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Abstract. A 2p-times continuously differentiable complex-valued function F = u + iv in
a domain Ω ⊆ C is p-harmonic if F satisfies the p-harmonic equation ∆pF = 0. We say
that F is log-p-harmonic if logF is p-harmonic. In this paper, we investigate several ba-
sic properties of p-harmonic and log-p-harmonic mappings. In particular, we discuss the
problem of when the composite mappings of p-harmonic mappings with a fixed analytic
function are q-harmonic, where q ∈ {1, . . . , p}. Also, we obtain necessary and sufficient
conditions for a function to be p-harmonic (resp. log-p-harmonic). We study the local
univalence of p-harmonic and log-p-harmonic mappings, and in particular, we obtain two
sufficient conditions for a function to be a locally univalent p-harmonic or a locally univalent
log-p-harmonic. The starlikeness of log-p-harmonic mappings is considered.
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1. Introduction and main results

One of the most fundamental articles on univalent harmonic (sense preserving) mappings
is due to Clunie and Sheil-Small [11] (see the work of Mocanu [17] for many basic results
about univalent C1-mappings and the monograph of Duren [12] about univalent harmonic
mappings).

Biharmonic mappings arise in a lot of physical situations, particularly in fluid dynamics
and elasticity problems, and have many important applications in engineering and biology,
see [13–15]. However, the investigation of biharmonic mappings in the context of geometric
function theory is a recent one (see [2, 4, 5, 7, 8] and the references therein). Many phys-
ical problems are modeled by log-biharmonic mappings, particularly those arising in fluid
flow theory and elasticity. The log-biharmonic mappings are closely associated with the
biharmonic mappings, which appear in Stokes flow problems. There is an enormous num-
ber of problems involving Stokes flow which arise in engineering and biological transport
phenomena (for details see [13–15]). It will also be interesting investigate in directions of
applications. Recently, the properties of log-harmonic and log-biharmonic mappings have
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been investigated by several authors, see [1,3,16]. In the following subsections, we include
the definitions of these classes of mappings and state the main results together with their
implications and some interesting examples about these classes of mappings.

1.1. p-harmonic mappings

A 2p-times continuously differentiable complex-valued function F = u + iv in a domain
Ω⊆ C is p-harmonic if F satisfies the p-harmonic equation ∆pF = 0, where p (≥ 1) is an
integer, ∆ represents the Laplacian operator

∆ = 4
∂ 2

∂ z∂ z
=

∂ 2

∂x2 +
∂ 2

∂y2 , and ∆
pF := ∆ · · ·∆︸ ︷︷ ︸

p

F = ∆
p−1(∆F).

Obviously, when p = 1 (resp. p = 2), F is harmonic (resp. biharmonic) in Ω. Also, it is
clear that every harmonic mapping is p-harmonic for each p≥ 2.

If Ω ⊂ C is a simply connected domain, then it is easy to see that (see [9]) every p-
harmonic mapping F can be written as

F(z) =
p

∑
k=1
|z|2(k−1)Gp−k+1(z),

where each Gp−k+1 is harmonic, i.e., ∆Gp−k+1 = 0 for k ∈ {1, . . . , p}. We refer to [9] for
many interesting results on p-harmonic mappings of the unit disk D = {z ∈ C : |z|< 1}.

1.2. Composition mappings

Although a harmonic mapping of an analytic function is known to be harmonic, a p-
harmonic mapping (p > 1) precomposition with an analytic function may not be p-harmonic.
This can be easily seen by taking

F(z) = |z|2(p−1) and f (z) = 2z2 + z+1.

We see that F is p-harmonic, whereas F ◦ f is not. Therefore, it is natural to ask

Problem 1.1. For an analytic function f , under what condition, is the composite mapping
F ◦ f still p-harmonic (resp. q-harmonic, where q ∈ {1, . . . , p−1}) for any p-harmonic
mapping F?

We now begin to state two elementary results concerning this problem.

Theorem 1.1. Let f be an analytic function in D. Then for any p-harmonic mapping F
with p > 1, F ◦ f is p-harmonic if and only if f (z) = az+b, where a and b are constants.

Theorem 1.2. Let f be an analytic function in D and q an integer in {1, . . . , p−1}, where
p > 1. Then for any p-harmonic function F , F ◦ f is q-harmonic if and only if f is a constant.

We present the proofs of Theorems 1.1 and 1.2 in Section 2.
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1.3. log-p-harmonic mappings

A logharmonic mapping defined on D is a solution of the nonlinear elliptic partial differen-
tial equation

(1.1) fz = (µ f / f ) fz, f (0) = 0,

where the second dilatation µ is analytic in D such that |µ(z)| < 1 on D. In general the
solution of the equation (1.1) is not univalent. For instance, the functions

f1(z) = |z|4z4 and f2(z) = |z|2z

are the solutions of (1.1) with µ = 1/3 and µ = 1/2, respectively. We observe that the
function f1 is not univalent whereas f2 is univalent in D. It follows that the Jacobian

J f := | fz|2−| fz|2 = | fz|2(1−|µ|2)

is positive and hence, non-constant logharmonic mappings are sense-preserving and open on
D. If in addition f is univalent then we say that f is univalent logharmonic on D (vanishing
at the origin). Such mapping f admits the representation

(1.2) f (z) = z|z|2β h(z)g(z),

where Reβ > −1/2 and, h and g are non-vanishing analytic functions in D with g(0) = 1
and h(0) 6= 0 (cf. [6]). We see that the exponent β in (1.2) depends only on µ(0) and can be
expressed by

β =
µ(0)(1+ µ(0))

1−|µ(0)|2
.

If f is univalent logharmonic on D such that µ(0) = 0, then β = 0 and so f in this case has
the form f (z) = zh(z)g(z).

In case 0 /∈ f (D), then every univalent logharmonic f on D takes the form f (z) =
h(z)g(z).

We say that F is log-p-harmonic if logF is p-harmonic. Throughout “log” denotes the
principal branch of the logarithm. It can be easily shown that every log-p-harmonic function
F in a simply connected domain Ω has the form

F(z) =
p

∏
k=1

(
Gp−k+1(z)

)|z|2(k−1)
,

where all Gp−k+1 are nonvanishing logharmonic mappings in Ω for k ∈ {1, . . . , p}. When
p = 1 (resp. p = 2), log-p-harmonic F is called log-harmonic (resp. log-biharmonic).

Throughout this paper we will discuss p-harmonic and log-p-harmonic mappings defined
on the unit disk D. In order to state our results about the local univalence of p-harmonic and
log-p-harmonic mappings, we need some preparations.

A complex-valued function f : Ω→C is said to belong to the class C1(Ω) (resp. C2(Ω))
if Re f and Im f have continuous first order (resp. second order) partial derivatives in Ω. For
f ∈C1(Ω), consider the complex linear differential operators D and D defined on C1(Ω) by

D = z
∂

∂ z
− z

∂

∂ z
, and D = z

∂

∂ z
+ z

∂

∂ z
,
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respectively. A number of interesting algebraic and analytic properties of these operators
are discussed by Mocanu [17]. For instance, it is easy to see that the operator D preserves p-
harmonicity. It is well-known that f is locally univalent if J f (z) 6= 0 for z ∈ D. If J f (z) > 0
for z ∈ Ω, then f is locally diffeomorphism preserving the orientation. In [17], Mocanu
obtained extra conditions by using geometric concepts such as starlikeness, convexity and
close-to-convexity so that the map f : Ω→ f (Ω) is globally diffeomorphism.

1.4. Log-harmonic starlike mappings

A continuous function f : D→ C, f (0) = 0, is called starlike in D if it is univalent and the
range f (D) is a starlike (with respect to the origin) domain.

Definition 1.1. We say that a univalent function f ∈C1(D) with f (0) = 0 is said to be fully
starlike if the curve f (reit) is starlike for each r ∈ (0,1). In other words,

∂

∂ t

(
arg f (reit)

)
= Re

(
D f (z)

f (z)

)
> 0

for z = reit ∈ D\{0} (see also [10] in order to distinguish starlikeness in the analytic and
the harmonic cases).

Throughout the paper, we treat fully starlike functions as starlike functions although this
is not the case in strict sense. At this place, it is also important to observe that Dg for
C1-functions behaves much like zg′ for analytic functions, for example in the sense that
for g univalent and analytic, g is starlike if and only if Re(zg′(z)/g(z)) > 0. A similar
characterization has also been obtained by Mocanu [17] for convex (C2) functions. Lately,
interesting distortion theorems and coefficients estimates for convex and close-to-convex
harmonic mappings were given by Clunie and Sheil-Small [11]. We now state our next
main result.

Theorem 1.3. Let F(z) = |z|2(p−1)G(z)+ K(z), where G and K belong to the class C1(D)
such that G is univalent starlike (not necessarily harmonic) and K is a sense-preserving. If
for z ∈ D\{0},

(1.3) (p−1)|G|2Re
(

zKz− zKz

G

)
+ |z|2Re

(
GzKz−GzKz

)
> 0

or equivalently

(1.4) (p−2)|G|2Re
(

zKz− zKz

G

)
+Re

(
Kz(|z|2G)z−Kz(|z|2G)z

)
> 0

then JF > 0 and F is locally univalent.

As every biharmonic mapping F has the form F(z) = |z|2G(z)+K(z) for some harmonic
mappings G and K, Theorem 1.3 for p = 2 contains a refined version of [4, Theorem 3.1]
although the proof for the general case follows from the same lines of those in [4].

Corollary 1.1. Let F(z) = |z|2(p−1)G(z), where G is starlike (not necessarily harmonic) in
D. Then F is starlike and univalent in D.

The proofs of Theorem 1.3 and Corollary 1.1 will be given in Section 3.
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If G in this corollary is analytic and univalent in D, then Gz = 0 and therefore the corre-
sponding Jacobian JF takes the form

JF = 2(p−1)|z|2(2p−3)|G|2Re
(

zG′

G

)
+ |z|4(p−1)|G′|2,

or equivalently

JF = |z|2(2p−3)|G|2
[∣∣∣∣ zG′

G
+ p−1

∣∣∣∣2− (p−1)2

]
.

This observation gives the following

Corollary 1.2. Suppose that G is analytic and univalent in D and F(z) = |z|2(p−1)G(z).
Then we have

(i) JF = 0 if and only if
∣∣∣∣ zG′

G
+ p−1

∣∣∣∣= p−1 or z = 0;

(ii) JF > 0 if and only if
∣∣∣∣ zG′

G
+ p−1

∣∣∣∣> p−1 and z 6= 0;

(iii) JF < 0 if and only if
∣∣∣∣ zG′

G
+ p−1

∣∣∣∣< p−1 and z 6= 0.

Theorem 1.4. Let f (z) = k(z)g(z)|z|
2(p−1)

, where both k and g are nonvanishing C1-functions
in D such that g(0) = 1 and logg is starlike (not necessarily harmonic) and univalent in D,
and that k is sense-preserving. If (1.3) holds for z ∈ D\{0}, with G = logg and K = logk,
then J f > 0 and f is locally univalent.

Proof. Set F = log f . As G = logg and K = logk, the function F takes the form given in
Theorem 1.3 and the proof follows easily from the hypotheses.

As remarked for earlier theorem, the case p = 2 of Theorem 1.4 is again a refined version
of corresponding result from [3]. Also, Theorem 1.4 includes a result for certain log-p-
harmonic mappings as a special case. Thus, Theorems 1.3 and 1.4 are natural generaliza-
tions (indeed under weaker hypotheses) of the corresponding results obtained in [3, 4] for
biharmonic and log-biharmonic mappings.

1.5. Examples

Example 1.1. Set f (z) = zeλ z, where |λ | ≤ 1. Then fzz = λeλ z and therefore, f is not
harmonic unless λ = 0. On the other hand, for |λ | ≤ 1, we see that

D f (z)
f (z)

= 1−λ z and J f (z) = |eλ z|2(1−|λ z|2),

showing that f is starlike and sense preserving in D. We observe that f is a solution of (1.1)
with the second complex dilatation µ(z) = λ z and is therefore, log-harmonic in D.

Example 1.2. Set f (z) = z−λ |z|2, where 0 < |λ |< 1/2. Then fzz =−λ and therefore, f
is not harmonic. It is easy to see that f is log-harmonic in D, as a solution of (1.1) with the
second complex dilatation as

µ(z) =
λ z

1+λ z
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which is analytic in D and |µ(z)|< 1 in D (as 0 < |λ |< 1/2). Indeed, a simple calculation
shows that for 0 < |λ |< 1/2,

Re
D f (z)

f (z)
= Re

(
1

1−λ z

)
≥ 1

1+ |λ |
> 0

and
J f (z) = |1−λ z|2−|λ z|2 = 1−2Re(λ z)≥ 1−2|λ |> 0

showing that f is starlike and sense preserving in D.

Example 1.3. Consider the functions

f (z) = zez, g(z) =
z(1− z)

1− z
, and h(z) =

ze(1/2)z

1− z
.

In Example 1.1, we have shown that f is starlike in D. For the function g, we see that

Jg(z) =
1−|z|2

|1− z|2
> 0 and

Dg(z)
g(z)

=
1

1− z
+

z
1− z

so that

Re
(

Dg(z)
g(z)

)
= Re

(
1

1− z
+

z
1− z

)
> 0.

Thus, g is starlike (univalent) in D. Similarly, it is a simple exercise to show that h is starlike
(univalent) in D. According to Corollary 1.1,

F1(z) = |z|2(p−1)zez, F2(z) = |z|2(p−1) z(1− z)
1− z

and F3(z) = |z|2(p−1) ze(1/2)z

1− z

are all starlike (univalent) in D. Also, it is easy to see that g is (univalent) log-harmonic in
D with µ(z) =−z whereas h is (univalent) log-harmonic in D with µ(z) = z(1− z)/2. The
mapping properties of Fj(z) ( j = 1,2,3) for the values of p = 1,3 are shown in Figures 1–6.
The figures show the images of concentric circles and equally spaced rays of the unit disk
D.

Figure 1. Graph of f (z) = |z|2(p−1)zez for p = 1
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Figure 2. Graph of f (z) = |z|2(p−1)zez for p = 3

Figure 3. Graph of f (z) = |z|2(p−1) z(1− z)
1− z

for p = 1

Example 1.4. Let

f (z) =− log(1− z)
1− z

=
∞

∑
n=1

(
n

∑
k=1

1
k

)
zn.
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Figure 4. Graph of f (z) = |z|2(p−1) z(1− z)
1− z

for p = 3

Then we see that

Re
(

z f ′(z)
f (z)

)
= Re

(
z

1− z
− z

(1− z) log(1− z)

)
>−1

2
+

1
2log2

> 0, z ∈ D,

and thus f is analytic and starlike (univalent) in D. According to Corollary 1.1,

F(z) = |z|2(p−1) f (z) =−|z|2(p−1) log(1− z)
1− z

is starlike (univalent) in D. The mapping properties of F(z) for the values of p = 1,2,3 are
shown in Figures 7–9.

1.6. log-p-harmonic convex mappings

A continuous function f : D→ C is called convex in D if it is univalent and the range f (D)
is a convex domain.

Next, we consider the starlikeness of log-p-harmonic mappings which is a generaliza-
tion of the corresponding result in [3] where starlikeness of log-biharmonic mappings was
discussed.

Definition 1.2. We say that a univalent log-p-harmonic mapping F with F(0) = 0 and
∂F(reit )

∂ t 6= 0 whenever 0 < r < 1, is said to be fully convex if the curve F(reit) is convex for
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Figure 5. Graph of f (z) = |z|2(p−1)
(

z
1− z

)
e

1
2 z for p = 1

each r ∈ (0,1). In other words,

∂

∂ t

(
arg

∂

∂ t
F(reit)

)
= Re

zFz(z)+ zFz(z)−2|z|2Fzz(z)+ z2Fzz(z)+ z2Fzz(z)
zFz(z)− zFz(z)

> 0

for z = reit ∈ D\{0} (see also [10] in order to distinguish convexity in the analytic and the
harmonic cases).

Thus, a mapping F is log-p-harmonic convex if and only if the mapping DF is log-p-
harmonic starlike.

Theorem 1.5. Let F be a log-p-harmonic mapping of D. Suppose F has the form F(z) =
G(z)|z|

2(p−1)
, where G is a nonvanishing logharmonic mapping and G(0) = 1. If logG(z) is

a starlike mapping, then logF(z) is starlike and univalent.

We remark that Theorem 1.5 is a generalization of [3, Lemma 2].
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Figure 6. Graph of f (z) = |z|2(p−1)
(

z
1− z

)
e

1
2 z for p = 3

2. Composition of p-harmonic mappings with analytic functions

2.1. Proof of Theorem 1.1

It suffices to prove the necessity since the proof of the sufficiency is obvious. Let H = F ◦ f ,
where f is analytic and F is p-harmonic. In particular, we set F(z) = |z|2(p−1). Then we see
that H is p-harmonic, H = f p−1 f p−1 and

∆
pH(z) = 4p ∂ p f (z)p−1

∂ zp
∂ p f (z)p−1

∂ zp = 0,

which yields
∂ p f (z)p−1

∂ zp = 0.

Thus, f (z)p−1 must be of the form

f (z)p−1 = a0 +a1z+ · · ·+ap−1zp−1,

which implies that f must be linear.

2.2. Proof of Theorem 1.2

Again, it suffices to prove the necessity since the proof of the sufficiency is obvious. As
in the proof of Theorem 1.1, assume that f is analytic and let F(z) = |z|2(p−1). Then H =
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Figure 7. Graph of f (z) =−|z|2(p−1) log(1− z)
1− z

for p = 1

F ◦ f = f p−1 f p−1 is q-harmonic and

∆
qH(z) = 4q ∂ q f (z)p−1

∂ zq
∂ q f (z)p−1

∂ zq = 0,

which yields
∂ q f (z)p−1

∂ zq = 0.

It follows that
f (z)p−1 = a0 +a1z+ · · ·+aq−1zq−1,

which implies that f must be a constant, since q≤ p−1.

3. Local univalence

3.1. Proof of Theorem 1.3

It suffices to prove the theorem for the case p > 1. Consider F(z) = |z|2(p−1)G(z)+K(z). It
follows that

Fz(z) = (p−1)zp−2(z)p−1G(z)+ |z|2(p−1)Gz(z)+Kz(z)
which may be rewritten as

Fz = |z|2(p−2)z[(p−1)G+ zGz]+Kz.
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Figure 8. Graph of f (z) =−|z|2(p−1) log(1− z)
1− z

for p = 2

Similarly, we have
Fz = |z|2(p−2)z[(p−1)G+ zGz]+Kz.

Using the last two equations, we see that

JF = |Fz|2−|Fz|2

= |z|2(2p−3){|(p−1)G+ zGz|2−|(p−1)G+ zGz|2}+ JK

+2|z|2(p−2)Re
(
z[(p−1)G+ zGz]Kz− z[(p−1)G+ zGz]Kz

)
= |z|2(2p−3){2(p−1)Re

[
G(zGz− zGz)

]
+ |z|2JG}+ JK

+2|z|2(p−2)[(p−1)Re
[

G(zKz− zKz)
]
+ |z|2Re

[
GzKz−GzKz

]]
= |z|2(2p−3)

{
2(p−1)|G|2Re

( zGz− zGz

G

)
+ |z|2JG

}
+ JK

+2|z|2(p−2)[(p−1)Re
{

G(zKz− zKz)
}

+ |z|2Re
{

GzKz−GzKz
}]

.

The hypotheses “G being starlike” and “K being sense-preserving” imply that for z ∈
D\{0},

Re
(

zGz− zGz

G

)
> 0, JG > 0, and JK > 0.

Using (1.3), we deduce that JF(z) > 0 for z 6= 0. Since JF(0) = JK(0), we see that JF > 0 in
D which implies that F is locally univalent.
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Figure 9. Graph of f (z) =−|z|2(p−1) log(1− z)
1− z

for p = 3

3.2. Proof of Corollary 1.1

Proceeding exactly as in the proof of Theorem 1.3 with K = 0 (so that Kz = Kz = 0), the last
formula in the proof of Theorem 1.3 for JF takes the form

JF = 2(p−1)|z|2(2p−3)|G|2Re
(

zGz− zGz

G

)
+ |z|4(p−1)JG.

Since G is orientation preserving and starlike in D and p > 1, it follows that F(z) 6= 0 in
D\{0} and the last relation gives JF(z) > 0 for z ∈ D\{0}. Moreover, as

zFz = |z|2(p−1)[(p−1)G+ zGz] and zFz = |z|2(p−1)[(p−1)G+ zGz],

it follows that
zFz− zFz

F
=

zGz− zGz

G

and therefore,

Re
(

DF(z)
F(z)

)
> 0 for all z ∈ D\{0}.

Hence, F is starlike in D.
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4. Starlikeness

Lemma 4.1. Let F be a log-p-harmonic mapping of D of the form F(z) = G(z)|z|
2(p−1)

,
where G is a nonvanishing logharmonic mapping and G(0) = 1. If logG is starlike in D,
then JlogF(z) > 0 for z ∈ D\{0} and JlogF(0) = 0.

Proof. Obviously, it suffices to consider the case p > 1. Let F(z) = G(z)|z|
2(p−1)

. Simple
calculations give

Fz(z)
F(z)

= |z|2(p−2)
[
(p−1)z logG(z)+ |z|2 Gz(z)

G(z)

]
and similarly

Fz(z)
F(z)

= |z|2(p−2)
[
(p−1)z logG(z)+ |z|2 Gz(z)

G(z)

]
.

Using the last two relations, it follows that

JF = |Fz|2−|Fz|2

= |F |2|z|4(p−2)

[∣∣∣∣(p−1)z logG+ |z|2 Gz

G

∣∣∣∣2− ∣∣∣∣(p−1)z logG+ |z|2 Gz

G

∣∣∣∣2
]

= |F |2|z|4(p−2)
[
|z|4

|G|2
JG +2(p−1)|z|2Re

(
zlogG

Gz

G
− zlogG

Gz

G

)]
= |F |2|z|4(p−2)

[
|z|4

|G|2
JG +2(p−1)|z|2| logG|2Re

(
zGz− zGz

G logG

)]
.

Since G is sense-preserving and logG is starlike, we deduce that

JlogF(z) =
∣∣∣∣Fz

F

∣∣∣∣2− ∣∣∣∣Fz

F

∣∣∣∣2 > 0

for z ∈ D\{0} and obviously, JlogF(0) = 0.

4.1. Proof of Theorem 1.5

Obviously, it suffices to consider the case p > 1. Let

F∗(z) = |z|2(p−1)g(z),

where g = logG.
Since g is starlike, it follows that g and F∗ are zero only at z = 0 and, in addition, Def-

inition 1.1 and argument principle imply that g is univalent in D. Elementary calculations
yield

Re
(

zF∗z − zF∗z
F∗

)
= Re

(
zgz− zgz

g

)
> 0

when z 6= 0. This shows the starlikeness of F∗. Since by Lemma 4.1, JF∗(z) > 0 for z ∈
D\{0} and JF∗(0) = 0, we see that F∗ is univalent on each |z|= r for r ∈ (0,1).

In order to prove the univalence of F∗, suppose that there are two distinct points z1,
z2 ∈ D such that F∗(z1) = F∗(z2). Then |z1| 6= |z2|. Without loss of generality, we assume
that |z1|< |z2|. Then

g(z1)
g(z2)

=
|z2|2(p−1)

|z1|2(p−1) > 1,
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which implies g(D|z2|)⊂ g(D|z1|). This is the desired contradiction. The arbitrariness of z1
and z2 shows that logF is univalent in D.
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