2}, v_{3}\right\}\right) ; \\
i(G)= & i\left(G-v_{3}\right)+i\left(G-N_{G}\left[v_{3}\right]\right)=i\left(G-v_{3}\right)+i\left(G-N_{G}\left[v_{3}\right] \cup N_{G}\left[v_{0}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& +2 i\left(G-N_{G}\left[v_{3}\right] \cup\left\{v_{0}, v_{1}\right\}\right) \\
i\left(G^{\prime \prime}\right)= & i\left(G^{\prime \prime}-v_{3}\right)+i\left(G^{\prime \prime}-N_{G^{\prime \prime}}\left[v_{3}\right]\right)=i\left(G^{\prime \prime}-v_{3}\right)+3 i\left(G^{\prime \prime}-N_{G^{\prime \prime}}\left[v_{3}\right] \cup\left\{v_{1}, v_{2}\right\}\right)
\end{aligned}
$$

Note that

$$
\begin{aligned}
& G-v_{2} v_{3} \cong G^{\prime \prime}-v_{0} v_{3}, G-\left\{v_{0}, v_{1}, v_{2}, v_{3}\right\} \cong G^{\prime \prime}-\left\{v_{0}, v_{1}, v_{2}, v_{3}\right\}, \\
& G^{\prime \prime}-\left\{v_{0}, v_{1}, v_{2}, v_{3}\right\} \subset G-\left\{v_{1}, v_{2}, v_{3}\right\} ; \\
& G-v_{3} \cong G^{\prime \prime}-v_{3}, G-N_{G}\left[v_{3}\right] \cup\left\{v_{0}, v_{1}\right\} \cong G^{\prime \prime}-N_{G^{\prime \prime}}\left[v_{3}\right] \cup\left\{v_{1}, v_{2}\right\}, \\
& G-N_{G}\left[v_{3}\right] \cup N_{G}\left[v_{0}\right] \subset G^{\prime \prime}-N_{G^{\prime \prime}}\left[v_{3}\right] \cup\left\{v_{1}, v_{2}\right\}
\end{aligned}
$$

Hence $z(G)>z\left(G^{\prime \prime}\right), i(G)<i\left(G^{\prime \prime}\right)$.
Let \hat{G} be a graph on m vertices, attach a pendent edge at each vertex of \hat{G}, denote the resulted graph by $C(\hat{G})$. Obviously, $C(\hat{G})$ has an unique perfect matchings which consists of all pendent edges. Contracting each edge of the matching in $C(\hat{G})$ yields the graph \hat{G} on m vertices. We call the graph \hat{G} the contracted graph of the graph $C(\hat{G})$.
Lemma 2.2. Let \hat{G} be the contracted graph of G, if there exists either an internal path of length no less than 2 or a closed internal path of length no less than 4 in \hat{G}, then there exists a connected graph G^{\prime} with a path of length 2 attached such that $G^{\prime}=C\left(\hat{G}^{\prime}\right)$ for some \hat{G}^{\prime} and $z(G)>z\left(G^{\prime}\right), i(G)<i\left(G^{\prime}\right)$.
Proof. Let $P=v_{0} v_{1} \ldots v_{s}$ be an internal path of length no less than 2 or a closed internal path of length no less than 4 in \hat{G}, and $v_{0}^{\prime}, v_{1}^{\prime}, \ldots, v_{s}^{\prime}$ the pendent vertices corresponding to $v_{0}, v_{1}, \ldots, v_{s}$ in G, respectively. Denote by H the graph obtained from $G-v_{1} v_{2}$ by joining v_{0}, v_{2} with an edge.

Case 1. If $P=v_{0} v_{1} \ldots v_{s}$ is a closed internal path of length no less than 4 in \hat{G}. By Lemma 1.1, we have

$$
\begin{aligned}
z(G) & =z\left(G-v_{1} v_{2}\right)+z\left(G-\left\{v_{1}, v_{2}\right\}\right) \\
& =z\left(G-v_{1} v_{2}\right)+z\left(G-\left\{v_{0}^{\prime}, v_{1}, v_{2}\right\}\right)+z\left(G-\left\{v_{0}, v_{0}^{\prime}, v_{1}, v_{2}\right\}\right) \\
& =z\left(G-v_{1} v_{2}\right)+z\left(\left(G-\left\{v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}\right\}\right) \cup 2 P_{1}\right)+z\left(\left(G-\left\{v_{0}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}\right\}\right) \cup 2 P_{1}\right) \\
& =z\left(G-v_{1} v_{2}\right)+z\left(G-\left\{v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}\right\}\right)+z\left(G-\left\{v_{0}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}\right\}\right), \\
z(H) & =z\left(H-v_{0} v_{2}\right)+z\left(H-\left\{v_{0}, v_{2}\right\}\right) \\
& =z\left(H-v_{0} v_{2}\right)+z\left(H-\left\{v_{0}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}\right\} \cup 2 P_{1} \cup P_{2}\right) \\
& =z\left(H-v_{0} v_{2}\right)+2 z\left(H-\left\{v_{0}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}\right\}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& G-v_{1} v_{2} \cong H-v_{0} v_{2}, G-\left\{v_{0}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}\right\} \cong H-\left\{v_{0}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}\right\}, \\
& H-\left\{v_{0}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}\right\} \subset G-\left\{v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}\right\}
\end{aligned}
$$

so

$$
\begin{aligned}
& z\left(G-v_{1} v_{2}\right)=z\left(H-v_{0} v_{2}\right), z\left(G-\left\{v_{0}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}\right\}\right)=z\left(H-\left\{v_{0}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}\right\}\right) \\
& z\left(G-\left\{v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}\right\}\right)>z\left(H-\left\{v_{0}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}\right\}\right)
\end{aligned}
$$

Hence $z(G)>z(H)$.

By Lemma 1.2, we have

$$
\begin{aligned}
i(G)= & i\left(G-v_{2}\right)+i\left(G-N_{G}\left[v_{2}\right]\right) \\
= & i\left(G-v_{2}\right)+i\left(\left(G-\left\{v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}, v_{3}, v_{3}^{\prime}\right\}\right) \cup 2 P_{1}\right) \\
= & i\left(G-v_{2}\right)+4 i\left(G-\left\{v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}, v_{3}, v_{3}^{\prime}\right\}\right) \\
= & i\left(G-v_{2}\right)+4\left[i\left(G-\left\{v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}, v_{3}, v_{3}^{\prime}\right\}\right)+i\left(G-\left\{v_{0}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}, v_{3}, v_{3}^{\prime}\right\}\right)\right] \\
= & i\left(G-v_{2}\right)+4\left[i\left(G-\left\{v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}, v_{3}, v_{3}^{\prime}\right\} \cup N_{G}\left[v_{0}\right]\right)\right. \\
& \left.+2 i\left(G-\left\{v_{0}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}, v_{3}, v_{3}^{\prime}\right\}\right)\right], \\
i(H)= & i\left(H-v_{2}\right)+i\left(H-N_{H}\left[v_{2}\right]\right) \\
= & i\left(H-v_{2}\right)+i\left(\left(H-\left\{v_{0}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}, v_{3}, v_{3}^{\prime}\right\}\right) \cup 2 P_{1} \cup P_{2}\right) \\
= & i\left(H-v_{2}\right)+12 i\left(H-\left\{v_{0}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}, v_{3}, v_{3}^{\prime}\right\}\right) .
\end{aligned}
$$

Note that

$$
\begin{aligned}
& G-v_{2} \cong H-v_{2}, G-\left\{v_{0}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}, v_{3}, v_{3}^{\prime}\right\} \cong H-\left\{v_{0}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}, v_{3}, v_{3}^{\prime}\right\}, \\
& G-\left\{v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}, v_{3}, v_{3}^{\prime}\right\} \cup N_{G}\left[v_{0}\right] \subset H-\left\{v_{0}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}, v_{3}, v_{3}^{\prime}\right\},
\end{aligned}
$$

then

$$
\begin{aligned}
& i\left(G-v_{2} \cong H-v_{2}, i\left(G-\left\{v_{0}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}, v_{3}, v_{3}^{\prime}\right\}\right)=i\left(H-\left\{v_{0}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}, v_{3}, v_{3}^{\prime}\right\}\right),\right. \\
& i\left(G-\left\{v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}, v_{3}, v_{3}^{\prime}\right\} \cup N_{G}\left[v_{0}\right]\right)<i\left(H-\left\{v_{0}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}, v_{3}, v_{3}^{\prime}\right\} .\right.
\end{aligned}
$$

Hence $i(G)<i(H)$.
Case 2. If $P=v_{0} v_{1} \ldots v_{s}$ is an internal path of length no less than 2 in \hat{G}. By Lemma 1.1 and Lemma 1.2, we have

$$
\begin{aligned}
z(G) & =z\left(G-v_{1} v_{2}\right)+z\left(G-\left\{v_{1}, v_{2}\right\}\right)=z\left(G-v_{1} v_{2}\right)+z\left(G-\left\{v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}\right\}\right) \\
& =z\left(G-v_{1} v_{2}\right)+z\left(G-\left\{v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}\right\}\right)+z\left(G-\left\{v_{0}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}\right\}\right), \\
z(H) & =z\left(H-v_{0} v_{2}\right)+z\left(H-\left\{v_{0}, v_{2}\right\}\right)=z\left(H-v_{0} v_{2}\right)+2 z\left(H-\left\{v_{0}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}\right\}\right) ; \\
i(G) & =i\left(G-v_{2}\right)+i\left(G-N_{G}\left[v_{2}\right]\right)=i\left(G-v_{2}\right)+2 i\left(G-N_{G}\left[v_{2}\right] \cup\left\{v_{1}^{\prime}\right\}\right) \\
& =i\left(G-v_{2}\right)+2 i\left(G-N_{G}\left[v_{2}\right] \cup\left\{v_{0}^{\prime}, v_{1}^{\prime}\right\}\right)+2 i\left(G-N_{G}\left[v_{2}\right] \cup\left\{v_{0}, v_{0}^{\prime}, v_{1}^{\prime}\right\}\right) \\
& =i\left(G-v_{2}\right)+2 i\left(G-N_{G}\left[v_{2}\right] \cup N_{G}\left[v_{0}\right] \cup\left\{v_{1}^{\prime}\right\}\right)+4 i\left(G-N_{G}\left[v_{2}\right] \cup\left\{v_{0}, v_{0}^{\prime}, v_{1}^{\prime}\right\}\right), \\
i(H) & =i\left(H-v_{2}\right)+i\left(H-N_{H}\left[v_{2}\right]\right)=i\left(H-v_{2}\right)+6 i\left(H-N_{H}\left[v_{2}\right] \cup\left\{v_{0}^{\prime}, v_{1}, v_{1}^{\prime}\right\}\right) .
\end{aligned}
$$

Note that

$$
\begin{aligned}
& G-v_{1} v_{2} \cong H-v_{0} v_{2}, G-\left\{v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}\right\} \cong H-\left\{v_{0}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}\right\}, \\
& H-\left\{v_{0}, v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}\right\} \subset G-\left\{v_{0}^{\prime}, v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}\right\} ; \\
& G-v_{2} \cong H-v_{2}, G-N_{G}\left[v_{2}\right] \cup\left\{v_{0}, v_{0}^{\prime}, v_{1}^{\prime}\right\} \cong H-N_{H}\left[v_{2}\right] \cup\left\{v_{0}^{\prime}, v_{1}, v_{1}^{\prime}\right\}, \\
& G-N_{G}\left[v_{2}\right] \cup N_{G}\left[v_{0}\right] \cup\left\{v_{1}^{\prime}\right\} \subset H-N_{H}\left[v_{2}\right] \cup\left\{v_{0}^{\prime}, v_{1}, v_{1}^{\prime}\right\} .
\end{aligned}
$$

Then $z(G)>z(H), i(G)<i(H)$.
Select $H=G^{\prime}$, then we obtain our desirable results.

3. Main results

Let G be a bicyclic graph. The base of G, denoted by $B(G)$, is the minimal bicyclic subgraph of G. Obviously, $B(G)$ is the unique bicyclic subgraph of G containing no pendant vertex, and G can be obtained from $B(G)$ by planting trees to some vertices of $B(G)$. It is well known that bicyclic graphs have the following two types of bases: $B(p, l, q)$ and $P(p, q, r)$, where $B(p, l, q)$ is the graph obtained by joining a new path $u_{1} u_{2} \ldots u_{l}$ between two cycles C_{p} and C_{q} with $u_{1} \in V\left(C_{p}\right), u_{l} \in V\left(C_{q}\right)$, and $P(p, q, r)$ is the bicyclic graph consisting of three pairwise internal disjoint paths $P_{p+1}, P_{q+1}, P_{r+1}$ with common endpoints u, v. Let $B_{1}(2 m)=$ $\{G \in \mathscr{B}(2 m, m) \mid B(G)=B(p, l, q), p \leq q\} ; B_{2}(2 m)=\{G \in \mathscr{B}(2 m, m) \mid B(G)=P(p, q, r)\}$. Then $\mathscr{B}(2 m, m)=B_{1}(2 m) \cup B_{2}(2 m)$.

Figure 1. The graph $B_{2 m}$.
Lemma 3.1. Let $B_{2 m}$ be graph of the form in Figure 1. Then $z\left(B_{2 m}\right)=4 \cdot 2^{m-1}+(m-3)$. 2^{m-2} and $i\left(B_{2 m}\right)=2 \cdot 3^{m-1}+2^{m-3}$.
Proof. By Lemma 1.1 and Lemma 1.2, we have

$$
\begin{aligned}
z\left(B_{2 m}\right) & =z\left(B_{2 m}-u\right)+\sum_{v \in N_{B_{2 m}}(u)} z\left(B_{2 m}-\{u, v\}\right) \\
& =z\left((m-1) P_{2} \cup P_{1}\right)+z\left((m-1) P_{2}\right)+4 z\left((m-2) P_{2} \cup 2 P_{1}\right)+(m-3) z\left((m-2) P_{2} \cup 2 P_{1}\right) \\
& =4 \cdot 2^{m-1}+(m-3) \cdot 2^{m-2} \\
i\left(B_{2 m}\right) & =i\left(B_{2 m}-u\right)+i\left(B_{2 m}-N_{B_{2 m}}[u]\right)=i\left((m-1) P_{2} \cup P_{1}\right)+i\left((m-3) P_{1}\right) \\
& =2 \cdot 3^{m-1}+2^{m-3} .
\end{aligned}
$$

Let $G_{1}, G_{2}, \ldots, G_{14}$ be graphs of the form in Figure 2, by direct calculation, we have

$$
\begin{array}{r}
z\left(G_{1}\right)=20, z\left(G_{2}\right)=16, z\left(G_{3}\right)=38, z\left(G_{4}\right)=52, z\left(G_{5}\right)=20 ; \\
z\left(G_{6}\right)=45, z\left(G_{7}\right)=46, z\left(G_{8}\right)=42, z\left(G_{9}\right)=250, z\left(G_{10}\right)=40 ; \\
z\left(G_{11}\right)=94, z\left(G_{12}\right)=99, z\left(G_{13}\right)=142, z\left(G_{14}\right)=143 . \tag{3.1}
\end{array}
$$

And

$$
\begin{array}{r}
i\left(G_{1}\right)=17, i\left(G_{2}\right)=19, i\left(G_{3}\right)=52, i\left(G_{4}\right)=48, i\left(G_{5}\right)=15 ; \\
i\left(G_{6}\right)=45, i\left(G_{7}\right)=44, i\left(G_{8}\right)=47, i\left(G_{9}\right)=384, i\left(G_{10}\right)=48 ; \\
i\left(G_{11}\right)=136, i\left(G_{12}\right)=132, i\left(G_{13}\right)=128, i\left(G_{14}\right)=132 \tag{3.2}
\end{array}
$$

Figure 2. The graphs $G_{1}, G_{2}, \ldots, G_{14}$.

Theorem 3.1. Let G be a graph in $B_{1}(2 m), m \geq 3$. Then $z(G) \geq z\left(B_{2 m}\right)$ and $i(G) \leq i\left(B_{2 m}\right)$, the equalities hold if and only if $G \cong B_{2 m}$.

Proof. When $m=3, B_{1}(2 m)=\left\{G_{1}, G_{2}, G_{5}, \widehat{B}(3,1,4)\right\}$. By direct calculation, $z(\widehat{B}(3,1,4))=$ $20, i(\widehat{B}(3,1,4))=17$, combining (3.1) and (3.2), we have $z(G) \geq z\left(G_{2}\right)=z\left(B_{2 m}\right), i(G) \leq$ $i\left(G_{2}\right)=i\left(B_{2 m}\right)$.

Now we suppose $m \geq 4$. Let $G \in B_{1}(2 m)$.
Case 1. If G has a pendent vertex v^{\prime} with its adjacent vertex u^{\prime} of degree 2. Let $N_{G}\left(u^{\prime}\right)=$ $\left\{v^{\prime}, r\right\}$. By Lemmas 1.1 and 1.2, we have

$$
\begin{aligned}
z(G) & =z\left(G-v^{\prime}\right)+z\left(G-\left\{v^{\prime}, u^{\prime}\right\}\right)=z\left(G-\left\{v^{\prime}, u^{\prime}, r\right\}\right)+2 z\left(G-\left\{v^{\prime}, u^{\prime}\right\}\right), \\
z\left(B_{2 m}\right) & =z\left(B_{2 m}-v^{\prime}\right)+z\left(B_{2 m}-\left\{v^{\prime}, u^{\prime}\right\}\right)=z\left(B_{2 m}-\left\{v^{\prime}, u^{\prime}, u\right\}\right)+2 z\left(B_{2 m}-\left\{v^{\prime}, u^{\prime}\right\}\right) \\
& =z\left(K_{1} \cup(m-2) K_{2}\right)+2 z\left(B_{2 m}-\left\{v^{\prime}, u^{\prime}\right\}\right) ; \\
i(G) & =i\left(G-v^{\prime}\right)+i\left(G-\left\{v^{\prime}, u^{\prime}\right\}\right)=i\left(G-\left\{v^{\prime}, u^{\prime}, r\right\}\right)+2 i\left(G-\left\{v^{\prime}, u^{\prime}\right\}\right), \\
i\left(B_{2 m}\right) & =i\left(B_{2 m}-v^{\prime}\right)+i\left(B_{2 m}-\left\{v^{\prime}, u^{\prime}\right\}\right)=i\left(B_{2 m}-\left\{v^{\prime}, u^{\prime}, u\right\}\right)+2 i\left(B_{2 m}-\left\{v^{\prime}, u^{\prime}\right\}\right) \\
& =i\left(K_{1} \cup(m-2) K_{2}\right)+2 i\left(B_{2 m}-\left\{v^{\prime}, u^{\prime}\right\}\right) .
\end{aligned}
$$

Since $G-\left\{v^{\prime}, u^{\prime}, r\right\}$ is a graph on $2 m-3$ vertices with ($m-2$)-matching, $K_{1} \cup(m-2) K_{2}$ is a spanning subgraph of $G-\left\{v^{\prime}, u^{\prime}, r\right\}$ when $G \not \equiv B_{2 m}$, then $z\left(G-\left\{v^{\prime}, u^{\prime}, r\right\}\right)>z\left(K_{1} \cup\right.$ $\left.(m-2) K_{2}\right), i\left(G-\left\{v^{\prime}, u^{\prime}, r\right\}\right)<i\left(K_{1} \cup(m-2) K_{2}\right)$. Since $G-\left\{v^{\prime}, u^{\prime}\right\}$ is a graph on $2 m-2$ vertices with perfect matching, by induction hypothesis, we have $z\left(G-\left\{v^{\prime}, u^{\prime}\right\}\right)>z\left(B_{2 m}-\right.$ $\left.\left\{v^{\prime}, u^{\prime}\right\}\right), i\left(G-\left\{v^{\prime}, u^{\prime}\right\}\right)<i\left(B_{2 m}-\left\{v^{\prime}, u^{\prime}\right\}\right)$.

Then $z(G) \geq z\left(B_{2 m}\right), i(G) \leq i\left(B_{2 m}\right)$.

Case 2. If G has not a pendent vertex v^{\prime} with its adjacent vertex u^{\prime} of degree 2. Then G can be obtained from $B(p, l, q)$ by attaching some pendent edges at some vertices of $B(p, l, q)$. In fact, if there is a vertex $u \in V(B(p, l, q))$ attaching a tree T with $|V(T)| \geq 2$, by Lemma 1.4, it is contradict to the choice of G. Let $P=v_{0} v_{1} \ldots v_{s}$ be the longest internal path in G.

Subcase 2.1. $s=1$.
When $d\left(u_{1}\right) \geq 4$, then $G \cong C(B(p, l, q))$. If there exists either an internal path of length no less than 2 or a closed internal path of length no less than 4 in $B(p, l, q)$, by Lemma 2.2 and Case 1 , we have the desired results. Otherwise, $B(p, l, q) \cong B(3,1,3)$ or $B(3,2,3)$, then

$$
G \in\{C(B(3,1,3)), C(B(3,2,3))\} .
$$

By direct calculation, we have
$z(C(B(3,1,3)))=90, z(C(B(3,2,3)))=221 ; i(C(B(3,1,3)))=144, i(C(B(3,2,3)))=224$.
By Lemma 3.1,

$$
\begin{equation*}
z\left(B_{10}\right)=52, z\left(B_{12}\right)=76 ; i\left(B_{10}\right)=166, i\left(B_{12}\right)=494 \tag{3.3}
\end{equation*}
$$

Hence, we also have the desired results.
When $d\left(u_{1}\right)=3$, then $l=2$ and $d(u)=3$ for any $u \in V(B(G))$. Let G^{\prime} be the graph obtained form $G-u_{1} u_{2}$ by identifying u_{1} with u_{2} and adding a pendent edge at u_{1}, obviously, $G^{\prime} \in B_{1}(2 m)$ and $G^{\prime} \cong C(B(p, l-1, q))$. By Lemma 1.3, we have $z(G)>z\left(G^{\prime}\right)$ and $i(G)<i\left(G^{\prime}\right)$, as above discussion, we have $z\left(G^{\prime}\right)>z\left(B_{2 m}\right)$ and $i\left(G^{\prime}\right)<i\left(B_{2 m}\right)$. Then we obtain the desired results.

Subcase 2.2. $s=2$, then at least one of v_{0}, v_{2} must be in $\left\{u_{1}, u_{l}\right\}$. Otherwise, v_{1} must be an unmatched vertex, a contradiction. Then there are at most two internal paths of length 2.

Subcase 2.2.1. G has only one internal path of length 2 .
When $v_{0} v_{2} \notin E(G)$, by Lemma 2.1, we can obtain a connected graph G^{\prime} such that $G^{\prime} \cong$ $C\left(B\left(p, l^{\prime}, q\right)\right)$, where $l^{\prime} \leq l$. By Subcase 2.1., we have the desired results.

When $v_{0} v_{2} \in E(G)$, then $B(G) \cong B(3, l, q)$. Without loss of generality, let $v_{0}=u_{1}$. If $l \geq 3$, let G^{\prime} be the graph obtained from G by deleting $u_{2} u_{3}$ and adding $u_{1} u_{3}$. Set $G-u_{2} u_{3}=$ $A \cup D$, where $u_{2} \in V(A), u_{3} \in V(D)$. By Lemmas 1.1 and 1.2 , we have

$$
\begin{aligned}
z(G) & =z\left(G-u_{2} u_{3}\right)+z\left(G-\left\{u_{2}, u_{3}\right\}\right)=z(A \cup D)+z\left(\left(A-u_{2}\right) \cup\left(D-u_{3}\right)\right) \\
& =z(A \cup D)+6 z\left(D-u_{3}\right), \\
z\left(G^{\prime}\right) & =z\left(G^{\prime}-u_{1} u_{3}\right)+z\left(G^{\prime}-\left\{u_{1}, u_{3}\right\}\right)=z(A \cup D)+z\left(\left(A-u_{1}\right) \cup\left(D-u_{3}\right)\right) \\
& =z(A \cup D)+3 z\left(D-u_{3}\right) ; \\
i(G) & =i\left(G-u_{3}\right)+i\left(G-N_{G}\left[u_{3}\right]\right)=i\left(A \cup\left(D-u_{3}\right)\right)+i\left(\left(A-u_{2}\right) \cup\left(D-N_{D}\left[u_{3}\right]\right)\right) \\
& =i\left(A \cup\left(D-u_{3}\right)\right)+14 i\left(D-N_{D}\left[u_{3}\right]\right), \\
i\left(G^{\prime}\right) & =i\left(A \cup\left(D-u_{3}\right)\right)+15 i\left(D-N_{D}\left[u_{3}\right]\right) .
\end{aligned}
$$

Then $z(G)>z\left(G^{\prime}\right)$ and $i(G)<i\left(G^{\prime}\right)$ and there is a pendent vertex v^{\prime} with its adjacent vertex u_{2} of degree 2 in G^{\prime}. Similarly, if $q \geq 4$, we also can find a graph G^{\prime} which satisfy $z(G)>z\left(G^{\prime}\right)$ and $i(G)<i\left(G^{\prime}\right)$ and there is a pendent vertex v^{\prime} with its adjacent vertex u^{\prime} of degree 2 in G^{\prime}. By Case $1, z\left(G^{\prime}\right)>z\left(B_{2 m}\right)$ and $i\left(G^{\prime}\right)<i\left(B_{2 m}\right)$. Then we obtain the desired results. If $l \leq 2$ and $q=3$, then $G \in\left\{G_{4}, G_{12}\right\}$. By (3.1), (3.2) and Lemma 3.1, we have the desired results.

Subcase 2.2.2. G have two internal paths of length 2 , let $P=v_{0} v_{1} v_{2}$ and $P^{\prime}=v_{0}^{\prime} v_{1}^{\prime} v_{2}^{\prime}$ be the two paths.

When at least one of $v_{0} v_{2}, v_{0}^{\prime} v_{2}^{\prime} \notin E(G)$, by Lemma 2.1, we can obtain a graph G^{\prime} such that $z(G)>z\left(G^{\prime}\right)$ and $i(G)<i\left(G^{\prime}\right)$, and G^{\prime} has one internal path of length 2, by Subcase 2.2.1., we have the desired results.

When all of $v_{0} v_{2}, v_{0}^{\prime} v_{2}^{\prime} \in E(G)$, then $B(G) \cong B(3, l, 3)$. If $l \geq 3$, similar to Subcase 2.2.1., we can obtain the desired results. If $l \leq 2$, then $G \cong G_{6}$. By (3.1), (3.2) and Lemma 3.1, we have the desired results.

Subcase 2.3. $s=3$.
If there exists an internal path $P=v_{0} v_{1} v_{2} v_{3}$ with $v_{0} v_{3} \notin E(G), v_{0} \neq v_{3}$. By Transformation A and Lemma 2.1, we can find a graph G^{\prime} such that $z(G)>z\left(G^{\prime}\right), i(G)<i\left(G^{\prime}\right)$, and there is a pendent vertex v^{\prime} with its adjacent vertex u^{\prime} of degree 2 in G^{\prime}. By Case 1 , we have $z\left(G^{\prime}\right) \geq z\left(B_{2 m}\right), i\left(G^{\prime}\right) \leq i\left(B_{2 m}\right)$, as desired. Otherwise, any internal path $P=v_{0} v_{1} v_{2} v_{3}$ in G, it has either $v_{0} v_{3} \in E(G)$ or $v_{0}=v_{3}$.

Subcase 2.3.1. Any internal path $P=v_{0} v_{1} v_{2} v_{3}$ in G, it has $v_{0} v_{3} \in E(G)$. Obviously, there are at most two such internal paths.

When there are two such internal paths in G, then $B(G) \cong B(4, l, 4)$. Further $l \geq 2$, otherwise $G \notin B_{1}(2 m)$. If $d\left(u_{1}\right)=3$, then $u_{1} u_{2}$ must be an matching edge and $d\left(u_{2}\right)=$ $2, d\left(u_{3}\right) \geq 3$. Let G^{\prime} be the graph obtained from G by deleting $u_{2} u_{3}$ and adding $u_{1} u_{3}$. Similar to the procedure of (3.4), we have $z(G)>z\left(G^{\prime}\right)$ and $i(G)<i\left(G^{\prime}\right)$. To find the extremal graph, we can set $d\left(u_{1}\right), d\left(u_{l}\right) \geq 4$. Then we have $d\left(u_{i}\right)=3$ for $i=2, \ldots, l-1$, otherwise, it must have another internal path $P^{\prime}=v_{0}^{\prime} v_{1}^{\prime} v_{2}^{\prime} v_{3}^{\prime}$ with $v_{0}^{\prime} v_{3}^{\prime} \notin E(G)$, a contradiction. If $l \geq 3$, similar to the discussion of Subcase 2.2.1., we have the desired results. For $l=2, G \cong G_{9}$, by (3.1-3.3), we have the desired results.

When there is only one such internal path in G, then $B(G) \cong B(4, l, q)$. If $l \geq 3$ or $q \geq 4$, similar to the discussion of Subcase 2.2.1., we have the desired results. If $l \leq 2$ and $q=3$, $G \in\left\{G_{13}, G_{14}\right\}$, by (3.1-3.3), we have the desired results.

Subcase 2.3.2. Any internal path $P=v_{0} v_{1} v_{2} v_{3}$ in G, it has $v_{0}=v_{3}$. Obviously, there are at most two such internal paths.

When there are two such internal paths in G, then $B(G) \cong B(3, l, 3)$. If $l \geq 3$, similar to the discussion of Subcase 2.2.1., we have the desired results. If $l \leq 2, G \in\left\{G_{2}, G_{5}, G_{10}\right\}$, by (3.1-3.3), we have the desired results.

When there is only one such internal path in G, then $B(G) \cong B(3, l, q)$. If $l \geq 3$ or $q \geq 4$, similar to the discussion of Subcase 2.2.1., we have the desired results. If $l \leq 2$ and $q=3$, $G \in\left\{G_{1}, G_{3}, G_{7}, G_{8}, G_{11}\right\}$, by (3.1-3.3), we have the desired results.

Subcase 2.4. $s \geq 4$. By Translation A, Lemma 2.1 and Case 1, we have the desired results.

This completes the proof.
Let $W_{1}, W_{2}, \ldots, W_{12}$ be graphs of the form in Figure 3, by direct calculation, we have

$$
\begin{gather*}
z\left(W_{1}\right)=22, z\left(W_{2}\right)=20, z\left(W_{3}\right)=20, z\left(W_{4}\right)=19, z\left(W_{5}\right)=24, z\left(W_{6}\right)=18 \\
z\left(W_{7}\right)=19, z\left(W_{8}\right)=26, z\left(W_{9}\right)=21, z\left(W_{10}\right)=46, z\left(W_{11}\right)=108, z\left(W_{12}\right)=44 \tag{3.5}
\end{gather*}
$$

And

$$
\begin{array}{r}
i\left(W_{1}\right)=17, i\left(W_{2}\right)=18, i\left(W_{3}\right)=16, i\left(W_{4}\right)=12, i\left(W_{5}\right)=17, i\left(W_{6}\right)=18 \\
i\left(W_{7}\right)=17, i\left(W_{8}\right)=17, i\left(W_{9}\right)=16, i\left(W_{10}\right)=52, i\left(W_{11}\right)=136, i\left(W_{12}\right)=48 \tag{3.6}
\end{array}
$$

Figure 3. The graphs $W_{1}, W_{2}, \ldots, W_{12}$.

Theorem 3.2. Let G be a graph in $B_{2}(2 m), m \geq 3$. Then $z(G)>z\left(B_{2 m}\right)$ and $i(G)<i\left(B_{2 m}\right)$.
Proof. When $m=3, B_{1}(2 m)=\left\{G_{1}, G_{2}, G_{5}, \widehat{B}(3,1,4)\right\}, B_{2}(2 m)=\left\{W_{1}, W_{2}, \ldots, W_{9}\right\}$. By (3.5), (3.6), Lemma 3.1 and Theorem 3.2, we have $z(G)>z\left(B_{2 m}\right), i(G)<i\left(B_{2 m}\right)$.

We now suppose $m \geq 4$. For any graph $G \in B_{2}(2 m), B(G) \cong P(p, q, r)$. For convenience, let $q \leq r \leq p$.

Case 1. G has a pendent vertex v^{\prime} with its adjacent vertex u^{\prime} of degree 2 . Similar to the proof of Case 1 in Theorem 3.2, we have the desired results.

Case 2. G hasn't a pendent vertex v^{\prime} with its adjacent vertex u^{\prime} of degree 2 and $(p, q, r) \neq$ $(2,1,2)$. Then G can be obtained from $P(p, q, r)$ by attaching some pendent edges at some vertices of $P(p, q, r)$. Let $P_{p+1}=u u_{1} u_{2} \ldots u_{p-1} v, u_{i}^{\prime}$ be the pendent vertex which is adjacent to $u_{i}(i=1,2, \ldots, p-1)$, respectively, and $P=v_{0} v_{1} \ldots v_{s}$ be the longest internal path in G.

Subcase 2.1. $s=1$. If $d_{G}(u)=4, G \cong C(P(p, q, r))$. By Lemma 2.2 and Case 1 , we have the desired results. If $d_{G}(u)=3$, then $d_{G}(v)=3, q=1$ and $p \geq 3$.

If $p \geq 4$, let G^{\prime} be the graph obtained from G by deleting $u_{2} u_{3}$ and adding $u_{1} u_{3}$. By Lemmas 1.1 and 1.2, we have

$$
\begin{aligned}
z(G) & =z\left(G-u_{2} u_{3}\right)+z\left(G-\left\{u_{2}, u_{3}\right\}\right)=z\left(G-u_{2} u_{3}\right)+z\left(G-\left\{u_{2}, u_{2}^{\prime}, u_{3}, u_{3}^{\prime}\right\}\right) \\
& =z\left(G-u_{2} u_{3}\right)+z\left(G-\left\{u_{1}^{\prime}, u_{2}, u_{2}^{\prime}, u_{3}, u_{3}^{\prime}\right\}\right)+z\left(G-\left\{u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime}, u_{3}, u_{3}^{\prime}\right\}\right) \\
z\left(G^{\prime}\right) & =z\left(G^{\prime}-u_{1} u_{3}\right)+z\left(G^{\prime}-\left\{u_{1}, u_{3}\right\}\right)=z\left(G^{\prime}-u_{1} u_{3}\right)+2 z\left(G^{\prime}-\left\{u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime}, u_{3}, u_{3}^{\prime}\right\}\right), \\
i(G) & =i\left(G-u_{3}\right)+i\left(G-N_{G}\left[u_{3}\right]\right)=i\left(G-u_{3}\right)+2 i\left(G-N_{G}\left[u_{3}\right] \cup\left\{u_{2}^{\prime}\right\}\right) \\
& =i\left(G-u_{3}\right)+2\left[i\left(G-N_{G}\left[u_{3}\right] \cup\left\{u_{1}^{\prime}, u_{2}^{\prime}\right\}\right)+i\left(G-N_{G}\left[u_{3}\right] \cup\left\{u_{1}, u_{1}^{\prime}, u_{2}^{\prime}\right\}\right)\right] \\
& =i\left(G-u_{3}\right)+2\left[i\left(G-N_{G}\left[u_{3}\right] \cup N_{G}\left[u_{1}\right] \cup\left\{u_{1}^{\prime}, u_{2}^{\prime}\right\}\right)+2 i\left(G-N_{G}\left[u_{3}\right] \cup\left\{u_{1}, u_{1}^{\prime}, u_{2}^{\prime}\right\}\right)\right] \\
i\left(G^{\prime}\right) & =i\left(G^{\prime}-u_{3}\right)+i\left(G^{\prime}-N_{G^{\prime}}\left[u_{3}\right]\right)=i\left(G^{\prime}-u_{3}\right)+6 i\left(G^{\prime}-N_{G^{\prime}}\left[u_{3}\right] \cup\left\{u_{1}^{\prime}, u_{2}, u_{2}^{\prime}\right\}\right) .
\end{aligned}
$$

Note that

$$
\begin{aligned}
& G-u_{2} u_{3} \cong G^{\prime}-u_{1} u_{3}, G-\left\{u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime}, u_{3}, u_{3}^{\prime}\right\} \cong G^{\prime}-\left\{u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime}, u_{3}, u_{3}^{\prime}\right\}, \\
& G^{\prime}-\left\{u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime}, u_{3}, u_{3}^{\prime}\right\} \subset G-\left\{u_{1}^{\prime}, u_{2}, u_{2}^{\prime}, u_{3}, u_{3}^{\prime}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.G-u_{3} \cong G^{\prime}-u_{3}, G-N_{G}\left[u_{3}\right] \cup\left\{u_{1}, u_{1}^{\prime}, u_{2}^{\prime}\right\}\right) \cong G^{\prime}-N_{G^{\prime}}\left[u_{3}\right] \cup\left\{u_{1}^{\prime}, u_{2}, u_{2}^{\prime}\right\}, \\
& G-N_{G}\left[u_{3}\right] \cup N_{G}\left[u_{1}\right] \cup\left\{u_{1}^{\prime}, u_{2}^{\prime}\right\} \subset G^{\prime}-N_{G^{\prime}}\left[u_{3}\right] \cup\left\{u_{1}^{\prime}, u_{2}, u_{2}^{\prime}\right\} .
\end{aligned}
$$

Then $z(G)>z\left(G^{\prime}\right)$ and $i(G)<i\left(G^{\prime}\right)$. By Case 1, we have the desired results.
If $p=3$, then $r \leq 3$, and $G \in\left\{W_{11}, W_{12}\right\}$. By (3.5), (3.6), Lemma 3.1 and Theorem 3.2, we have $z(G)>z\left(B_{2 m}\right), i(G)<i\left(B_{2 m}\right)$.

Subcase 2.2. $s=2$, then at least one of v_{0}, v_{2} must be in $\{u, v\}$. Otherwise, v_{1} must be an unmatched vertex, a contradiction. Then there are at most two internal paths of length 2.

Subcase 2.2.1. G has only one internal path of length 2 .
When $v_{0} v_{2} \notin E(G)$, by Lemma 2.1, we can obtain a connected graph G^{\prime} such that $G^{\prime} \cong$ $C\left(P\left(p^{\prime}, q^{\prime}, r^{\prime}\right)\right)$. By Subcase 2.1., we have the desired results.

When $v_{0} v_{2} \in E(G)$, then $B(G) \cong P(p, 1,2)$, where $p \geq 3$. Without loss of generality, let $v_{1} v_{2}$ be a matching edge and $u=v_{0}, v=v_{2}$, then $d_{G}(u)=4, d_{G}(v)=3$. Set u^{\prime} be the pendent vertex which is adjacent to u. Let G^{\prime} be the graph obtained from G by deleting $u_{1} u_{2}$ and adding $u u_{2}$. Obviously, G^{\prime} has a pendent vertex which is adjacent to a vertex of degree 2. By Lemmas 1.1 and 1.2, we have

$$
\begin{aligned}
z(G)= & z\left(G-u_{1} u_{2}\right)+z\left(G-\left\{u_{1}, u_{2}\right\}\right)=z\left(G-u_{1} u_{2}\right)+z\left(G-\left\{u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime}\right\}\right) \\
= & z\left(G-u_{1} u_{2}\right)+z\left(G-\left\{u^{\prime}, u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime}\right\}\right)+z\left(G-\left\{u, u^{\prime}, u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime}\right\}\right), \\
z\left(G^{\prime}\right)= & z\left(G^{\prime}-u u_{2}\right)+z\left(G^{\prime}-\left\{u, u_{2}\right\}\right)=z\left(G^{\prime}-u u_{2}\right)+2 z\left(G^{\prime}-\left\{u, u^{\prime}, u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime}\right\}\right), \\
i(G)= & i\left(G-u_{2}\right)+i\left(G-N_{G}\left[u_{2}\right]\right)=i\left(G-u_{2}\right)+4 i\left(G-\left\{u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime}, u_{3}, u_{3}^{\prime}\right\}\right) \\
= & i\left(G-u_{2}\right)+4 i\left(G-\left\{u^{\prime}, u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime}, u_{3}, u_{3}^{\prime}\right\}\right)+4 i\left(G-\left\{u, u^{\prime}, u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime}, u_{3}, u_{3}^{\prime}\right\}\right) \\
= & i\left(G-u_{2}\right)+4 i\left(G-\left\{u^{\prime}, u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime}, u_{3}, u_{3}^{\prime}\right\} \cup N_{G}[u]\right) \\
& +8 i\left(G-\left\{u, u^{\prime}, u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime}, u_{3}, u_{3}^{\prime}\right\}\right) \\
i\left(G^{\prime}\right)= & i\left(G^{\prime}-u_{2}\right)+i\left(G^{\prime}-N_{G^{\prime}}\left[u_{2}\right]\right)=i\left(G^{\prime}-u_{2}\right)+12 i\left(G^{\prime}-\left\{u, u^{\prime}, u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime}\right\}\right) .
\end{aligned}
$$

Note that

$$
\begin{aligned}
& G-u_{1} u_{2} \cong G^{\prime}-u u_{2}, G-\left\{u, u^{\prime}, u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime}\right\} \cong G^{\prime}-\left\{u, u^{\prime}, u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime}\right\} \\
& G^{\prime}-\left\{u, u^{\prime}, u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime}\right\} \subset G-\left\{u^{\prime}, u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime}\right\} ; \\
& G-u_{2} \cong G^{\prime}-u_{2}, G-\left\{u^{\prime}, u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime}, u_{3}, u_{3}^{\prime}\right\} \cup N_{G}[u] \subset G^{\prime}-\left\{u, u^{\prime}, u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime}\right\} .
\end{aligned}
$$

Then $z(G)>z\left(G^{\prime}\right)$ and $i(G)<i\left(G^{\prime}\right)$. By Case 1, we have the desired results.
Subcase 2.2.2. G have two internal paths of length 2, let $P=v_{0} v_{1} v_{2}$ and $P^{\prime}=v_{0}^{\prime} v_{1}^{\prime} v_{2}^{\prime}$ be the two paths. Then at least one of $v_{0} v_{2}, v_{0}^{\prime} v_{2}^{\prime}$ is not an edge of G, by Lemma 2.1, we can obtain a graph G^{\prime} such that $z(G)>z\left(G^{\prime}\right)$ and $i(G)<i\left(G^{\prime}\right)$, and G^{\prime} has one internal path of length 2, by Subcase 2.2.1., we have the desired results.

Subcase 2.3. $s=3$.
If there exists an internal path $P=v_{0} v_{1} v_{2} v_{3}$ with $v_{0} v_{3} \notin E(G)$. By Transformation A, Lemma 2.1 and Case 1, we have the desired results. Otherwise, any internal path $P=$ $v_{0} v_{1} v_{2} v_{3}$ in G, it has $v_{0} v_{3} \in E(G)$. Obviously, there are at most two such internal paths.

When there are two such internal paths in G, then $B(G) \cong P(3,1,3)$. Then $G \in\left\{W_{8}, W_{10}\right\}$. By (3.5), (3.6), Lemma 3.1 and Theorem 3.2, we have $z(G)>z\left(B_{2 m}\right), i(G)<i\left(B_{2 m}\right)$.

When there is only one such internal path in G, then $B(G) \cong P(3,1, q)$. Let G^{\prime} be the graph obtained from G by deleting $v_{1} v_{2}$ and adding $u v_{2}$. By Lemmas 1.1 and 1.2 , we have

$$
\begin{aligned}
z(G) & =z\left(G-v_{1} v_{2}\right)+z\left(G-\left\{v_{1}, v_{2}\right\}\right), \\
z\left(G^{\prime}\right) & =z\left(G^{\prime}-u v_{2}\right)+z\left(G^{\prime}-\left\{u, v_{2}\right\}\right)=z\left(G^{\prime}-u v_{2}\right)+z\left(G^{\prime}-\left\{u, v_{1}, v_{2}\right\}\right), \\
i(G) & =i\left(G-v_{2}\right)+i\left(G-N_{G}\left[v_{2}\right]\right)=i\left(G-v_{2}\right)+i\left(G-\left\{v, v_{1}, v_{2}\right\}\right) \\
& =i\left(G-v_{2}\right)+i\left(G-\left\{u, v, v_{1}, v_{2}\right\}\right)+i\left(G-\left\{v, v_{1}, v_{2}\right\} \cup N_{G}[u]\right), \\
i\left(G^{\prime}\right) & =i\left(G^{\prime}-v_{2}\right)+i\left(G^{\prime}-N_{G^{\prime}}\left[v_{2}\right]\right)=i\left(G^{\prime}-v_{2}\right)+2 i\left(G^{\prime}-\left\{u, v, v_{1}, v_{2}\right\}\right) .
\end{aligned}
$$

Note that

$$
\begin{aligned}
& G-v_{1} v_{2} \cong G^{\prime}-u v_{2}, G^{\prime}-\left\{u, v_{1}, v_{2}\right\} \subset G-\left\{v_{1}, v_{2}\right\} ; \\
& G-v_{2} \cong G^{\prime}-v_{2}, G-\left\{u, v, v_{1}, v_{2}\right\} \cong G^{\prime}-\left\{u, v, v_{1}, v_{2}\right\}, \\
& G-\left\{v, v_{1}, v_{2}\right\} \cup N_{G}[u] \subset G^{\prime}-\left\{u, v, v_{1}, v_{2}\right\} .
\end{aligned}
$$

Then $z(G)>z\left(G^{\prime}\right)$ and $i(G)<i\left(G^{\prime}\right)$. Hence $s=2$ in G^{\prime}, by Subcase 2.2., we have the desired results.

Subcase 2.4. $s \geq 4$. By Translation A, Lemma 2.1 and Case 1, we have the desired results.

Case 3. G hasn't a pendent vertex v^{\prime} with its adjacent vertex u^{\prime} of degree 2 and $(p, q, r)=$ $(2,1,2)$. Then $G \in\left\{W_{1}, W_{2}, C(P(2,1,2))\right\}$. Note that $z(C(P(2,1,2)))=38, i(C(P(2,1,2)))=$ 52. By (3.5), (3.6), Lemma 3.1 and Theorem 3.2, we have $z(G)>z\left(B_{2 m}\right), i(G)<i\left(B_{2 m}\right)$.

This completes the proof.
By Lemma 3.1, Theorem 3.2 and 3.3, we obtain our main results.
Theorem 3.3. Let G be a graph in $\mathscr{B}(2 m, m), m \geq 2$.
(i) If $m=2, G \cong P(2,1,2), z(G)=8, i(G)=6$;
(ii) If $m \geq 3, z(G) \geq 4 \cdot 2^{m-1}+(m-3) \cdot 2^{m-2}$ and $i(G) \leq 2 \cdot 3^{m-1}+2^{m-3}$, the equalities hold if and only if $G \cong B_{2 m}$.

References

[1] B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics, 184, Springer, New York, 1998.
[2] A. Chang, F. Tian and A. Yu, On the index of bicyclic graphs with perfect matchings, Discrete Math. 283 (2004), no. 1-3, 51-59.
[3] H. Deng and S. Chen, The extremal unicyclic graphs with respect to Hosoya index and Merrifield-Simmons index, MATCH Commun. Math. Comput. Chem. 59 (2008), no. 1, 171-190.
[4] H. Deng, The largest Hosoya index of ($n, n+1$)-graphs, Comput. Math. Appl. 56 (2008), no. 10, 2499-2506.
[5] H. Deng, The smallest Hosoya index in ($n, n+1$)-graphs, J. Math. Chem. 43 (2008), no. 1, 119-133.
[6] H. Deng, The smallest Merrifield-Simmons index of ($n, n+1$)-graphs, Math. Comput. Modelling 49 (2009), no. 1-2, 320-326.
[7] H. Deng, S. Chen and J. Zhang, The Merrifield-Simmons index in ($n, n+1$)-graphs, J. Math. Chem. 43 (2008), no. 1, 75-91.
[8] R. E. Merrifield and H. E. Simmons, Topological Methods in Chemistry, Wiley, New York, 1989.
[9] I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
[10] H. Hua, Hosoya index of unicyclic graphs with prescribed pendent vertices, J. Math. Chem. 43 (2008), no. 2, 831-844.
[11] H. Hua, Minimizing a class of unicyclic graphs by means of Hosoya index, Math. Comput. Modelling 48 (2008), no. 5-6, 940-948.
[12] Y. Hou, On acyclic systems with minimal Hosoya index, Discrete Appl. Math. 119 (2002), no. 3, 251-257.
[13] A. J. Hoffman and J. H. Smith, On the spectral radii of topologically equivalent graphs, in Recent Advances in Graph Theory (Proc. Second Czechoslovak Sympos., Prague, 1974), 273-281, Academia, Prague.
[14] S. Li and Z. Zhu, The number of independent sets in unicyclic graphs with a given diameter, Discrete Appl. Math. 157 (2009), 1387-1395.
[15] H. Prodinger and R. F. Tichy, Fibonacci numbers of graphs, Fibonacci Quart. 20 (1982), no. 1, 16-21.
[16] J. Ou, On extremal unicyclic molecular graphs with maximal Hosoya index, Discrete Appl. Math. 157 (2009), no. 2, 391-397.
[17] H. Liu, X. Yan and Z. Yan, On the Merrifield-Simmons indices and Hosoya indices of trees with a prescribed diameter, MATCH Commun. Math. Comput. Chem. 57 (2007), no. 2, 371-384.
[18] H. Liu and M. Lu, A unified approach to extremal cacti for different indices, MATCH Commun. Math. Comput. Chem. 58 (2007), no. 1, 183-194.
[19] A. S. Pedersen and P. D. Vestergaard, The number of independent sets in unicyclic graphs, Discrete Appl. Math. 152 (2005), no. 1-3, 246-256.
[20] L. Turker, Contemplation on the Hosoya indices, Journal of Molecular structure (Theochem), $6 \mathbf{2 3}$ (2003), 75-77.
[21] L. Tan and Z. Zhu, The extremal θ-graphs with respect to Hosoya index and Merrifield-Simmons index, MATCH Commun. Math. Comput. Chem. 63 (2010), no. 3, 789-798.
[22] H. Wang and H. Hua, Unicycle graphs with extremal Merrifield-Simmons index, J. Math. Chem. 43 (2008), no. 1, 202-209.
[23] S. Wagner, Extremal trees with respect to Hosoya index and Merrifield-Simmons index, MATCH Commun. Math. Comput. Chem. 57 (2007), no. 1, 221-233.
[24] S. Wagner and I. Gutman, Maxima and minima of the Hosoya index and the Merrifield-Simmons index: A survey of results and techniques, Acta Appl. Math. 112 (2010), no. 3, 323-346.
[25] K. Xu and I. Gutman, The greatest Hosoya index of bicyclic graphs with given maximum degree, MATCH Commun. Math. Comput. Chem. 66 (2011), no. 3, 795-824.
[26] K. Xu, On the Hosoya index and the Merrifield-Simmons index of graphs with a given clique number, Appl. Math. Lett. 23 (2010), no. 4, 395-398.
[27] K. Xu and B. Xu, Some extremal unicyclic graphs with respect to Hosoya index and Merrifield-Simmons index, MATCH Commun. Math. Comput. Chem. 62 (2009), no. 3, 629-648.
[28] A. Yu and F. Tian, A kind of graphs with minimal Hosoya indices and maximal Merrifield-Simmons indices, MATCH Commun. Math. Comput. Chem. 55 (2006), no. 1, 103-118.
[29] C. Ye and Z. Hu, On the ordering of trees by two indices, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 4, 969-974.
[30] Y. Wu and Q. Yu, A characterization of graphs with equal domination number and vertex cover number, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 3, 803-806.

[^0]: Communicated by Xueliang Li.

