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Abstract. This paper is devoted to study the multiplicity of nontrivial nonnegative or posi-
tive solutions to the following systems

−4pu = λa1(x)|u|q−2u+b(x)Fu(u,v), in Ω,

−4pv = λa2(x)|v|q−2v+b(x)Fv(u,v), in Ω,

u = v = 0, on ∂Ω,

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω; 1 < q < p < N, p∗ =
(N p)/(N − p); 4pw = div(|∇w|p−2∇w) denotes the p-Laplacian operator; λ > 0 is a
positive parameter; ai ∈ LΘ(Ω)(i = 1, 2) with Θ = p∗/(p∗ − q) and b ∈ L∞(Ω) are al-
lowed to change sign; F ∈C1((R+)2,R+) is positively homogeneous of degree p∗, that is,
F(tz) = t p∗F(z) holds for all z ∈ (R+)2 and t > 0, here, R+ = [0,+∞). The multiple results
of weak solutions for the above critical quasilinear elliptic systems are obtained by using the
Ekeland’s variational principle and the mountain pass theorem.
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1. Introduction and main results

Let Ω ⊂ RN be a bounded domain with smooth boundary ∂Ω. We are concerned with
the following problems

(1.1)

 −4pu = λa1(x)|u|q−2u+b(x)Fu(u,v), in Ω,
−4pv = λa2(x)|v|q−2v+b(x)Fv(u,v), in Ω,
u = v = 0, on ∂Ω,

where 1 < q < p < N, p∗=(N p)/(N− p);4pw = div(|∇w|p−2∇w) denotes the p-Laplacian
operator; λ > 0 is a positive parameter; ai ∈ LΘ(Ω)(i = 1, 2) with Θ = p∗/(p∗− q) and
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b ∈ L∞(Ω) are allowed to change sign; F ∈ C1((R+)2,R+) is positively homogeneous of
degree p∗, that is, F(tz) = t p∗F(z) holds for all z ∈ (R+)2 and t > 0, here, R+ = [0,+∞).

In recent years, more and more attention have been paid to the existence and multiplic-
ity of nonnegative or positive solutions for the elliptic problems involving concave-convex
nonlinearities and critical Sobolev exponent. Results relating to the semilinear problems
can be found in [2, 6, 8, 9, 16, 19, 21, 22, 24, 27, 28], and the references therein. For
the quasilinear problems, the corresponding results can be found in [1, 7, 10–12, 14, 15,
17, 18, 26, 29], and the references therein. By the results of the above papers we know
that the number of nontrivial solutions for problem (1.1) is affected by the concave-convex
nonlinearities, and the sign of solutions for problem (1.1) depends largely on the sign of the
weight functions. In general, the nonnegative solutions of problem (1.1) are obtained when
the weight functions satisfy some conditions. In order to apply the maximum principle to
guarantee the positivity of solutions for problem (1.1), they usually require that the weight
functions are nonnegative.

Set u = v, a1(x) = a2(x). Then problem (1.1) reduces to the quasilinear scalar elliptic
equations with concave-convex nonlinearities

(1.2)
{
−4pu = λa1(x)|u|q−2u+b(x)|u|p∗−2u, in Ω,
u = 0, on ∂Ω.

Problem (1.2) was originally considered in [2] when p = 2, a1(x) = b(x)≡ 1. They proved
that problem (1.2) has at least two positive solutions for λ > 0 small enough. Subsequently,
for the case p = 2, the multiple results for solutions of problem (1.2) were extended to the
variable a1(x) and the variable b(x)(see [8, 9, 21, 28]). For the case p > 1, [14] and [15] have
considered the case a1(x) = b(x) ≡ 1 of problem (1.2). By using the variational approach,
they obtained that problem (1.2) has at least two positive solutions for λ > 0 small enough.
For more general cases, the multiple results for solutions of problem (1.2) can be found in
[10] and [18].

For the semilinear elliptic systems, Wu in [29] has considered the following semilinear
elliptic systems

(1.3)


−4u = λa1(x)|u|q−2u+ α

α+β
b(x)|u|α−2u|v|β , in Ω,

−4v = λa2(x)|v|q−2v+ β

α+β
b(x)|u|α |v|β−2v, in Ω,

u = v = 0, on ∂Ω,

where 1 < q < 2; α > 1, β > 1 satisfy 2 < α +β < 2∗(2∗ = (2N)/(N−2) if N ≥ 3, 2∗ =
∞ if N = 2); λ > 0 is a positive parameter; a1, a2 ∈ L(α+β )/(α+β−q)(Ω) are allowed to
change sign; b(x) ∈C(Ω) with ‖b‖∞ = 1 and b≥ 0. By the variational approach involving
the Nehari manifold, he proved that problem (1.3) has at least two nontrivial nonnegative
solutions for λ > 0 small enough. Subsequently, Hsu and Lin in [19] considered the case
a1(x) = b(x) ≡ 1, a2(x) ≡ µ/λ (µ > 0) and α + β = 2∗ of problem (1.3). By using the
similar methods of [29], they obtained that problem (1.3) has at least two positive solutions
for λ > 0 small enough.

In a recent paper, Hsu in [17] has considered the case a1(x) = b(x) ≡ 1, a2(x) ≡ µ/λ

(µ > 0) and F(u,v) = 2/(α + β )|u|α |v|β , α > 1, β > 1 satisfy α + β = p∗ of problem
(1.1). With the help of the Nehari manifold, he proved that problem (1.1) has at least two
positive solutions for λ > 0 small enough. The variational approach involving the Nehari
manifold require that the nonlinearity F is second order derivative about u and v. However,
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we only assume that F ∈C1((R+)2,R+), the Nehari manifold technique is invalid. Hence,
in order to obtain the multiple results for solutions of problem (1.1), we need to look for
other methods. In addition, as far as we know, very few multiple results of problem (1.1)
have been obtained in the literate for a more general term F when the weight functions are
allowed to change sign. So our goal will be to extend the corresponding results in [17] to a
more general term F and the sign-changing weight functions. In the present paper, under the
conditions of the weight functions are allowed to change sign, we consider problem (1.1)
and obtain the existence and multiplicity of nontrivial nonnegative or positive solutions for
problem (1.1) by applying the Ekeland’s variation principle and the mountain pass theorem.
The main results of this paper extend the corresponding results in [17] and our proof is
completely different with him. In fact, our proof for the principal result is much simpler
than that of [17, Theorem 1.2]. Moreover, even in the elliptic equation case, our results also
extend the corresponding results in [10] and [15].

Before stating our results, we give some notations and assumptions. Let z = (u,v),
|z|p = |u|p + |v|p, E = W 1,p

0 (Ω)×W 1,p
0 (Ω), ‖w‖s = (

∫
Ω
|w|sdx)1/s (1 < s < ∞), ‖w‖∞ =

sup
x∈Ω

{|w(x)|}, ‖w‖= (
∫

Ω
|∇w|pdx)1/p, ‖z‖p

E = ‖u‖p +‖v‖p, B(x0,δ ) = {x∈Ω : |x−x0|< δ}.

(a1) ai(x) ∈ LΘ(Ω) and a+
i = max{ai(x),0} 6= 0, where i = 1, 2;

(a2) There exist positive constants β0, δ0 and x0 ∈ Ω such that B(x0,2δ0) ⊂ Ω and
ai(x)≥ β0(i = 1, 2) in B(x0,2δ0).

(b1) b(x) ∈ L∞(Ω) and b+ = max{b(x),0} 6= 0;
(b2) b(x0) = ‖b‖∞ and b(x) > 0 for all x ∈ B(x0,2δ0);
(b3) There exists k > (N− p)/(p−1) such that

b(x) = b(x0)+o(|x− x0|k) as x→ x0.

In addition, we denote positive constants by C, C1, C2, · · · . The main results of this
paper are as follows.

Theorem 1.1. Let 1 < q < p < N, (a1) and (b1) hold. Assume that F ∈C1((R+)2,R+) is
positively homogeneous of degree p∗ and Fu(0,v) = Fv(u,0) = 0 for all u, v∈R+, then there
exists Λ > 0 such that problem (1.1) for all λ ∈ (0,Λ) has at least one solution zλ = (uλ ,vλ )
satisfies that uλ ≥ 0, vλ ≥ 0 in Ω and uλ 6= 0, vλ 6= 0. Moreover, if ai(x)≥ 0(i = 1, 2) and
b(x)≥ 0, then zλ is a positive solution, that is, uλ > 0, vλ > 0 in Ω.

Theorem 1.2. Let 1 < p < N, (N(p− 1))/(N − p) < q < p < N, (a1), (a2), (b1), (b2)
and (b3) hold. Assume that F ∈ C1((R+)2,R+) is positively homogeneous of degree p∗

and Fu(u,0) = Fu(0,v) = Fv(u,0) = Fv(0,v) = 0 for all u, v ∈ R+, then there exists λ ∗ > 0
such that problem (1.1) for all λ ∈ (0,λ ∗) has at least two nontrivial nonnegative solutions
zλ = (uλ ,vλ ) and z̄λ = (ūλ , v̄λ ) satisfy that uλ 6= 0, vλ 6= 0, and ūλ 6= 0, v̄λ 6= 0 in Ω.
Moreover, if ai(x) ≥ 0(i = 1, 2) and b(x) ≥ 0, then zλ and z̄λ are two positive solutions of
problem (1.1), that is, uλ > 0, vλ > 0, and ūλ > 0, v̄λ > 0 in Ω.

From elliptic systems reduce to elliptic equations, our Theorem 1.2 can be described as

Corollary 1.1. Let 1 < p < N and (N(p− 1))/(N− p) < q < p. Assume that (a1), (a2),
(b1), (b2) and (b3) hold. Then there exists λ ∗> 0 such that problem (1.2) for all λ ∈ (0,λ ∗)
has at least two nontrivial nonnegative solutions uλ and ūλ satisfy that uλ 6= 0 and ūλ 6= 0
in Ω. Moreover, if a1(x)≥ 0 and b(x)≥ 0, then uλ > 0 and ūλ > 0 in Ω.
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Remark 1.1. [17, Theorem 1.1 and 1.2] are the special cases of our Theorem 1.1 and 1.2
corresponding to a1(x) = b(x)≡ 1, a2(x)≡ µ/λ (µ > 0) and F(u,v) = 2/(α +β )|u|α |v|β ,
α > 1, β > 1 satisfy α + β = p∗. There are other functions F satisfying the conditions of
our Theorem 1.1. For example,

F(u,v) = |u|α1 |v|β1 + |u|α2 |v|β2

where αi > 1, βi > 1 (i = 1,2), α1 6= α2 and α1 +β1 = α2 +β2 = p∗. Obviously, F satisfies
the conditions of our theorems.

Remark 1.2. In the constant coefficients case, it implies from p≥ 3 that (N(p−1))/(N−
p)≤ p∗−2/(p−1). Hence our Corollary 1.1 extend [15, Theorem 2].

Remark 1.3. In the case p≥ 3, our Corollary 1.1 extend [10, Theorem 6.3]. In fact, in the
case p ≥ 3, the condition p > q > p∗− 2/(p− 1) deduce that N > p(1 + p(p− 1)/2)(see
Remark 1 in [15]), which implies that our condition (b3) is weaker than the condition (b)
of [10, Theorem 6.3].

2. Palais-Smale condition

In this section, we show that the corresponding functional of problem (1.1) satisfies the
(PS)c condition. Let u± = max{±u,0}, the corresponding functional of problem (1.1) is

I(u,v) =
1
p

∫
Ω

(|∇u|p + |∇v|p)dx− λ

q

∫
Ω

[a1(x)(u+)q +a2(x)(v+)q]dx−
∫

Ω

b(x)F(u+,v+)dx

for (u,v) ∈ E. Under the hypotheses of our theorems, it is obvious that I is a C1 functional.
It is well known that any critical point of I in E is a weak solution of problem (1.1). Hence,
in order to obtain the nontrivial solutions of problem (1.1), we only need to look for the
nontrivial critical points of I in E. In addition, since F is positively homogeneous of degree
p∗, we have the so-called Euler identity

(2.1) z ·∇F(z) = p∗F(z),

and

(2.2) F(z)≤M|z|p∗ for all z ∈ (R+)2,

where M = max
{z∈(R+)2: |z|=1}

F(z) > 0. Now we first give some preliminaries.

Definition 2.1. Let c ∈ R, E∗ denote the dual space of the Banach space E.

(i) A sequence {zn} ⊂ E is called a (PS)c sequence of I if I(un)→ c and I
′
(zn)→ 0 in

E∗ as n→ ∞;
(ii) We call that I satisfies the (PS)c condition if any (PS)c sequence {zn} ⊂ E of I has

a convergent subsequence.

Lemma 2.1. Assume that F ∈C1((R+)2,R+) is positively homogeneous of degree p∗ such
that Fu(0,v) = Fv(u,0) = 0 for all u, v ∈ R+, (a1) and (b1) hold. Let {zn}= {(un,vn)} ⊂ E
be a (PS)c sequence of I, then {zn} is bounded.

Proof. By the Sobolev imbedding theorem, there exists C > 0 such that

(2.3) ‖w‖s ≤C‖w‖, for all w ∈W 1,p
0 (Ω) and 1≤ s≤ p∗.
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Let A = max{‖a1‖Θ,‖a2‖Θ}. According to the hypothesis (a1), for each ε > 0, by the
Hölder inequality and the Young inequality, we imply from (2.3) that∣∣∣∣λq

∫
Ω

[a1(x)(u+)q +a2(x)(v+)q]dx
∣∣∣∣

≤ λ

q

(
‖a1‖Θ‖u‖q

p∗ +‖a2‖Θ‖v‖q
p∗

)
≤ λ

q
ACq(‖u‖q +‖v‖q)(2.4)

≤ ε(‖u‖p +‖v‖p)+
2
q
(p−q)ε−

q
p−q

(
λA
p

Cq
) p

p−q

= ε‖z‖p
E +C(ε)λ

p
p−q ,

where C(ε) = 2/q(p− q)ε−q/(p−q) (A/pCq)p/(p−q). Let {zn} be a (PS)c sequence of I.
Using the hypotheses that F is positively homogeneous of degree p∗ such that Fu(0,v) =
Fv(u,0) = 0 for all u, v ∈ R+, we derive from (2.4) that

p∗I(zn)−〈I
′
(zn),zn〉=

(
p∗

p
−1
)
‖zn‖p

E +
λ

q
(q− p∗)

∫
Ω

[a1(x)(u+
n )q +a2(x)(v+

n )q]dx

≥
(

p∗

p
−1− (p∗−q)ε

)
‖zn‖p

E − (p∗−q)C(ε)λ
p

p−q .

It follows that(
p∗

p
−1− (p∗−q)ε

)
‖zn‖p

E ≤ p∗c+(p∗−q)C(ε)λ
p

p−q +o(‖zn‖E).

Let ε < (p∗− p)/(p(p∗−q)), we obtain {zn} is bounded in E.
Let

S = inf
u∈W 1,p

0 (Ω)\{0}

∫
Ω
|∇u|pdx

(
∫

Ω
|u|p∗dx)p/p∗

denote the best Sobolev constant for the imbedding W 1,p
0 (Ω) in Lp∗(Ω). S is achieved on

Ω = RN by the function W (x) = K/((1+ |x|p/(p−1))(N−p)/p2
), where

K =
[
N ((N− p)/(p−1))p−1

](N−p)/p2

(see [12] or [23]). Define

SF := inf
(u,v)∈E

{ ∫
Ω
(|∇u|p + |∇v|p)dx

(
∫

Ω
F(u+,v+)dx)p/p∗ :

∫
Ω

F(u+,v+)dx > 0
}

.

We have the following lemmas.

Lemma 2.2. Assume that F ∈C1((R+)2,R+) is positively homogeneous of degree p∗ such
that Fu(0,v) = Fv(u,0) = 0 for all u, v ∈ R+, (a1) and (b1) hold. Let {zn} be a (PS)c
sequence of I with zn ⇀ z in E as n→ ∞, then there exists a positive constant B depending
on p, q, N, S, ‖a1‖Θ and ‖a2‖Θ such that

I
′
(z) = 0 and I(z)≥−Bλ

p
p−q .

Proof. Let {zn} = {(un,vn)} be a (PS)c sequence of I with zn ⇀ z = (u,v) in E. Then we
have

I
′
(zn)→ 0, strongly in E∗ as n→ ∞.



794 C.-M. Chu and C.-L. Tang

Since {zn} is bounded, we can obtain a subsequence still denoted by {zn} such that zn = (un,vn)→ (u,v) = z, in Ls(Ω)×Ls(Ω), 1 < s < p∗,
zn = (un,vn)→ (u,v) = z, a.e. in Ω,
∇un→ ∇u, ∇vn→ ∇v, a.e. in Ω.

Consequently, passing to the limit in 〈I ′(zn),(ϕ,ψ)〉 as n→ ∞, and using the hypotheses of
our Lemma 2.2, we have∫

Ω

|∇u|p−2
∇u ·∇ϕdx−λ

∫
Ω

a1(x)(u+)q−1
ϕdx−

∫
Ω

b(x)Fu(u+,v+)ϕdx = 0

and ∫
Ω

|∇v|p−2
∇v ·∇ψdx−λ

∫
Ω

a2(x)(v+)q−1
ψdx−

∫
Ω

b(x)Fv(u+,v+)ψdx = 0

for all (ϕ, ψ) ∈ E, that is, I
′
(z) = 0.

In particular, we have 〈I ′(z),z〉= 0, which implies from (2.1) that

‖z‖p
E = λ

∫
Ω

[a1(x)(u+)q +a2(x)(v+)q]dx+ p∗
∫

Ω

b(x)F(u+,v+)dx.

It follows that

I(z) =
(

1
p
− 1

p∗

)
‖z‖p

E −
(

1
q
− 1

p∗

)
λ

∫
Ω

[a1(x)(u+)q +a2(x)(v+)q]dx.

Using the Hölder inequality, the Young inequality and the Sobolev imbedding theorem, one
has

I(z) =
(

1
p
− 1

p∗

)
‖z‖p

E −
(

1
q
− 1

p∗

)
λ

∫
Ω

[a1(x)(u+)q +a2(x)(v+)q]dx

≥ 1
N
‖z‖p

E −
p∗−q

p∗q
λ

(
‖a1‖Θ‖u‖q

p∗ +‖a2‖Θ‖v‖q
p∗

)
≥ 1

N
‖z‖p

E −
p∗−q

p∗q
λS−

q
p (‖a1‖Θ‖u‖q +‖a2‖Θ‖v‖q)

≥ 1
N
‖z‖p

E −
(

1
N
‖z‖p

E +Bλ
p

p−q

)
=−Bλ

p
p−q ,

where B is a positive constant depending on p, q, N, S, ‖a1‖Θ and ‖a2‖Θ.
Now we introduce the following version of the Brezis-Lieb Lemma (see [4] or [5]).

Lemma 2.3. Assume that G ∈ C1(R2) with G(0,0) = 0 and |∂G(z)/∂u|, |∂G(z)/∂v| ≤
C1|z|s−1, some 1 ≤ s < ∞. Let zn be a bounded sequence in Ls(Ω)×Ls(Ω), and such that
zn ⇀ z a.e. Ω. Then, as n→ ∞,∫

Ω

G(zn)dx =
∫

Ω

G(zn− z)dx+
∫

Ω

G(z)dx+o(1).

Lemma 2.4. Assume that F ∈C1((R+)2,R+) is positively homogeneous of degree p∗ such
that Fu(0,v) = Fv(u,0) = 0 for all u, v ∈ R+, (a1) and (b1) hold. then I satisfies the (PS)c
condition with c satisfying

c <
p

N− p
‖b‖

−N−p
p

∞

(
SF

p∗

)N
p

−Bλ
p

p−q ,
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where B is the positive constant give in Lemma 2.2.

Proof. Let {zn = (un,vn)} ⊂ E be a (PS)c sequence of I with c < p/(N− p)‖b‖−(N−p)/p
∞

(SF/p∗)N/p−Bλ p/(p−q). By Lemma 2.1, we know that {zn} is bounded. Up to a subse-
quence, we may assume that zn = (un,vn) ⇀ (u,v) = z, in E,

zn = (un,vn)→ (u,v) = z, a.e. on Ω,
zn = (un,vn)→ (u,v) = z, in Ls(Ω)×Ls(Ω), 1≤ s < p∗.

From Lemma 2.2, we have that I′(z) = 0 and

λ

∫
Ω

[a1(x)(u+
n )q +a2(x)(v+

n )q]dx = λ

∫
Ω

[a1(x)(u+)q +a2(x)(v+)q]dx+o(1).

Let z̃n = (ũn, ṽn), where ũn = un−u, ṽn = vn− v. From Lemma 2.3, one has

‖z̃n‖p
E = ‖zn‖p

E −‖z‖
p
E +o(1).

Since F ∈ C1((R+)2,R+) is positively homogeneous of degree p∗ such that Fu(0,v) =
Fv(u,0) = 0 for all u, v ∈ R+, it follows from Lemma 2.3 that∫

Ω

F((z̃n)+)dx =
∫

Ω

F(z+
n )dx−

∫
Ω

F(z+)dx+o(1),

which implies from (b1) that∫
Ω

b(x)F((z̃n)+)dx =
∫

Ω

b(x)F(z+
n )dx−

∫
Ω

b(x)F(z+)dx+o(1).

Since I(zn) = c+o(1) and I′(zn) = o(1), we obtain
1
p
‖z̃n‖p

E −
∫

Ω

b(x)F((z̃n)+)dx = c− I(z)+o(1).(2.5)

and

‖z̃n‖p
E − p∗

∫
Ω

b(x)F((z̃n)+)dx = o(1).(2.6)

From (2.6), we may assume that

‖z̃n‖p
E → p∗l,

∫
Ω

b(x)F((z̃n)+)dx→ l.

Assume that l > 0, by the definition of SF , we have

‖z̃n‖p
E ≥ SF

(∫
Ω

F((z̃n)+)dx
) p

p∗

≥ SF

(∫
Ω

b(x)
‖b‖∞

F((z̃n)+)dx
) p

p∗

= SF‖b‖
−N−p

N
∞

(∫
Ω

b(x)F((z̃n)+)dx
) p

p∗

.

As n→ ∞, we deduce that

l ≥ ‖b‖
−N−p

p
∞

(
SF

p∗

)N
p

.

It follows from (2.5) and Lemma 2.2 that

c =
(

p∗

p
−1
)

l + I(z)≥ p
N− p

‖b‖
−N−p

p
∞

(
SF

p∗

)N
p

−Bλ
p

p−q ,
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which contradicts the fact c < p/(N− p)‖b‖−(N−p)/p
∞ (SF/p∗)N/p−Bλ p/(p−q). Therefore,

we have l = 0, which implies that

zn→ z in E.

Hence I satisfies the (PS)c condition with

c < p/(N− p)‖b‖−(N−p)/p
∞ (SF/p∗)N/p−Bλ

p/(p−q).

3. The existence of solutions for problem (1.1)

In this section, we show that there exists Λ > 0 such that problem (1.1) has a nontrivial
nonnegative or positive solution zλ = (uλ ,vλ ) with I(zλ ) < 0 for any λ ∈ (0,Λ). More
precisely, we prove our Theorem 1.1 by the Ekeland’s variational principal.

Lemma 3.1. Let r, s > 1, g ∈ Ls(Ω) and g+ = max{g(x),0} 6= 0. Then there exists w0 ∈
C∞

0 (Ω) such that
∫

Ω
g(x)(w+

0 )rdx > 0.

Proof. Set s1 = (rs)/(s−1). Define

χg =
{

1, in {x| x ∈Ω,g(x) > 0},
0, in {x| x ∈Ω,g(x)≤ 0}.

Since C∞
0 (Ω) is dense in Ls1(Ω), there exist {wn} ⊂C∞

0 (Ω) such that

wn→ χg in Ls1(Ω),

which implies that

(3.1) w+
n → χ

+
g = χg in Ls1(Ω).

It follows from (3.1) and g+ 6= 0 that

(3.2)
∫

Ω

g(x)(w+
n )rdx→

∫
Ω

g(x)χ
r
gdx =

∫
Ω

g+dx > 0, as n→ ∞.

Indeed, in view of r > 1, there is a positive integer m such that 0 < r−m≤ 1. In addition,
it is obvious to obtain the following inequality

(a+b)r−m ≤ ar−m +br−m, for any a≥ 0, b≥ 0.

By the above inequality and the Hölder inequality, we have∣∣∣∣∫
Ω

g(x)[(w+
n )r−χ

r
g]dx

∣∣∣∣
≤

m−1

∑
i=1

∣∣∣∣∫
Ω

g(x)(w+
n )r−i

χ
i−1
g (w+

n −χg)dx
∣∣∣∣+ ∣∣∣∣∫

Ω

g(x)χ
m
g [(w+

n )r−m−χ
r−m
g ]dx

∣∣∣∣
≤

m−1

∑
i=1
‖g‖s‖w+

n ‖r−i
s1
‖χg‖i−1

s1
‖w+

n −χg‖s1 +
∫

Ω

|g(x)|χm
g |w+

n −χg|r−mdx

≤
m−1

∑
i=1
‖g‖s‖w+

n ‖r−i
s1
‖χg‖i−1

s1
‖w+

n −χg‖s1 +‖g‖s‖χg‖m
s1
‖w+

n −χg‖r−m
s1

,

which implies that (3.2) holds. It follows from (3.2) that there exists w0 ∈C∞
0 (Ω) such that∫

Ω
g(x)(w+

0 )rdx > 0.
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Proof of Theorem 1.1. According to the hypothesis (a1), we obtain that (2.4) holds. From
(2.2)–(2.4), we deduce that

I(z)≥
(

1
p
− ε

)
‖z‖p

E −C(ε)λ
p

p−q −2
p∗
p M‖b‖∞(‖u‖p∗

p∗ +‖v‖
p∗
p∗)

≥
(

1
p
− ε

)
‖z‖p

E −2
p∗
p Cp∗M‖b‖∞‖z‖p∗

E −C(ε)λ
p

p−q

Let ε < 1/p, we can find ρ > 0 and Λ1 > 0 such that

(3.3) I(z) > 0 if ‖z‖E = ρ and I(z) >−C2 if ‖z‖E ≤ ρ,

for any λ ∈ (0,Λ1), where C2 = C(ε)λ p/(p−q).
From Lemma 3.1, we obtain that there exist ϕ0, ψ0 ∈C∞

0 (Ω)⊂W 1,p
0 (Ω) such that

(3.4)
∫

Ω

a1(x)(ϕ+
0 )qdx > 0,

∫
Ω

a2(x)(ψ+
0 )qdx > 0.

Therefore, one has

I(kϕ0,kψ0) =
1
p

kp
∫

Ω

(|∇ϕ0|p + |∇ψ0|p)dx− λ

q
kq
∫

Ω

[a1(x)(ϕ+
0 )q +a2(x)(ψ+

0 )q]dx

− kp∗
∫

Ω

b(x)F(ϕ+
0 ,ψ+

0 )dx

≤ 1
p

kp
∫

Ω

(|∇ϕ0|p + |∇ψ0|p)dx− λ

q
kq
∫

Ω

[a1(x)(ϕ+
0 )q +a2(x)(ψ+

0 )q]dx+C3kp∗ ,

where C3 = ‖b‖∞

∫
Ω

F(ϕ+
0 ,ψ+

0 )dx + 1 > 0. Fix λ ∈ (0,Λ1), noticing that p > q > 1, it
implies from (3.4) that there exists k = k(λ ) > 0 small enough such that

I(kϕ0,kψ0) < 0.

Thus we deduce that
cλ = inf

z∈Bρ (0)
I(z) < 0 < inf

z∈∂Bρ (0)
I(z).

By applying the Ekeland’s variational principle in Bρ(0) (see [13]), we obtain that there
exists a (PS)cλ

sequence {zn}= {(un,vn)} ⊂ Bρ(0) with cλ .
According to (2.2) and the Minkowski inequality, we have(∫
Ω

F(u+,v+)dx
) p

p∗

≤M
p

p∗
(∫

Ω

|z|p∗dx
) p

p∗

≤M
p

p∗

[(∫
Ω

up∗dx
) p

p∗

+
(∫

Ω

vp∗dx
) p

p∗
]

≤M
p

p∗
1
S

∫
Ω

(|∇u|p + |∇v|p)dx.

It implies that

(3.5) SF ≥ SM−
p

p∗ > 0.

Hence we can choose 0 < Λ < Λ1 such that

0 <
p

N− p
‖b‖

−N−p
p

∞

(
SF

p∗

)N
p

−Bλ
p

p−q , ∀ λ ∈ (0,Λ).



798 C.-M. Chu and C.-L. Tang

It follows from cλ < 0 and Lemma 2.4 that I satisfies the (PS)cλ
condition. Therefore, one

has a subsequence still denoted by {zn} and zλ = (uλ ,vλ ) ∈ E such that zn→ zλ in E and

I(zλ ) = cλ , I
′
(zλ ) = 0,

which implies that zλ is a solution of problem (1.1). Using the hypothesis that Fu(0,v+) =
Fv(u+,0) = 0 for any (u,v) ∈ E, after a direct calculation, we derive that

‖u−
λ
‖p = 〈I ′u(uλ ,vλ ),−u−

λ
〉= 0, and ‖v−

λ
‖p = 〈I ′v(uλ ,vλ ),−v−

λ
〉= 0,

which implies that u−
λ

= 0 and v−
λ

= 0. Hence we have uλ ≥ 0 and vλ ≥ 0.
Now we show that uλ 6= 0 and vλ 6= 0. Since I(zλ ) = cλ < 0 = I(0,0), we have uλ 6= 0

or vλ 6= 0. Without loss of generality, we may assume that uλ 6= 0 and vλ = 0. Then, for
any λ ∈ (0,Λ), we have

I(tuλ , tψ+
0 ) =

1
p

t p
∫

Ω

|∇uλ |pdx− λ

q
tq
∫

Ω

a1(x)u
q
λ

dx+
1
p

t p
∫

Ω

|∇ψ
+
0 |

pdx

− λ

q
tq
∫

Ω

a2(x)(ψ+
0 )qdx− t p∗

∫
Ω

b(x)F(uλ ,ψ+
0 )dx.(3.6)

Since (uλ ,0) is a critical point of I with I(uλ ,0) = cλ , it follows from (2.1) that∫
Ω

|∇uλ |pdx−λ

∫
Ω

a1(x)u
q
λ

dx− p∗
∫

Ω

b(x)F(uλ ,0)dx = 〈I ′u(uλ ,0),uλ 〉= 0,

which implies that

cλ = I(uλ ,0) =
p∗− p

pp∗

∫
Ω

|∇uλ |pdx− p∗−q
qp∗

λ

∫
Ω

a1(x)u
q
λ

dx.

Let t1 = min
{
((p∗− p)/(p∗−q))1/(p−q) ,((p∗−q)/p∗)1/q

}
, for any t ∈ (0, t1), we have

1
p

t p
∫

Ω

|∇uλ |pdx− λ

q
tq
∫

Ω

a1(x)u
q
λ

dx

=
p∗

p∗−q
tq
(

p∗−q
pp∗

t p−q
∫

Ω

|∇uλ |pdx− p∗−q
qp∗

λ

∫
Ω

a1(x)u
q
λ

dx
)

(3.7)

<
p∗

p∗−q
tq
(

p∗− p
pp∗

∫
Ω

|∇uλ |pdx− p∗−q
qp∗

λ

∫
Ω

a1(x)u
q
λ

dx
)

=
p∗

p∗−q
cλ tq < cλ .

According to F ∈C1((R+)2,R+) and (3.4), there exists t2 > 0 such that for any t ∈ (0, t2)

1
p

t p
∫

Ω

|∇ψ
+
0 |

pdx− λ

q
tq
∫

Ω

a2(x)(ψ+
0 )qdx− t p∗

∫
Ω

b(x)F(uλ ,ψ+
0 )dx

≤ 1
p

t p
∫

Ω

|∇ψ
+
0 |

pdx− λ

q
tq
∫

Ω

a2(x)(ψ+
0 )qdx+C4t p∗ < 0,(3.8)

where C4 = ‖b‖∞

∫
Ω

F(uλ ,ψ+
0 )dx + 1 > 0. Let t3 = min{t1, t2}, from (3.6)–(3.8), for any

t ∈ (0, t3), we obtain that
I(tuλ , tψ+

0 ) < cλ .

Noticing that (uλ ,0) ∈ Bρ(0), thus we can choose t so small that (uλ , tψ+
0 ) ∈ Bρ(0). Hence

we obtain
inf

z∈Bρ (0)
I(z) < cλ ,
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which is a contradiction with cλ = inf
z∈Bρ (0)

I(z). Therefore, we have uλ 6= 0 and vλ = 0 are

not established. Similarly, we obtain uλ = 0 and vλ 6= 0 are impossible. Hence we have
uλ 6= 0 and vλ 6= 0.

Moreover, if ai(x) ≥ 0(i = 1,2) and b(x) ≥ 0, it follows that −4puλ ≥ 0. By the max-
imum principle (see [25]), we obtain uλ > 0 in Ω. Similarly, we have vλ > 0 in Ω. The
proof of Theorem 1.1 is completed.

4. The multiplicity of solutions for problem (1.1)

In this section, we shall use the mountain pass theorem to obtain the second nontrivial
nonnegative or positive solution of problem (1.1).

Lemma 4.1. Let 1 < p < N, (N(p− 1))/(N− p) < q < p, (a1), (a2), (b1), (b2) and (b3)
hold. Assume that F ∈C1((R+)2,R+) is positively homogeneous of degree p∗. Then there
exist a nonnegative function z ∈ E and Λ∗ > 0 such that

sup
t≥0

I(tz) <
p

N− p
‖b‖

−N−p
p

∞

(
SF

p∗

)N
p

−Bλ
p

p−q for all 0 < λ < Λ
∗,

where B is the positive constant give in Lemma 2.2.

Proof. For convenience, we consider the functional J : E→ R defined by

J(u,v) =
1
p

∫
Ω

(|∇u|p + |∇v|p)dx−
∫

Ω

b(x)F(u+,v+)dx for all (u,v) ∈ E.

According to (b2) and (b3), we can choose such a cut-off function φ(x)∈C∞
0 (Ω) that φ(x) =

1 for x ∈ B(x0,δ0), φ(x) = 0 for x ∈ RN \B(x0,2δ0), 0 ≤ φ(x) ≤ 1 and |∇φ | ≤ C5, where
C5 > 0 is a positive constant. Define

uη(x) =
η

N−p
p(p−1) φ(x)(

η
p

p−1 + |x− x0|
p

p−1
)N−p

p
.

After a detailed calculation, we have the following estimate(as η → 0)

(4.1)
∫

Ω
|∇uη |pdx

(
∫

Ω
|uη |p∗dx)p/p∗ = S +O

(
η

N−p
p−1
)

.

Now we show that the above estimate is valid. Indeed, we have

∇uη(x) = η
N−p

p(p−1)

 ∇φ(x)(
η

p
p−1 + |x− x0|

p
p−1
)N−p

p
− N− p

p−1
φ(x)|x− x0|

2−p
p−1 x(

η
p

p−1 + |x− x0|
p

p−1
)N

p

 .

Since φ(x)≡ 1 in B(x0,δ0) and |∇φ | ≤C5, let x = x0 +ηy, one has∫
Ω

|∇uη |pdx = η
N−p
p−1

∫
Ω

|x− x0|p/(p−1)(
η p/(p−1) + |x− x0|p/(p−1)

)N dx+O
(

η
N−p
p−1
)

= η
N−p
p−1

∫
RN

|x− x0|p/(p−1)(
η p/(p−1) + |x− x0|p/(p−1)

)N dx+O
(

η
N−p
p−1
)
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=
∫

RN

|y|p/(p−1)(
1+ |y|p/(p−1)

)N dy+O
(

η
N−p
p−1
)

= |∇U |pLp(RN) +O
(

η
N−p
p−1
)

,

and ∫
Ω

|uη |p
∗
dx = η

N
p−1

∫
Ω

φ p∗dx(
η p/(p−1) + |x− x0|p/(p−1)

)N

= η
N

p−1

∫
B(x0,δ0)

dx(
η p/(p−1) + |x− x0|p/(p−1)

)N +O
(

η
N

p−1
)

= η
N

p−1

∫
RN

dx(
η p/(p−1) + |x− x0|p/(p−1)

)N +O
(

η
N

p−1
)

=
∫

RN

dy(
1+ |y|p/(p−1)

)N +O
(

η
N

p−1
)

= |U |p
∗

Lp∗ (RN)
+O

(
η

N
p−1
)

,

where U(x) =
(
1+ |x|p/(p−1))−(N−p)/p ∈W 1,p(RN) satisfies

|∇U |pLp(RN)

|U |p
Lp∗ (RN)

= S = inf
u∈W 1,p(RN)\{0}

|∇u|pLp(RN)

|u|p
Lp∗ (RN)

.

A direct calculation, we deduce that (4.1) holds.
Since F is positively homogeneous of degree p∗, we have (2.1) and (2.2) hold. It follows

from F ∈C1((R+)2,R+) and (2.2) that there exists (e1,e2) ∈ {z ∈ (R+)2 : |z|= 1} such that
F(e1,e2) = M. Define

h(t) = J(te1uη , te2uη) =
1
p

t p
∫

Ω

|∇uη |pdx−Mt p∗
∫

Ω

b(x)|uη |p
∗
dx for all t ≥ 0.

Assume that h(t) attains its maximum at a point tη . According to

0 = h
′
(tη) = t p−1

η

(∫
Ω

|∇uη |pdx− p∗Mt p∗−p
η

∫
Ω

b(x)|uη |p
∗
dx
)

,

one has

t p∗−p
η =

∫
Ω
|∇uη |pdx

p∗M
∫

Ω
b(x)|uη |p∗dx

.

Using the definition of uη and (b2), we obtain tη < ∞. We also have

(4.2) sup
t≥0

J(te1uη , te2uη) = J(tη e1uη , tη e2uη) = Φ(η)+Ψ(η),

where

Φ(η) =
1
p

t p
η

∫
Ω

|∇uη |pdx−M‖b‖∞t p∗
η

∫
Ω

|uη |p
∗
dx,

Ψ(η) = Mt p∗
η

∫
Ω

(‖b‖∞−b(x))|uη |p
∗
dx.

Using the fact

max
t≥0

(
α

p
t p− β

p∗
t p∗
)

=
1
N

(
α

β p/p∗

)N
p

for any α, β > 0,
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we deduce from (3.5) and (4.1) that

Φ(η)≤ 1
N

(M‖b‖∞)−
N−p

p

[ ∫
Ω
|∇uη |pdx

(
∫

Ω
|uη |p∗dx)p/p∗

]N
p

=
1
N

(M‖b‖∞)−
N−p

p S
N
p +O(η

N−p
p−1 )

≤ p
N− p

‖b‖
−N−p

p
∞

(
SF

p∗

)N
p

+O(η
N−p
p−1 ).

(4.3)

It follows from (b3) that there exists ρ0 ∈ (0,δ0) such that

0≤ b(x0)−b(x)≤ |x− x0|k for all x ∈ B(x0,ρ0).

From k > N−p
p−1 , noticing that tη < ∞, we have

Ψ(η) = Mt p∗
η η

N
p−1

∫
Ω

(‖b‖∞−b(x))φ p∗(
η p/(p−1) + |x− x0|p/(p−1)

)N dx

≤Mt p∗
η η

N
p−1

∫
RN\B(x0,ρ0)

‖b‖∞dx(
η p/(p−1) + |x− x0|p/(p−1)

)N

+Mt p∗
η η

N
p−1

∫
B(x0,ρ0)

|x− x0|kdx(
η p/(p−1) + |x− x0|p/(p−1)

)N

≤Mt p∗
η ‖b‖∞η

N
p−1

∫
RN\B(x0,ρ0)

|x− x0|−
pN

p−1 dx

+
M
N

t p∗
η η

N−p
p−1

∫
B(x0,ρ0)

|x− x0|k−
p(N−1)

p−1 dx

= MNωNt p∗
η ‖b‖∞η

N
p−1

∫ +∞

ρ0

r−
N

p−1−1dr +MωNt p∗
η η

N−p
p−1

∫
ρ0

0
rk−1−N−p

p−1 dr

= M(p−1)ωNt p∗
η ‖b‖∞ρ

− N
p−1

0 η
N

p−1 +
M(p−1)ωN

k(p−1)−N + p
t p∗
η ρ

k−N−p
p−1

0 η
N−p
p−1

= O
(

η
N−p
p−1
)

,

(4.4)

where ωN = (2πN/2)/(NΓ(N/2)) denotes the volume of the unit ball B(0,1) in RN . From
(4.2)− (4.4), we have

(4.5) sup
t≥0

J(te1uη , te2uη)≤ p
N− p

‖b‖
−N−p

p
∞

(
SF

p∗

)N
p

+O(η
N−p
p−1 ).

By the inequality (3.5), we can choose δ1 such that

p
N− p

‖b‖
−N−p

p
∞

(
SF

p∗

)N
p

−Bλ
p

p−q > 0, ∀ λ ∈ (0,δ1).

Using the definitions of I and uη , from (a2) and (b2), we have

I(te1uη , te2uη)≤ 1
p

t p
∫

Ω

|∇uη |pdx =
1
p

t p
[
|∇U |pLp(RN) +O

(
η

N−p
p−1
)]
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for all t ≥ 0 and λ > 0. It follows from (3.5) and (4.1) that there exist T ∈ (0,1) and η1 > 0
such that for all 0 < λ < δ1 and 0 < η < η1

(4.6) sup
0≤t≤T

I(te1uη , te2uη)≤ p
N− p

‖b‖
−N−p

p
∞

(
SF

p∗

)N
p

−Bλ
p

p−q .

Moreover, using the definitions of I and uη , it follows from (a2) and (4.5) that

sup
t≥T

I(te1uη , te2uη) = sup
t≥T

(
J(te1uη , te2uη)− λ

q
tq
∫

Ω

[a1(x)+a2(x)]|uη |qdx
)

≤ p
N− p

‖b‖
−N−p

p
∞

(
SF

p∗

)N
p

+O(η
N−p
p−1 )− 2λβ0T q

q

∫
B(x0,δ0)

|uη |qdx.

By the Lemma A5 of [15], it implies from N(p−1)/N− p < q < p < N that∫
B(x0,δ0)

|uη |qdx≥C6η
N(p−q)+pq

p .

By the above two inequalities, we have

(4.7) sup
t≥T

I(te1uη , te2uη)≤ p
N− p

‖b‖
−N−p

p
∞

(
SF

p∗

)N
p

+O(η
N−p
p−1 )− 2C6λβ0T q

q
η

N(p−q)+pq
p .

By the hypothesis N(p−1)/N− p < q < p < N, we obtain ((N− p)(p−q))/(p(N−N p+
Nq− pq)) > 0. For some positive constants C7 and C8, let η = λ (p(p−1))/((p−q)(N−p)) and
λ < (C8/(B+C7))

((N−p)(p−q))/(p(N−N p+Nq−pq)), we have

C7η
N−p
p−1 −C8λη

N(p−q)+pq
p = C7λ

p
p−q −C8λ

(N p−Nq+pq−p)p
(N−p)(p−q) <−Bλ

p
p−q ,

which implies that there exists δ2 > 0 such that for all η = λ (p(p−1))/((p−q)(N−p)) and λ < δ2

(4.8) O(η
N−p
p−1 )− 2C6λβ0T q

q
η

N(p−q)+pq
p <−Bλ

p
p−q .

From (4.7) and (4.8), for all η = λ (p(p−1))/((p−q)(N−p)) and λ < δ2, one has

sup
t≥T

I(te1uη , te2uη)≤ p
N− p

‖b‖
−N−p

p
∞

(
SF

p∗

)N
p

−Bλ
p

p−q .(4.9)

Set Λ∗ = min
{

δ1,δ2,η
((N−p)(p−q))/(p(p−1))
1

}
. Combining (4.6) with (4.9), for all η =

λ (p(p−1))/((p−q)(N−p)) and λ ∈ (0,Λ∗), we obtain

sup
t≥0

I(te1uη , te2uη)≤ p
N− p

‖b‖
−N−p

p
∞

(
SF

p∗

)N
p

−Bλ
p

p−q .

Proof of Theorem 1.2. Choose λ ∗ ≤ Λ, from the proof of Theorem 1.1, we have already
obtained that problem (1.1) has a nontrivial nonnegative solution zλ with I(zλ ) < 0 for any
λ ∈ (0,λ ∗). Now we only need to prove that problem (1.1) has a nontrivial nonnegative
solution z̄λ with I(z̄λ ) > 0 for any λ ∈ (0,λ ∗). According to (a1), we can obtain (2.4) and
(3.3) hold. It follows from (b1) and Lemma 3.1 that there exists φ0 ∈C∞

0 (Ω) such that∫
Ω

b(x)(φ+
0 )p∗dx > 0.
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Since F is positively homogeneous of degree p∗, we have (2.2) holds. It follows from
F ∈ C1((R+)2,R+) and (2.2) that there exists (e1,e2) ∈ {z ∈ (R+)2 : |z| = 1} such that
F(e1,e2) = M. Let z0 = (e1φ0,e2φ0), from (2.4), we have

I(tz0)≤
(

1
p

+ ε

)
t p‖z0‖p

E −Mt p∗
∫

Ω

b(x)(φ+
0 )p∗dx+C(ε)λ

p
p−q ,

which implies that
I(tz0)→−∞ as t→+∞.

Hence, there exists a positive number t0 such that ‖t0z0‖E > ρ and I(t0z0) < 0 for any
λ ∈ (0,λ ∗). Therefore, the functional I has the mountain pass geometry. Define

Γ = {γ ∈C([0,1],E)| γ(0) = 0, γ(1) = t0z0}, c̃ = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)).

From Lemma 4.1, we have

c̃ <
p

N− p
‖b‖

−N−p
p

∞

(
SF

p∗

)N
p

−Bλ
p

p−q .

Applying Lemma 2.4, we know that I satisfies the (PS)c̃ condition. By the mountain pass
theorem (see [3]), we obtain that problem (1.1) has the second solution z̄λ = (ūλ , v̄λ ) with
I(z̄λ ) > 0. Noticing that Fu(0,(v̄λ )+) = Fv((ūλ )+,0) = 0, after a direct calculation, we
derive that

‖(ūλ )−‖p = 〈I ′u(ūλ , v̄λ ),−(ūλ )−〉= 0, and ‖(v̄λ )−‖p = 〈I ′v(ūλ , v̄λ ),−(v̄λ )−〉= 0,

which implies that (ūλ )− = 0 and (v̄λ )− = 0. Hence we have ūλ ≥ 0 and v̄λ ≥ 0.
Next, we show that ūλ 6= 0 and v̄λ 6= 0. Since I(z̄λ ) > 0 = I(0,0), we have ūλ 6= 0 or

v̄λ 6= 0. Without loss of generality, we may assume that ūλ 6= 0 and v̄λ = 0. Using the
hypothesis that Fu(u,0) = Fv(0,v) = 0 for all u, v ∈ R+, it is easy to obtain ūλ satisfies that

(4.10)
{
−4pūλ = λa1(x)(ūλ )q−1, in Ω,
ūλ = 0, on ∂Ω.

Acting on (4.10) with ūλ ∈W 1,p
0 (Ω) yields∫
Ω

|∇ūλ |pdx = λ

∫
Ω

a1(x)(ūλ )qdx.

Therefore, we have

I(ūλ ,0) =
1
p

∫
Ω

|∇ūλ |pdx− λ

q

∫
Ω

a(x)(ūλ )qdx =
(

1
p
− 1

q

)∫
Ω

|∇ūλ |pdx < 0,

which is a contradiction with I(ūλ ,0) = I(z̄λ ) > 0. Therefore, we have ūλ 6= 0 and v̄λ = 0
are not established. Similarly, we obtain ūλ = 0 and v̄λ 6= 0 are impossible. Hence we have
ūλ 6= 0 and v̄λ 6= 0.

Moreover, if ai(x)≥ 0(i = 1,2) and b(x)≥ 0, a same argument with the proof of Theorem
1.1, we obtain that uλ > 0, vλ > 0, and ūλ > 0, v̄λ > 0 in Ω. The proof of Theorem 1.2 is
completed.
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