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Abstract. Let G be a planar graph of maximum degree ∆ and girth g, and there is an integer
t(> g) such that G has no cycles of length from g+1 to t. Then the total chromatic number
of G is ∆+1 if (∆,g, t) ∈ {(5,4,6),(4,4,17)}; or ∆ = 3 and (g, t) ∈ {(5,13),(6,11),(7,11),
(8,10),(9,10)}, where each vertex is incident with at most one g-cycle.
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1. Introduction

All graphs considered in this paper are simple, finite and undirected, and we follow [2]
for the terminologies and notations not defined here. Let G be a graph. We use V (G),
E(G), ∆(G) and δ (G) (or simply V , E, ∆ and δ ) to denote the vertex set, the edge set, the
maximum degree and the minimum degree of G, respectively. For a vertex v ∈ V , let N(v)
denote the set of vertices adjacent to v, and let d(v) = |N(v)| denote the degree of v. A k-
vertex, a k+-vertex or a k−-vertex is a vertex of degree k, at least k or at most k respectively.
A k-cycle is a cycle of length k, and a 3-cycle is usually called a triangle.

A total-k-coloring of a graph G is a coloring of V ∪E using k colors such that no two
adjacent or incident elements receive the same color. The total chromatic number χ ′′(G)
of G is the smallest integer k such that G has a total-k-coloring. Clearly, χ ′′(G) ≥ ∆ + 1.
Behzad [1] posed independently the following famous conjecture, which is known as the
Total Coloring Conjecture (TCC).

Conjecture 1.1. For any graph G, ∆+1≤ χ ′′(G)≤ ∆+2.

This conjecture was confirmed for a general graph with ∆ ≤ 5. But for planar graph,
the only open case is ∆ = 6 (see [11, 15]). Interestingly, planar graphs with high maximum
degree allow a stronger assertion,that is, every planar graph with high maximum degree ∆

is (∆ + 1)-totally-colorable. This result was first established in [3] for ∆ ≥ 14, which was
extended to ∆≥ 9 (see [12]). For 4≤ ∆≤ 8, it is not known whether that the assertion still
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holds true. But there are many related results by adding girth restrictions, see [7–10, 13, 14,
16]. We present our new results in this paper.

Theorem 1.1. Let G be a planar graph of maximum degree ∆ and girth g, and there is an
integer t(> g) such that G has no cycles of length from g+1 to t. Then the total chromatic
number of G is ∆+1 if (a) (∆,g, t) = (5,4,6) or (b)(∆,g, t) = (4,4,17).

Borodin et al. [6] obtained that if a planar graph G of maximum degree three contains no
cycles of length from 3 to 9, then χ ′′(G) = ∆+1. In the following, we make further efforts
on the total-colorability of planar graph on the condition that G contains some k-cycle,where
k ∈ (5, · · · ,9). We get the following result.

Theorem 1.2. Let G be a planar graph of maximum degree 3 and girth g, each vertex is
incident with at most one g-cycle and there is an integer t(> g) such that G has no cycles of
length from g+1 to t. Then χ ′′(G) = ∆+1 if one of the following conditions holds.

(a) g = 5 and t ≥ 13, (b) g = 6 and t ≥ 11, (c) g = 7 and t ≥ 11,
(d) g = 8 and t ≥ 10, (e) g = 9 and t ≥ 10.

We will introduce some more notations and definitions here for convenience. Let G =
(V,E,F) be a planar graph, where F is the face set of G. The degree of a face f , denoted
by d( f ), is the number of edges incident with it, where each cut-edge is counted twice. A
k-face or a k+-face is a face of degree k or at least k, respectively. Let nk(v) be the number
of k-vertices adjacent to v and nk( f ) be the number of k-vertices incident with f .

2. Proof of Theorem 1.1

Let G be a minimal counterexample to Theorem 1.1 in terms of the number of vertices and
edges. Then every proper subgraph of G is (∆ + 1)-totally-colorable. Firstly, we investi-
gate some structural properties of G,which will be used to derive the desired contradiction
completing our proof.

Lemma 2.1. G is 2-connected and hence, it has no vertices of degree 1 and the boundary
b( f ) of each face f in G is exactly a cycle (i.e. b( f ) cannot pass through a vertex v more
than once).

Lemma 2.2. [5] G contains no edge uv with min{d(u),d(v)} ≤ b∆/2c and d(u)+ d(v) ≤
∆+1.

Lemma 2.3. [3] The subgraph of G induced by all edges joining 2-vertices to ∆ -vertices is
a forest.

Lemma 2.4. [6] If ∆≥ 5, then no 3-vertex is adjacent two 3-vertices.

Let G2 be the subgraph induced by all edges incident with 2-vertices of G. Then G2 is a
forest by Lemma 2.3. We root it at a 5-vertex. In this case, every 2-vertex has exactly one
parent and exactly one child, which are 5-vertices.

Since G is a planar graph, by Euler’s formula, we have

∑
v∈V

(d(v)−4)+ ∑
f∈F

(d( f )−4) =−8 < 0.

Now we define the initial charge function ch(x) of x ∈ V ∪ F to be ch(v) = d(v)− 4 if
v ∈ V and ch( f ) = d( f )− 4 if f ∈ F . It follows that ∑x∈V∪F ch(x) < 0. Note that any
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discharging procedure preserves the total charge of G. If we can define suitable discharging
rules to change the initial charge function ch to the final charge function ch′ on V ∪F , such
that ch′(x) ≥ 0 for all x ∈ V ∪F , then we get an obvious contradiction. Now we design
appropriate discharging rules and redistribute weights accordingly.

For a vertex v, we define fk(v) or f +
k (v) to be the number of k-faces or k+-faces incident

with v, respectively. To prove (a), our discharging rules are defined as follows.
R11. Each 2-vertex receives 2 from its child.
R12. Each 3-vertex v receives 1/( f +

7 (v)) from each of its incident 7+-faces.
R13. Each 5+-vertex receives 1/3 from each of its incident 7+-faces.
Next,we will check ch′(x) ≥ 0 for all x ∈ V ∪ F . Let f ∈ F(G). If d( f ) = 4, then

ch′( f ) = ch( f ) = 0. Suppose d( f ) = 7. Then n3( f )≤ 4 by Lemma 2.4. Moreover, every 7+-
face sends at most 1/2 to its incident 3-vertices by R12 and 1/3 to its incident 5-vertices by
R13. So we have ch′( f )≥ ch( f )−4×1/2−3×1/3 = 0. Suppose d( f )≥ 8. Then n3(v)≤
b(2d( f ))/3c by Lemma 2.2 and Lemma 2.4. Thus, ch′( f )≥ ch( f )−(b(2d( f ))/3c×1/2)−
(d( f )−b(2d( f ))/3c)×1/3≥ (5d( f )−38)/9≥ 0 by R12 and R13.

Let v ∈ V (G). If d(v) = 2, then ch′(v) = ch(v) + 2 = 0. If d(v) = 3, then f +
7 (v) ≥ 2

and it follows from R12 that ch′(v) = ch(v) + f +
7 (v)× 1/( f +

7 (v)) = 0. If d(v) = 4, then
ch′(v) = ch(v) = 0. If d(v) = 5, then f +

7 (v) ≥ 3. Moreover, it may be the child of at most
one 2-vertex. Thus ch′(v) ≥ ch(v) + 1/3× 3− 2 = 0 by R13. Suppose d(v) ≥ 6. Then
v is incident with at most b(d(v))/2c 4-faces and it may be the the parent of at most one
2-vertex. So ch′(v)≥ ch(v)+(d(v)−b(d(v))/2c)×1/3−2 = (7d(v)−36)/6 > 0.

Note that (a) implies that (b) is true if ∆≥ 5. So it suffice to prove (b) by assuming ∆ = 4.
Since G is a planar graph, by Euler’s formula, we have

∑
v∈V

(2d(v)−6)+ ∑
f∈F

(d( f )−6) =−12 < 0.

Now we define the initial charge function ch(x) of x∈V ∪F to be ch(v) = 2d(v)−6 if v∈V
and ch( f ) = d( f )−6 if f ∈ F . It follows that ∑x∈V∪F ch(x) < 0.

To prove (b), we construct the new charge ch′(x) on G as follows.
R21. Each d( f )(d( f )≥ 18)-face gives 1−6/(d( f )) to its incident vertices.
R22. Each 2-vertex gets 3/2 from its child and 1/2 from its parent.
R23. Let f be a 4-face. If f is incident with a 2-vertex, then it gets 2/3 from each of its

incident 3+-vertices. If f is incident with no 2-vertices, then it gets 1/2 from each
of its incident vertices.

The rest of this paper is devoted to checking ch′(x)≥ 0 for all x ∈V ∪F . Let f ∈ F(G).
If d( f ) = 4, then ch′( f ) = ch( f )+max{2/3×3,1/2×4}= 0. If d( f )≥ 18, then ch′( f ) =
ch( f )− r× (1−6/r) = 0 by R21.

Let v ∈V (G). If d(v) = 2, then ch′(v) = ch(v)+3/2+1/2 = 0 by R22. If d(v) = 3, then
f +
18(v)≥ 2 and f4(v)≤ 1, and it follows from R21 and R23 that ch′(v) = ch(v)+2×2/3−

2/3 > 0. Suppose that d(v) = 4. Then ch(v) = 2×4−6 = 2. If n2(v)≥ 1, then v sends at
most (n2(v)+ 2)/2 to all its adjacent 2-vertices by R22. If 3 ≤ n2(v) ≤ 4, then f4(v) ≤ 1
by Lemma 2.3, and it follows that ch′(v)≥ ch(v)− (n2(v)+2)/2+2/3×3−2/3 = (14−
n2(v)× 3)/6 > 0 by R21 and R23. If 1 ≤ n2(v) ≤ 2, then f4(v) ≤ 2, and it follows that
ch′(v) ≥ ch(v)− (n2(v)+ 2)/2 + 2/3× 2− 2/3× 2 = (2− n2(v))/2 ≥ 0. If n2(v) = 0, we
have f4(v) ≤ 2. Moreover, each 4-face incident with v contains no 2-vertices. By R23, we
have ch′(v)≥ ch(v)+2/3×2−1/2×2 > 0. Now we complete the proof of Theorem 1.1.
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3. Proof of Theorem 1.2

A 3(k)-vertex is a 3-vertex adjacent to exactly k 2-vertices. Let G be a minimal counterex-
ample to Theorem 1.2 in terms of the number of vertices and edges. By minimality of G, it
has the following result.

Lemma 3.1. [6]
(a) no 2-vertex is adjacent to two 2-vertices;
(b) no 2-vertex is adjacent to a 2-vertex and a 3(2)-vertex;
(c) no 3-vertex is adjacent to three 2-vertices.

Let G23 be the bipartite subgraph of G comprising V and all edges of G that join a
2-vertex to a 3-vertex. Then G23 has no isolated 2-vertices by Lemma 3.1(a), and the maxi-
mum degree is at most 2 by Lemma 3.1(c), and any component of G23 is a path with more
than one edges must end in two 3-vertices by Lemma 3.1(b). It follows that n3 ≥ n2. So
we can find a matching M in G saturating all 2-vertices. If uv ∈M and d(u) = 2 ,v is called
the 2-master of u. Each 2-vertex has one 2-master and each vertex of degree ∆ can be the
2-master of at most one 2-vertex.

Since G is a planar graph, by Euler’s formula, we have

∑
v∈V

(d(v)−6)+ ∑
f∈F

(2d( f )−6) =−12 < 0.

Now we define the initial charge function ch(x) of x ∈ V ∪ F to be ch(v) = d(v)− 6 if
v ∈ V and ch( f ) = 2d( f )− 6 if f ∈ F . It follows that ∑x∈V∪F ch(x) < 0. Note that any
discharging procedure preserves the total charge of G. If we can define suitable discharging
rules to change the initial charge function ch to the final charge function ch′ on V ∪F , such
that ch′(x) ≥ 0 for all x ∈ V ∪F , then we get an obvious contradiction. Now we design
appropriate discharging rules and redistribute weights accordingly.

R31. Each d( f )(d( f )≥ 5)-face gives 2−6/(d( f )) to its incident vertices.
R32. Each 2-vertex receives 3−12/(t +1)−6/g from its 2-master.
Let ch′(x) be the new charge obtained by the above rules for all x ∈V ∪F . If f ∈ F(G),

then ch′( f ) = ch( f )− d( f )× (2d( f )− 6)/(d( f )) = 0 by R31. Let v ∈ V (G). Suppose
d(v) = 3. Then v can be the 2-master of at most one 2-vertex, and v sends at most 3−
12/(t + 1)− 6/g to 2-vertex by R32. In addition, If v is incident with a g-face, then the
other faces incident with v are two (t +1)+-faces, for G has no cycles of length from g+1
to t. Thus, v receives (2− 6/g) from its incident g-face and (2− 6/(t + 1)) from each of
its incident (t + 1)+-face by R31. So ch′(v) ≥ ch(v)+ 2(2−6/(t + 1))+ (2−6/g)− (3−
12/(t + 1)− 6/g) = 0 for all g and t. Otherwise, v is incident with three (t + 1)+-faces,
then ch′(v)≥ ch(v)+3(2−6/(t +1))− (3−12/(t +1)−6/g) = 6/g−6/(t +1) > 0, for
t +1 > g. Suppose d(v) = 2. Then v receives at most 3−12/(t +1)−6/g from its 2-master
by R31. If v is incident with a g-face, since G has no cycles of length from g + 1 to t, then
the other face incident with v is a (t + 1)+-face, and it follows that ch′(v) ≥ ch(v)+ (2−
6/(t +1))+(2−6/g)+(3−12/(t +1)−6/g) = 0 for all g and t. Otherwise, v is incident
with two (t +1)+-faces, then ch′(v)≥ ch(v)+2(2−6/(t +1))+(3−12/(t +1)−6/g) =
3−24/(t +1)−6/g > 0.

From the above, we can see that ch′( f ) = ch( f )− d( f )× (2d( f )− 6)/(d( f )) = 0 for
all f ∈ F(G). Suppose d(v) = 3. So ch′(v) ≥ ch(v)+ 2(2− 6/(t + 1))+ (2− 6/g)− (3−
12/(t + 1)− 6/g) = 0 for all g and t. When v is incident with three (t + 1)+-faces, then
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ch′(v)≥ ch(v)+3(2−6/(t +1))−(3−12/(t +1)−6/g) = 6/g−6/(t +1) > 0, for t +1 >
g. Suppose d(v) = 2. If v is incident with a g-face and a (t +1)+-face, then ch′(v)≥ ch(v)+
(2−6/(t + 1))+ (2−6/g)+ (3−12/(t + 1)−6/g) = 0 for all g and t.When v is incident
with two (t +1)+-faces, then ch′(v)≥ ch(v)+2(2−6/(t +1))+(3−12/(t +1)−6/g) =
3− 24/(t + 1)− 6/g. So when g = 5, then t ≥ 13; when g = 6, then t ≥ 11; when g = 7,
then t ≥ 11; when g = 8, then t ≥ 10; when g = 9, then t ≥ 10, and it follows that ch′(v)≥ 0.

Our proof of Theorem 1.2 is now complete.

Acknowledgement. This work is supported by research grants NSFC (10971121, 11271106)
of China and the Natural Science Foundation of Shandong Province (ZR2012AL08).

References
[1] M. Behzad, Graphs and Their Chromatic Numbers, ProQuest LLC, Ann Arbor, MI, 1965.
[2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc.,

New York, 1976.
[3] O. V. Borodin, On the total coloring of planar graphs, J. Reine Angew. Math. 394 (1989), 180–185.
[4] O. V. Borodin, A. V. Kostochka and D. R. Woodall, List edge and list total colourings of multigraphs, J.

Combin. Theory Ser. B 71 (1997), no. 2, 184–204.
[5] O. V. Borodin, A. V. Kostochka and D. R. Woodall, Total colorings of planar graphs with large maximum

degree, J. Graph Theory 26 (1997), no. 1, 53–59.
[6] O. V. Borodin, A. V. Kostochka and D. R. Woodall, Total colourings of planar graphs with large girth,

European J. Combin. 19 (1998), no. 1, 19–24.
[7] H. Y. Chen, X. Tan and J. L. Wu, The linear arboricity of planar graphs without 5-cycles with chords, Bull.

Malays. Math. Sci. Soc. (2), accepted.
[8] A. J. Dong, X. Zhang and G. J. Li, Equitable coloring and equitable choosability of planar graphs without 5-

and 7-cycles, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 4, 897-910.
[9] D. Du, L. Shen and Y. Wang, Planar graphs with maximum degree 8 and without adjacent triangles are

9-totally-colorable, Discrete Appl. Math. 157 (2009), no. 13, 2778–2784.
[10] J. Hou, Y. Zhu, G. Liu, J. Wu and M. Lan, Total colorings of planar graphs without small cycles, Graphs

Combin. 24 (2008), no. 2, 91–100.
[11] A. V. Kostochka, The total chromatic number of any multigraph with maximum degree five is at most seven,

Discrete Math. 162 (1996), no. 1-3, 199–214.
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