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1. Introduction

Many researchers have studied the characterizations of probability distributions. For ex-
ample, Su and Huang [12] studied the characterizations based on conditional expectations.
Recently, Nanda [10] studied the characterizations through the expected values of failure
rate and mean residual life functions of a nonnegative absolutely continuous random vari-
able X . The problems of characterizations based on record values and order statistics started
in late sixties by Tata [13], and followed in seventies by Nagaraja [9] and Ahsanullah [1].
For further development and various characterizations of probability distributions based on
record values and order statistics, the interested readers are referred to Arnold et al. [6], Rao
and Shanbhag [11], Ahsanullah [2, 3, 4], Bairamov et al. [7], Yanev et al. [14], and Ahsan-
ullah and Aliev [5], among others. In this paper, some new results on characterizations of
Rayleigh distribution based on order statistics and record values have been established.

Rayleigh Distribution: A random variable X is said to have a Rayleigh distribution if its
probability density function (pd f ) f is given by

(1.1) f (x) =

 2cxe−cx2
, x > 0, c > 0,

0, otherwise,
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with the corresponding cumulative distribution function (cd f ) F is given by F (x) = 1−
e− c x 2

, where c > 0 is known as the scale parameter of Rayleigh distribution. For detailed
treatment on Rayleigh distribution, the interested readers are referred to Johnson et al. [8].

Record Values: Suppose that (Xn)n > 1 is a sequence of independent and identically dis-
tributed (i.i.d.) random variables (rv’s) with cd f F . Let Yn = max(min)

{
X j | 1 6 j 6 n

}
,

for n > 1. We say X j is an upper (lower) record value of {Xn | n > 1}, if Yj > (<) Yj − 1,
j > 1. By definition X1 is an upper as well as a lower record value. The indices at
which the upper record values occur are given by the record times {U (n) , n > 1}, where
U (n) = min

{
j | j > U (n−1) , X j > XU (n−1) , n > 1

}
and U (1) = 1. Many properties

of the upper record value sequence can be expressed in terms of the cumulative hazard rate
function R(x) = − lnF (x), where F (x) = 1−F (x), 0 < F (x) < 1. We will denote
XU (n) by X(n)and Fn (x) as the cd f of X(n) for n > 1. We have

Fn(x) =
∫ x

−∞

(R(u))n−1

Γ(n)
dF(u), −∞ < x < ∞,

from which it is easy to see that

Fn(x) = 1−F(x)
n−1

∑
j=0

(R(x)) j

Γ( j +1)
,

that is,

(1.2) Fn(x) = F(x)
n−1

∑
j=0

(R(x)) j

Γ( j +1)
.

We assume F(x) is absolutely continuous with respect to Lebesgue measure and denote
fn (x) as the pd f of X(n), where

(1.3) fn(x) =
(R(x))n−1

Γ(n)
f (x), −∞ < x < ∞.

From (1.2) and (1.3) it is easy to show that Fn(x)−Fn−1(x) = F(x) fn(x)
f (x) . For details on

record values, see Ahsanullah [3]. Using Equation (1.3), the pd f and cd f of the nth record
value X(n) from Rayleigh(c) distribution are, respectively, given by

(1.4) fn(x) =
2cnx2n−1e−cx2

Γ(n)
, n = 1,2,3, ...,

and

(1.5) Fn(x) =
γ(n,cx2)

Γ(n)
,n = 1,2,3, ...,

where x > 0,c > 0, and γ(α,z) =
∫ z

0 tα−1dt,α > 0, denotes incomplete gamma function.
The kth moment of the nth record value X(n) with the pd f (1.4) is given by

(1.6) E[Xk(n)] =
Γ(n+ 2

k )
Γ(n)

c−
k
2 .

In this paper, some new results on characterizations of Rayleigh distribution based on
order statistics and record values have been established. The organization of this paper is as
follows. Section 2 contains characterizations based on conditional expectations. In Section
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3, some new results based on order statistics have been established. Section 4 contains
characterizations based on record values.

2. Characterizations based on conditional expectations

We first prove the following two lemmas.

Lemma 2.1. Case (i) Let X be an absolutely continuous (with respect to Lebesgue measure)
random variable with cumulative distribution function F(x) with F(0) = 0 and F(x) > 0 for
all x > 0. If for any non-negative number s, any t > 0 and c > 0,∫

∞

t (1−F(x))sdx
(1−F(t))s =

1
2

√
π

cs
(1− erf((

√
cs)t))ecst2

,

where erf(x) =
∫ x

0
2√
π

e−t2
dt denotes the error function, then F(x) = 1−e−cx2

, x > 0, c > 0.

Proof. We have

(2.1)
∫

∞

t
(1−F(x))sdx =

1
2

√
π

cs
(1−F(t))s(1− erf((

√
cs)t))ecst2

.

Noting d
dt (

1
2

√
π

cs (1− erf((
√

cs)t))ecst2
) = −1 +(

√
πcs)tecst2

(1− erf((
√

cs)t)), and differ-
entiating both sides of (2.1) with respect to t, we obtain

−(1−F(t))s =−1
2

√
π

cs
s(1−F(t))s−1(1− erf((

√
cs)t)) f (t)

+(1−F(t))s(−1+(
√

πcs)tecst2
(1− erf((

√
cs)t))).

On simplifying, we have from the above equation

(2.2) f (t)
1−F(t) = 2ct

On integrating (2.2) with respect to t and using the boundary conditions F(0) = 0 and
F(∞) = 1, we have

F(x) = 1− e−cx2
, x > 0, c > 0.

Case (ii) Let X be an absolutely continuous (with respect to Lebesgue measure) random
variable with cumulative distribution function F(x) with F(0) = 0 and F(x) > 0 for all
x > 0. If, for any non-negative number s, any t > 0, k > 2 and c > 0,∫

∞

t (2k−1)x2k−2(1−F(x))sdx
(1−F(t))s

=
k−2

∑
j=0

(2k−1)!!
(2cs) j+1(2k−3−2 j)!!

t2k−3−2 j +
(2k−1)!!

√
csπ

(2cs)k (1− erf((
√

cs)t))ecst2
,(2.3)

where (2k−1)!! = 1.3.5...(2k−1), then F(x) = 1− ecx2
, x≥ 0, c > 0.

Proof. We have from (2.3)∫
∞

t
(2k−1)x2k−2(1−F(x))sdx = (1−F(t))s

[
k−2

∑
j=0

(2k−1)!!
(2cs) j+1(2k−3−2 j)!!

t2k−3−2 j

+
(2k−1)!!

√
csπ

(2cs)k (1− erf((
√

cs)t))ecst2
]
.(2.4)
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Noting

(2k−1)!!
√

csπ

(2cs)k
d
dt

(1− erf((
√

cs)t))ecst2
)

=
(2k−1)!!
(2cs)k−1

(
−1+(

√
πcs)tecst2

(1− erf((
√

cs)t))
)

,

and

d
dt

[
k−2

∑
j=0

(2k−1)!!
(2cs) j+1(2k−3−2 j)!!

t2k−3−2 j

]

=
d
dt

[
k−2

∑
j=0

(2k−1)!!
(2cs)k−1 t +

k−3

∑
j=0

(2k−1)!!
(2cs) j+1(2k−3−2 j)!!

t2k−3−2 j

]

=
d
dt

[
k−2

∑
j=0

(2k−1)!!
(2cs)k−1 +

k−3

∑
j=0

(2k−3−2 j)
(2k−1)!!

(2cs) j+1(2k−3−2 j)!!
t2k−3−2 j−1

]
we have, on simplification,

d
dt

[
k−2

∑
j=0

(2k−1)!!
(2cs) j+1(2k−3−2 j)!!

t2k−3−2 j +
(2k−1)!!

√
csπ

(2cs)k (1− erf((
√

cs)t))ecst2

]

=
k−3

∑
j=0

(2k−3−2 j)
(2k−1)!!

(2cs) j+1(2k−3−2 j)!!
t2k−3−2 j−1

+
(2k−1)!!
(2cs)k−1 (

√
csπ)tecst2

(1− erf((
√

cs)t)).

Thus differentiating both sides of (2.4) with respect to t and using the above equation,
we obtain

− (2k−1)t2k−2(1−F(t))s

= (1−F(t))s

[
k−3

∑
j=0

(2k−3−2 j)
(2k−1)!!

(2cs) j+1(2k−3−2 j)!!
t2k−3−2 j−1

+
(2k−1)!!
(2cs)k−1 ecst2

t
√

πcs(1− erf(t
√

cs))
]

− s(1−F(t))s−1 f (t)

[
(2k−1)!!
(2cs)k−1 t +

k−3

∑
j=0

(2k−1)!!
(2cs) j+1(2k−3−2 j)!

t2k−3−2 j

+
(2k−1)!!

√
csπ

(2cs)k (1− erf((
√

cs)t))ecst2
]
,

from which we have

s f (t)
1−F(t)

[
(2k−1)!!
(2cs)k−1 t +

k−3

∑
j=0

(2k−1)!!
(2cs) j+1(2k−3−2 j)!!

t2k−3−2 j

+
(2k−1)!!

√
csπ

(2cs)k (1− erf((
√

cs)t))ecst2
]
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= (2k−1)t2k−2 +
k−3

∑
j=0

(2k−3−2 j)
(2k−1)!!

(2cs) j+1(2k−3−2 j)!!
t2k−3−2 j−1

+
(2k−1)!!
(2cs)k−1 ecst2√

πcs(1− erf((
√

cs)t)).

In the above equation, noting that

(2k−1)t2k−2 +
k−3

∑
j=0

(2k−3−2 j)
(2k−1)!!

(2cs) j+1(2k−3−2 j)!!
t2k−3−2 j−1

=
2cs(2k−1)!!
2cs(2k−3)!!

t2k−2 +
k−3

∑
j=0

(2k−1)!!
(2cs) j+1(2k−5−2 j)!!

t2k−3−2 j−1

=
2cs(2k−1)!!
2cs(2k−3)!!

t2k−2 +2cst
k−2

∑
j=1

(2k−1)!!
(2cs) j+1(2k−3−2 j)!!

t2k−3−2 j

=
2cs(2k−1)!!
2cs(2k−3)!!

t2k−2 +
(2k−1)!!
(2cs)k−2 t2 +2cst

k−3

∑
j=1

(2k−1)!!
(2cs) j+1(2k−3−2 j)!!

t2k−3−2 j

=
(2k−1)!!
(2cs)k−2 t2 +2cst

k−3

∑
j=0

(2k−1)!!
(2cs) j+1(2k−3−2 j)!!

t2k−3−2 j

= 2cst

[
(2k−1)!!
(2cs)k−1 t +

k−3

∑
j=0

(2k−1)!!
(2cs) j+1(2k−3−2 j)!!

t2k−3−2 j

]
,

we obtain, on simplification, the following equation

s f (t)
1−F(t)

[
(2k−1)!!
(2cs)k−1 t +

k−3

∑
j=0

(2k−1)!!
(2cs) j+1(2k−3−2 j)!!

t2k−3−2 j

+
(2k−1)!!

√
csπ

(2cs)k (1− erf((
√

cs)t))ecst2
]

= 2cst

[
(2k−1)!!
(2cs)k−1 t +

k−3

∑
j=0

(2k−1)!!
(2cs) j+1(2k−3−2 j)!!

t2k−3−2 j

+
(2k−1)!!

√
csπ

(2cs)k (1− erf((
√

cs)t))ecst2
]
.

Hence
f (t)

1−F(t)
= 2ct.

Thus on integrating the above equation with respect to t and using the boundary condi-
tions F (0) = 0 and F (∞) = 1, we have

F (x) = 1 − e−cx2
, x > 0, c > 0

This completes the proof of Lemma 2.1.

Lemma 2.2. Let X be an absolutely continuous (with respect to Lebesgue measure) random
variable with cumulative distribution function F(x) with F(0) = 0 and F(x) > 0 for all
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x > 0. If for any nonnegative number s, any t > 0, k > 2 and c > 0,

(2.5)
∫

∞

t 2kx2k−1(1−F(x))sdx
(1−F(x))s =

k

∑
j=1

k( j)t2k−2 j

(cs)i ,

where k( j) = k(k−1)...(k− j +1), then F(x) = 1− e−cx2
, x > 0,c > 0.

Proof. We have from (2.5)

(2.6)
∫

∞

t
2kx2k−1(1−F(x))sdx = (1−F(t))s

(
k

∑
j=1

k( j)t2k−2 j

(cs) j

)
Differentiating both sides of (2.6) with respect to t, we obtain

−2kt2k−1(1−F(t))s =− s(1−F(t))s−1 f (t)
k

∑
j=1

k( j)t2k−2 j

(cs) j

+(1−F(t))s
k−1

∑
j=1

2(k− j)k( j)t2k−2 j−1

(cs) j ,

that is,

s(1−F(t))s−1 f (t)
k

∑
j=1

k( j)t2k−2 j

(cs) j

= (1−F(t))s
k−1

∑
j=1

2(k− j)k( j)t2k−2 j−1

(cs) j +2kt2k−1(1−F(t))s

= (1−F(t))s2t

(
k−1

∑
j=1

(k− j)k( j)t2k−2 j−2

(cs) j + kt2k−2

)

= (1−F(t))s2cst

(
k

∑
j=1

k( j)t2k−2 j

(cs) j

)
.

Simplifying the above equation, we have

f (t)
1−F(t)

= 2ct.

Thus on integrating the above equation with respect to t and using the boundary condi-
tions F (0) = 0 and F (∞) = 1, we have

F (x) = 1 − e−cx2
, x > 0, c > 0.

This completes the proof of Lemma 2.2.

Theorem 2.1. Let X be a nonnegative random variable with absolutely continuous (with
respect to Lebesgue measure) distribution function F(x) with F(0) = 0, F(x) > 0 for all
x > 0 and finite E(X2n), for some fixed n > 1. Then X has a Rayleigh distribution with
F(x) = 1− e− c x2

, x > 0, c > 0, iff E(X2n |X > t) = ∑
n
i=0

n(i)

c(i) t2(n−i), where n(i) = n(n−
1)...(n− i+1), n(0) = 1.
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Proof. It is easy to show that if

F(x) = 1− e−c x2
, x > 0, c > 0,

then

E(X2n |X > t) =
n

∑
i=0

n(i)

ci t2(n−i).

We will prove here the ”only if” condition. Suppose

E(X2n |X > t) =
n

∑
i=0

n(i)

ci t2(n−i)

then we have

(2.7) E(X2n|X > t) =
∫

∞

t x2n f (x)dx
1−F(t)

= t2n +
∫

∞

t 2nx2n−1(1−F(x))dx
1−F(t)

.

Hence, using Lemma 2.2 in Equation (2.7), the ”only if” condition easily follows.

Theorem 2.2. Let X be a nonnegative random variable with absolutely continuous (with
respect to Lebesgue measure) distribution function F(x) with F(0) = 0 and F(x) > 0 for all
x > 0 and finite E(X2n+1),for some fixed n > 1. Then X has a Rayleigh distribution with
F(x) = 1− e−cx2

, x > 0, c > 0, iff

E(X2n−1|X > t) =
n−1

∑
j=0

(2n−1)!!
(2n−1−2 j)!!(2c) j t2n−1−2 j

+
(2n−1)!!

(2c)k

√
cπ(1− erf((

√
c)t))ect2

,

where (2n−1)!! = 1.3...(2n−1), n > 1.

Proof. It is easy to show that if

F(x) = 1− e−cx2
, x≥ 0, c > 0,

then

E(X2n−1|X > t) =
n−1

∑
j=0

(2n−1)!!
(2n−1−2 j)!!(2c) j t2n−1−2 j

+
(2n−1)!!

(2c)k

√
cπ(1− erf((

√
c)t))ect2

.

We will prove here the ”only if” condition. Suppose

E(X2n−1|X > t) =
n−1

∑
j=0

(2n−1)!!
(2n−1−2 j)!!(2c) j t2n−1−2 j

+
(2n−1)!!

(2c)k

√
cπ(1− erf((

√
c)t))ect2

.

Then we have

(2.8) E(X2n+1|X > t) =
∫

∞

t x2n+1 f (x)dx
1−F(t)

dx = t2n+1 +
∫

∞

t (2n+1)x2n(1−F(x))dx
1−F(t)

.

Using Lemma 2.1 in Equation (2.8), the ”only if” condition easily follows.



632 M. Ahsanullah and M. Shakil

3. Characterizations based on order statistics

In this section, we establish some results based on order statistics.

Theorem 3.1. Let X be a nonnegative random variable with absolutely continuous (with
respect to Lebesgue measure) distribution function F(x) with F(0) = 0 and F(x) > 0 for all
x > 0 and finite E(X2). Then X has the Rayleigh distribution with F(x) = 1−e−c x2

, x > 0,

c > 0, iff

E(X2m
i,n |Xi−1,n = t) =

m

∑
j=0

m!
(m− j)!

(
1

c(n− j +1)

) j

j2(m− j),

for some fixed n≥ 1, m≥ 1, where Xi,n is the ith order statistics in a sample of size n.

Proof. Suppose that F(x) = 1− e−cx2
, c > 0, x > 0. Then, it can easily be seen, after

integration, that

E(X2m
i,n |Xi−1,n = t) = t2m +

∫
∞

t 2mxm−1e−(n−i+1)cx2
dx

e−(n−i+1)ct2

=
m

∑
j=0

m!
(m− j)!

(
1

c(n− i+1)

) j

t2(m− j).

Suppose that

E(X2m
i,n |Xi−1,n = t) =

m

∑
j=0

m!
(m− j)!

(
1

c(n− i+1)

) j

t2(m− j).

Since

E(X2m
i,n |Xi−1,n = t) = t2m +

∫
∞

t 2mxm−1(1−F(x))n−i+1dx
(1−F(t))n−i+1 ,

therefore, we have∫
∞

t
2mx2m−1(1−F(x))n−i+1dx = [(1−F(t))n−i+1]

m

∑
j=1

m!
(m− j)!

(
1

c(n− i+1)

) j

t2(m− j).

The result easily follows from Lemma 2.2.

Remark 3.1. Let X be a nonnegative random variable with absolutely continuous (with
respect to Lebesgue measure) distribution function F(x) with F(0) = 0 and F(x) > 0 for
all x > 0 and finite E(X2).Then X has a Rayleigh distribution with F(x) = 1− e−cx2

, c >
0, x > 0, iff E(X2

i,n|Xi−1,n = t) = t2 + 1
(n−i+1)c , where Xi,n is the ith order statistics in a

sample of size n.

Proof. The proof easily follows by taking m = 1 in Theorem 3.1.

4. Characterization based on record values

In this section, some results based on record values have been established.
4.1. We first prove the following theorem based on conditional expectation.
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Theorem 4.1. Let X be a nonnegative random variable with absolutely continuous (with
respect to Lebesgue measure) distribution function F(x) with F(0) = 0 and F(x) > 0 for all
x > 0. Assume that E(XU(n+1)) is finite. Then X has a Rayleigh distribution with F(x) =

1− e−x2
, x > 0, iff

E(XU(n+1)|XU(n) = t) = t +
√

π

2 et2 −
√

π

2 et2
erf
(√

2t
)

, for some fixed n > 1.

Proof. Since

E(XU(n+1)|XU(n) = t) = t +
∫

∞

t (1−F(x))dx
1−F(t)

.

the proof follows from Theorem 2.2.

Remark 4.1. Since the conditional pdf of
(
XU(n+1)|XU(n) = t

)
is the same as the conditional

pdf of (X |X > t), the characterizations (see Ahsanullah [3]) using E
(

X2m
U(n+1)|XU(n) = t

)
and E

(
X2m−1

U(n+1)|XU(n) = t
)

are same as given in Theorems 2.1 and 2.2, respectively.

4.2. It is well known that if X has a Rayleigh distribution with F(x) = 1− e−c x2
, c > 0,

x > 0, then Y = X2 has an exponential distribution with FY (y) = 1− e−c y. Further, apply-
ing Theorem 8.4.1, page 256, Ahsanullah [3], it is easy to see that, if X be a nonnegative

random variable with the Rayleigh distribution, the we have X2
U(n)

d= X2
1 + ...+ X2

n , n > 1,
where XU(n) is the nth upper record and X1, ..., Xn are independent copies of X ′s. Also see
Ahsanullah [4]. Thus, by the definition of the Erlang distribution, it follows that X2

U(n) is
distributed as Erlang which is defined as follows: A random variable is said to be distributed
as Erlang if its pdf is given by fc,n (x) = 1

Γ(n) cnxn−1e−cx, where c > 0, x > 0, and n > 0 is
an integer.

Theorem 4.2. Let X be a nonnegative random variable with absolutely continuous (with
respect to Lebesgue measure) distribution function F(x) with F(0) = 0 and F(x) > 0 for all
x > 0 and finite E(X2). Then X has a Rayleigh distribution with F(x) = 1− e−cx2

, c > 0,
x > 0, iff X2

U(n) is distributed as Erlang, for some fixed n > 1.

Proof. The ”if condition” is known. We will prove here the ”only if” condition. If X2
U(n) is

distributed as Erlang, then∫ x

0

1
Γ(n)

(R(u))n−1 f (u)du =
∫ x

0

1
Γ(n)

(c)nun−1e−cu2
du

for all x≥ 0.
We can rewrite the above equality as∫ R(x)

0

1
Γ(n)

tn−1e−tdt =
∫ cu2

0

1
Γ(n)

tn−1e−tdt

for all x≥ 0.

Thus, we have R(x) = cx2, for almost all x, x≥ 0. That is, F(x) = 1−e−cx2
, c > 0, x >

0.
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Theorem 4.3. Let X be a nonnegative random variable with absolutely continuous (with
respect to Lebesgue measure) distribution function F(x) withF(0) = 0 and F(x) > 0, for all
x > 0. Assume that E(XU(n+1)) is finite. Then X has a Rayleigh distribution with F(x) =

1− e−x2
, x > 0, iff E(XU(n+1)|XU(n) = t) = t +

√
π

2 et2 −
√

π

2 et2
erf
(√

2t
)

, for some fixed
n > 1.

Proof. Since

E(XU(n+1)|XU(n) = t) = t +
∫

∞

t (1−F(x))dx
1−F(t)

,

the proof follows from Theorem 2.2.

Remark 4.2. Since the conditional pdf of
(
XU(n+1)|XU(n) = t

)
is fn+1|n (x|t) = f (x)

1−F(t) , x > t,

which is exactly equal to the conditional pdf of (X |X > t), that is, fn+1|n (x|t) = f (x)
1−F(t) , x > t,

see, for example, Ahsanullah [3], the following results related to the characterizations using
E
(

X2m
U(n+1)|XU(n) = t

)
and E

(
X2m−1

U(n+1)|XU(n) = t
)

are same as given in Theorems 2.1 and
2.2 above, that is,
(i) E(X2m

U(n+1)|XU(n) = t) = ∑
m
j=0 m( j)( 1

c ) jt2(m− j). where m( j) = m(m− 1)...(m− j + 1),

m(0) = 1, and
(ii) E(X2m−1

U(n+1)|XU(n) = t)= ∑
m−1
j=0

(2m−1)!!
(2m−1−2 j)! (

1
c ) jt(2m−1−2 j)+ (2m−1)!!

(2c)m
√

cπ(1−erf((
√

c)t))ect2
.

The proofs of the above remarks (i) and (ii) are similar to the proofs of Theorems 2.1 and
2.2, respectively.
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